
CSCI 476: Computer Security
SQL Injection Attack (Part 1)

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1*all images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

Announcements

Lab 3 (Buffer Overflow) Due Sunday March 5th @

11:59 PM

Friday will be a lab 3 help session (no lecture)

Next week might be a little bit wacky

3

Research Project

4

Brief Review of

Communication of the web:

• URL

protocol://hostname[:port]/[path/]file

ex.
http://cs.montana.edu/pearsall/rainer.jpeg

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Request

GET http://cs.montana.edu/pearsll/rainer.jpeg

client server

database

http://cs.montana.edu/pearsall/rainer.jpeg
http://cs.montana.edu/pearsll/rainer.jpeg

5

Brief Review of

Communication of the web:

• URL

protocol://hostname[:port]/[path/]file

ex.
http://cs.montana.edu/pearsall/rainer.jpeg

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Request

GET http://cs.montana.edu/pearsll/rainer.jpeg

client server

database

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

HTTP Response

200 OK

http://cs.montana.edu/pearsall/rainer.jpeg
http://cs.montana.edu/pearsll/rainer.jpeg

6

Brief Review of

Communication of the web:

• URL

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality

•

•

•

Serve static resources (HTML, CSS, Images)

Serve dynamic Resources (PHP, Ruby, Java, Javascript…)

Query Databases

➢ Relational (MySql)

➢ Non-Relational (MongoDB)

client server

database

7

Brief Review of

client server

database

Often times, we will want to query only certain data from

the database

• “Give me all the red, SUV cars”

• “Give me all the cars that cost less than $40,000”

If we are working with an SQL-like database, then we can issue an SQL query

protocol://hostname[:port]/[path/]file[?color=red&type=suv]

Query parameters can be passed via URL or in an HTTP request

8

Brief Review of

client server

database

In SQL, our database consists of tables

Each row is an entry in the database

Each column represents an attribute of the entries

ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

FRIENDS

9

Brief Review of

client server

database

In SQL, our database consists of tables

Each row is an entry in the database

Each column represents an attribute of the entries

ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

FRIENDS

“I want to see the names of all my friends who are older than 34!”

10

Brief Review of

client server

database

In SQL, our database consists of tables

Each row is an entry in the database

Each column represents an attribute of the entries

ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

FRIENDS

“I want to see the names of all my friends who are older than 34!”

SELECT FROM WHERE

SQL Query Format

11

Brief Review of

client server

database

In SQL, our database consists of tables

Each row is an entry in the database

Each column represents an attribute of the entries

ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

FRIENDS

“I want to see the names of all my friends who are older than 34!”

SQL Query Format

SELECT FirstName FROM FRIENDS WHERE AGE > 34

12

Brief Review of

client server

database

In SQL, our database consists of tables

Each row is an entry in the database

Each column represents an attribute of the entries

ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

FRIENDS

“I want to see the names of all my friends who are older than 34!”

SQL Query Format

SELECT FirstName FROM FRIENDS WHERE AGE > 34

13

Brief Review of

client server

database

In SQL, our database consists of tables

Each row is an entry in the database

Each column represents an attribute of the entries

ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

FRIENDS

“I want to see the names of all my friends who are older than 34!”

SQL Query Format

SELECT FirstName FROM FRIENDS WHERE AGE > 34

14

Brief Review of

client server

database

In SQL, our database consists of tables

Each row is an entry in the database

Each column represents an attribute of the entries

ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

FRIENDS

“I want to see the names of all my friends who are older than 34!”

SQL Query Format

SELECT FirstName FROM FRIENDS WHERE AGE > 34

Response: John, Sean, Tom

15

Setup

We will use docker again to create a web server running an SQL server!

• cd into the 04_sqli folder

• docker-compose up –d

• Log into the mysql server

16

Setup

• Log into the mysql server

• Log in with credentials and show databases
• We will be using the sqllab_users database

17

Basic SQL Queries

The database that we are using in this
lab only has one table (credential)

18

Basic SQL Queries

19

Basic SQL Queries

SELECT * FROM credential;

Select everything

SELECT Salary, SSN FROM crediential WHERE Name=“Boby”;

SELECT FROM WHERE ;

20

Basic SQL Queries

SELECT * FROM credential; #this is a comment

SELECT * FROM credential; -- this is a comment

SELECT * /*this is a comment*/ FROM credential;

21

Basic SQL Queries

SELECT SSN FROM credential WHERE 1=1;

Always True, so select all the rows!

22

Basic SQL Queries

We have and and or operators

(both conditions need to be true)

(only one, or both, conditions need to be true)

23

Basic SQL Queries

UPDATE credential SET Name=“Sammie” WHERE Name=“Samy”;

Select * FROM credential WHERE Name=“Samy”

(no results)

We can update information in SQL tables with the UPDATE keyword

select * from credential;

24

SQL Injections

http://www.seedlabsqlinjection.com/

http://www.seedlabsqlinjection.com/

25

Flow of stuff

Client Server

HTTP Request

Username=alice

Password=seedalice

SELECT * from

credential where

username=alice and

password=seedalice

Query results

as HTTP

reponse

26

seedalice

The server issues an SQL query to pull all of Alice’s information, and then sends an HTTP response back

27

Storing Passwords

In our table, the plaintext password

is not stored in the database

(good!!). Instead, the hash of the

password is stored

A hash function is used to generate a fixed-length,

deterministic, unique output* for a given input

28

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

$sql =

FROM credential

WHERE name= '$input_uname' and password='$hashed_pwd'";

Backend Handling of SQL Query

"SELECT id, name, eid, salary, birth, ssn,

phoneNumber, address, email, nickname, password

29

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

$sql =

FROM credential

WHERE name= '$input_uname' and password='$hashed_pwd'";

Backend Handling of SQL Query

"SELECT id, name, eid, salary, birth, ssn,

phoneNumber, address, email, nickname, password

One long PHP string that is eventually executed as an SQL query

30

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

$sql =

FROM credential

WHERE name= '$input_uname' and password='$hashed_pwd'";

Backend Handling of SQL Query

"SELECT id, name, eid, salary, birth, ssn,

phoneNumber, address, email, nickname, password

One long PHP string that is eventually executed as an SQL query

31

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

$sql =

FROM credential

WHERE name= '$input_uname' and password='$hashed_pwd'";

Backend Handling of SQL Query

"SELECT id, name, eid, salary, birth, ssn,

phoneNumber, address, email, nickname, password

One long PHP string that is eventually executed as an SQL query

Username input

from webpage

Password input

from webpage

32

Backend Handling of SQL Query

$sql = “SELECT * FROM credential WHERE name= ‘Alice' and
password=‘seedalice'";

SELECT * FROM credential WHERE

name= ‘Alice' and password=‘seedalice’;

The values that we supply on the webpage eventually

get turned into code!

PHP Code

SQL Command that

is executed

33

An SQL Injection is a code injection attack where an
attacker is able to manipulate and interfere with SQL
queries to access information that is not supposed to be
accessed

Ie. We can trick a server into running our SQL queries

34

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

Suppose we don’t know Alice’s password. How could we still get her information?

???

35

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

Suppose we don’t know Alice’s password. How could we still get her information?

???

USERNAME = Alice’#

Password = ???

36

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

Suppose we don’t know Alice’s password. How could we still get her information?

???

USERNAME = Alice’#

Password = asdasdasdasdas

Comment out rest of queryCloses the string

Alice’#

37

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

Suppose we don’t know Alice’s password. How could we still get her information?

???

USERNAME = Alice’#

Password = asdasdasdasdas

Comment out rest of queryCloses the string

Alice’#

It doesn’t matter what the password is,

because we comment out the entire 2nd
part of the and clause

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Setup
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: SELECT * FROM credential; #this is a comment
	Slide 21
	Slide 22
	Slide 23
	Slide 24: SQL Injections
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: $sql = “SELECT * FROM credential WHERE name= ‘Alice' and password=‘seedalice'";
	Slide 33: An SQL Injection is a code injection attack where an attacker is able to manipulate and interfere with SQL queries to access information that is not supposed to be accessed
	Slide 34: SQL Injections
	Slide 35: SQL Injections
	Slide 36: SQL Injections
	Slide 37: SQL Injections

