
CSCI 476: Computer Security
Cross Site Scripting (XSS) Attack (Part 1)

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

Announcement

Asynchronous class again on Wednesday (XSS part 2)

Lab 4 (SQL injections) Due Sunday 3/12 @ 11:59 PM

Friday (3/10) will be a help session for lab 4 (no lecture)

3

Brief Review of

Communication of the web:

• URL

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality

• Serve static resources (HTML, CSS, Images)

• Serve dynamic Resources (PHP, Ruby, Java, Javascript…)

• Query Databases

➢ Relational (MySql)

➢ Non-Relational (MongoDB)

Client Server

Database

protocol://hostname[:port]/[path/]file[?color=red&type=suv]

Query parameters can be passed via URL or in an HTTP request

Big Idea: Our input data gets passed to
another host through URL parameters and

an HTTP requests

4

Timeline and TODO

Computer System

Basics

Software Security

• Set- UID + Access Control

• Shellshock

• Buffer Overflow

Web + Network Security

• SQL Injection

• XSS Attack

• TCP/IP Attacks

• DNS Cache Poisoning

Cryptography

• Symmetric

• Asymmetric

• Hashing

Special Topics,

Threat Modeling,

Lessons Learned

5

Our Attacks So far

• Shellshock- We were able to execute operating system commands of our
choosing (/bin/sh) on someone else’s server due to unsafe environment

variable parsing

• Buffer Overflow- We were able to execute arbitrary code by hijacking a

program that unsafely writes data to the stack

• SQL Injection- We were able to run our own arbitrary SQL queries due to

unsafe user input handling

• XSS – We are able to get someone else’s browser to execute our own

JavaScript code

6

Our Attacks So far

• Shellshock- We were able to execute operating system commands of our
choosing (/bin/sh) on someone else’s server due to unsafe environment

variable parsing

• Buffer Overflow- We were able to execute arbitrary code by hijacking a

program that unsafely writes data to the stack

• SQL Injection- We were able to run our own arbitrary SQL queries due to

unsafe user input handling

• XSS – We are able to get someone else’s browser to execute our own

JavaScript code due to unsafe input handling and unsafe web communication policies

7

Javascript

Static Content consists of mostly HTML + CSS

Purpose of Javascript?

8

Javascript

Javascript allows us to serve dynamic web content

Purpose of Javascript?

9

<!DOCTYPE html>
<html>

<head>
<title> Javascript example</title>

</head>

<body>

<h2>JavaScript HTML Events</h2>
Enter your name: <input type="text" id="fname"
onchange="upperCase()">

<p>When you leave the input field, a function is triggered
which transforms the input text to upper case.</p>

<script>
function upperCase() {

alert("AHHHHHHHHHHHHHHH");
const x = document.getElementById("fname");
x.value = x.value.toUpperCase() + " pearsall";

}
</script>

</body>
</html>

10

It is very common for

web pages to take in

input from a user

Our input could be reflected in

the HTML output, put into a SQL

query, HTTP request etc

Instead of inputting normal text, we could input our own javascript

11

<p> Hello there $value </p>

reese

(html)

12

<p> Hello there $value </p>

(html)

http://unsafe-website.com?value=reese

13

<p> Hello there $value </p>

reese <script> alert(“ATTACK!!”); </script>

(html)

Cross-site scripting works by manipulating a vulnerable web site so that it returns

malicious JavaScript to users

We need to investigate any places where input from an HTTP request could possibly

make its way into HTML output

14

Cross Site Scripting (XSS) is a type of web

vulnerability that allows an attack to inject their own

malicious client-side scripts into benign webpages that

will be loaded by other users

15

16

17

Types of XSS

18

Types of XSS

http://www.example.com/search?input=<script>alert(“hacked”);</script>

hacked

Alert:

Reflective

19

Reflected XSS (Non-Persistent)

Why does this happen?!

• Many websites are reflective:

user input -> website -> (modified) user input sent back to browser

• If an application receives data from an HTTP request...

...and includes that data within the immediate response in an unsafe way...

...reflective XSS may be possible!

20

Reflected XSS (Non-Persistent)

21

Reflected XSS (Non-Persistent)

22

Reflected XSS (Non-Persistent)

23

24

25

We will once again use docker to create a fake social media network

that has XSS countermeasures disables

First, make sure your SQL injection docker container is turned off

cd 05/xss

docker-compose up -d

Visit http://www.xsslabelgg.com/ on VM browser

(do not visit this site elsewhere)<script>alert('EVILLLLLLLLLLLLLLLLLL');</script>

http://www.xsslabelgg.com/

26

Basic XSS Attack to display a message

Edit HTML

Our malicious JavaScript

27

Basic XSS Attack to display a message

Now when I am logged in as Boby, when I visit Alice’s profile, her profile information gets displayed to the screen

The malicious script we injected earlier gets loaded and executed on Boby’s end (!!!)

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

