y

CSCIl 476: Computer Security

Network Security: Packet Sniffing and Spoofing

Reese Pearsall
Spring 2023

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

Announcement

Lab 5 (XSS) Due Sunday
3/26 @ 11:59 PM

M MONTANA
STATE UNIVERSITY

XSS Countermeasures

Filtering > Remove any ability for a user to enter something that might look like a script

Encoding - HTML encode specific characters; e.g

<script>blah</script> > <blah>

Content-Security-Policy (CSP)- The better countermeasure for XSS/Clickjacking attacks

O Clearly delineate code vs data via HTTP header values set by a server
O Restricts resources, such as scripts, that a page can load

CSP RULES
* default-src ‘self’ - Only allows javascript code from current domain

* script-src https://trusted-website.com -2 only allows javascript code from trusted domain

Same Origin Policy, Cross Origin Resource Sharing policies

MONTANA
STATE UNIVERSITY

Router

SRC
HTPP Reqh

GET
WWW.BLAH.COM

Headers

Sending our packet to
a destination is not a
simple task

MONTANA

STATE UNIVERSITY

There is a lot of stuff that gets
added onto our data being send

Request line
HTPP Request —
GET header field name: [sp| value |cr]| If

WWW.BLAH.COM

method |sp URL sp| Version | cr| If

AN
AN

A\
LY

Header lines ——

Headers

header field name: [sp| value |cr| If
“User Data” L

Blank line—— cr | If

Body

Entity body

A\
\

A
A

Figure 2.8 ¢ General format of a request message

MONTANA
STATE UNIVERSITY

There are a few pieces of information a packet
needs in order to arrive to its destination

<]

HTPP Request

GET
WWW.BLAH.COM

REELES

Body

MONTANA

STATE UNIVERSITY

There are a few pieces of information a packet
needs in order to arrive to its destination

HTPP Request
GET
WWW.BLAH.COM
Headers

Body A packet arriving to a machine needs to
know which process/application to go to

There are a few pieces of information a packet
needs in order to arrive to its destination

<]

HTPP Request

GET

Headers Port 802 Port 222 Port 6001

Body

Each application is bound to a port, so each packet will
need to know what port they need to go to

TCP is a transport-layer protocol that ensures data gets delivered,

and controls how the two endpoints communicate with each other g ﬁ
@ r
e |

GET

I
5 Port 80 Port 222 Port 6001

WWW.BLAH.COM =
T

Headers 2 Source port # Dest port # %
®)

Bod % Sequence number 3
ody 7
Acknowledgment numhnta'r"I
. Iilee:;tir Unused \E ;’ E E E % Receive window
Internet checksum g Urgent data pointer

Our packet of information gets

wrapped in a TCP Header

» Ensures that data gets delivered
reliably (Seq/Ack #s)

« Ensures data gets delivered to Data
the correct process (Port #s)

MONTANA
STATE UNIVERSITY

Options

TCP is a transport-layer protocol that ensures data gets delivered,
and controls how the two endpoints communicate with each other

Corresponding
Decimal

Description

128

Indicate that the congestion
window has been reduced

64

Indicate thata CE notification
wias received

Indicates that urgent pointer is

E;]r Unused

6 URG 32 valid that often caused by an
interrupt
-) Indicates the value in
° S 16 acknowledgement is valid
4 PSH 8 I'ells the receiver to piiS? on the
data as soon as possible
3 RST 4 Immediately end a TCP

connection

Imitiate a TCP connection

Gracefully end a TCP connection

reliably (Seq/Ack #s)
Ensures data gets delivered to
the correct process (Port #s)

A

Port 6001

Port 222

l
Source port # Dest port # 2

Sequence number 3

Acknowledgment number '_I

D % T j— = =

T T — i i
e P Receive window

Internef checksum g Urgent data pointer

Options

Data

Our packet currently has
« Some application-level message (HTTP Request)

@ « Port number of that application process (TCP header)
« Mechanism to ensure our packet arrives correctly (TCP Header)

GET
WWW.BLAH.COM

Headers

Body

I
_I
-
5
A
@
Q
-
o
a

TCP Header

MONTANA
STATE UNIVERSITY

Our packet currently has
« Some application-level message (HTTP Request)

@ « Port number of that application process (TCP header)
« Mechanism to ensure our packet arrives correctly (TCP Header)

GET
WWW.BLAH.COM

Headers

Applications will either user TCP or UDP to send their data. UDP

Body adds on port #s just like TCP, but does not ensure reliable delivery

I
_I
-
5
A
9
Q
c
(D
a

UDP Header

HTTP/HTTPS uses TCP, DNS protocol uses UDP

MONTANA
STATE UNIVERSITY

Our packet currently has

« Some application-level message (HTTP Request)

« Port number of that application process (TCP header)

» Mechanism to ensure our packet arrives correctly (TCP Header)

We also need to know which device to send to =2 IP Address

-

S

GET
WWW.BLAH.COM

Headers

1senbay dd1H

Body

TCP Header

10.9.0.5

Think of the internet as a bunch of
islands. The IP address helps us locate
the correct island to send the packet to
(Routers look at the IP address to
determine where to forward the packet to)

-

(IP address is more important for locating a
machine rather than identifying a machine)

-

13

GET
WWW.BLAH.COM

Headers

T
_I
U
U
Py
9
Q
c
(D
a

Body

Our packet currently has

« Some application-level message (HTTP Request)

« Port number of that application process (TCP header)

» Mechanism to ensure our packet arrives correctly (TCP Header)
« A way to locate the computer (IP address/IP Header)

To add an IP address to our packet, we
add another header, called the IP Header

0 4 8 16

Version| IHL TOS Total length

Identification Flags Fragment offset

TCP Header

TTL Protocol Header checksum

Source address

Destination address

IP Header

Options

There are two types of IP addresses: IPv4 (32 bits) and IPv6 (128 bits), we use IPv4 in this class ©

MONTANA

STATE UNIVERSITY

M

Our packet currently has

« Some application-level message (HTTP Request)

« Port number of that application process (TCP header)

» Mechanism to ensure our packet arrives correctly (TCP Header)
« A way to locate the computer (IP address/IP Header)

GET

WWW.BLAH.COM To add an IP address to our packet, we

add another header, called the IP Header

Headers

0 4 8 16
Version| IHL TOS Total length

Identification Flags Fragment offset
TTL Protocol Header checksum
Source address

T
_I
U
U
Py
9
Q
c
(D
a

Body

TCP Header

Destination address

Options

IP Header

IP Addresses are dynamic (generally), can be public/private, and can sometimes be shared between multiple devices

M MONTANA

STATE UNIVERSITY

Our packet currently has

« Some application-level message (HTTP Request)

« Port number of that application process (TCP header)

» Mechanism to ensure our packet arrives correctly (TCP Header)
« A way to locate the computer (IP address/IP Header)

GET
WWW.BLAH.COM

Routers maintain a table that will

128.11.52.0- 1281152255 1 forward a packet to the next router

153.90.20-153.90.2255 2 based on the packet's destination IP
153.90.2.87 - 153.90.2.89 3 address*

Headers

1senbay dd1H

Body

TCP Header

IP Header |

16

Our packet currently has

« Some application-level message (HTTP Request)

« Port number of that application process (TCP header)

» Mechanism to ensure our packet arrives correctly (TCP Header)
« A way to locate the computer (IP address/IP Header)

GET
WWW.BLAH.COM

Headers
A packet may arrive to a network, but there

Body IS likely many devices under one network

1sonbay ddl1H

We now need a unique
identifier to find the destination
device on this local network

TCP Header

IP Header

Devices in a subnet share a
common prefix for their IP
addresses

10.9.0.3 10.9.0.4

MONTANA

STATE UNIVERSITY

M

Our packet currently has

« Some application-level message (HTTP Request)

« Port number of that application process (TCP header)

» Mechanism to ensure our packet arrives correctly (TCP Header)
« A way to locate the computer (IP address/IP Header)

GET
WWW.BLAH.COM

Headers
A packet may arrive to a network, but there

Body IS likely many devices under one network

1senbay dd1H

We now need a unique
identifier to find the destination
device on this local network

TCP Header

A MAC address is a unique, hard-coded
value given to each device connected to a
network

IP Header

Devices in a subnet share a

common prefix for their P +0-9-0-3 10.9.0.4 (Additionally, there might be times computers

communicate without IP address)

addresses

MONTANA

STATE UNIVERSITY

M

Our packet currently has

« Some application-level message (HTTP Request)

« Port number of that application process (TCP header)

» Mechanism to ensure our packet arrives correctly (TCP Header)
« A way to locate the computer (IP address/IP Header)

* A unique identifier for our destination (MAC Address/Frame)

GET

T
WWW.BLAH.COM =
0 To add the MAC Address to our packet, we wrap our
Headers & packet in an ethernet frame (usually)
O
@
Body 7] 64 - 1518 byte
< >
Ethernet Header (14 byte)
< >
TCP Header 46 to 1500
7 byte 1 byte 6 byte 6 byte 2 byte byte 4 byte
Frame
Start
Preamble Frame Length Data S:qhueecnkce
IP Header Delimiter (CRC)

IEEE 802.3 Ethernet Frame Format

(We have protocols that can map IP Address - Mac Address)

M MONTANA

STATE UNIVERSITY

Our packet currently has

« Some application-level message (HTTP Request)

« Port number of that application process (TCP header)

» Mechanism to ensure our packet arrives correctly (TCP Header)

« A way to locate the computer (IP address/IP Header)

* A unique identifier for our destination (MAC Address/Frame)
GET

WWW.BLAH.COM

Headers

1sonbay ddl1H

Body

TCP Header

IP Header

Our initially packet gets encapsulated multiple
times, sort of like a nesting doll!

M MONTANA

STATE UNIVERSITY

(Jump scare warning for CSCI 466 people)

MONTANA

STATE UNIVERSITY

M

The Journey of a packet

Packets are encapsulated in various protocol layers; each

has a header and payload

OSI Model
Data Layer
Application
e Data C NetEl)vgrk Process to)
Application
) .
S Presentation
- Data Data representation
ilu and Encryption
Session
'b; Data Interhost communication
0
-|_- Transport
Segments End-to-End connectlons
and Rellablllty
n) work
- PaCketS Path Determmatlon
0>J~. and IP (Logical addressing)
q Data Link
. Fra mes MAC and LLC
a— (Physical addressing)
v
]

HTTP Request

(Encryption, The OSI Model is a very popular internet stack
Authentication, model that describes the layers of the internet, and
Management, the different responsibilities of each layer
HTTPS)
TCP Header
IP Header

Ethernet Frame

22

The Journey of a packet

Packets are encapsulated in various protocol layers; each
has a header and payload

OSI Model -
Data Layer

Transport
End-to-End connections
and Reliability

Network

Path Determination

4—— - TCP Segment ———————

Application Data
) Data Netevgrk Process to IS AL ' :
o Application 5.6.7 - Application | bbbl gl Ul ' :
0) Socket API ‘:r 1:r

Presentation

User Data (M St
%_ Data Data represent_ation (User Data (Messages or Streams) : Hggger 3:?;
] and Encryption .
SESSiOn 4 - Transport TCP, UDP i

'b; Data Interhost communication - ¢ Protocol M 4 Y
o < ransport Frotoco essages > H'e!'(a:c[.;er Applicalion Data

3 - Network IP, ARP, ICMP

v v

and IP (Logical addressing) 2 _ Data Link e — -' IP Datagram »
Data Link B y y
Frames MAC and LLC Network-Specific | Ethernet P TCP A T Ethernet
(Physical addressing) Frames Header Header Header PP Trailer

14 20 20 4
46 to 1500 bytes »

P TCP
Header Header

*\ _ IP Datagrams

v

Application Data

I |

Media Layers

1 - Physical Physical Devices

F Y

Our focus in the next few weeks will be on the transport layer (TCP/UDP), network layer (IP), and application layer

23

010101010101101010000010000 |010] 010101010101101010000010000 |010'

Transm1ssmn medium

WIFI, Fiber optic, Copper
Wire, Birds
** Many devices are sharing this medium

MONTANA

STATE UNIVERSITY

Devices connect to a network via a Network Interface Card (NIC)

25-6B-78-1D-A0-57

Each NIC as a Medium Access Control (MAC) address

Every NIC “hears” all the frames “on the wire” (or “in the air”)

NIC checks destination (dst) address of the packet’s link layer header

Ethernet IP TCP S Ethernet
| Header Header Header Application Data Trailer
14 20 20 ooe 4

Accept packets that match the NIC’'s MAC address, “drop” other packets
/
M

MONTANA

STATE UNIVERSITY

How do we get all the network traffic?

Promiscuous Mode
* Frames that are not destined to a given NIC are normally

discarded
» When operating in promiscuous mode, the NIC passes every

frame received from the network to the kernel
« If a sniffer program is registered with the kernel, it will be able to

see all the packets

Protocol Stack

There are tons of packets. We don’t need all of them... networks)

The interesting ones are TCP, UDP, DNS, HHRS /

Link-level
driver

Lets start “sniffing” for packets!

Ring buffer

____________ ‘1 Kernel

We can write a python
program that will sniff oooooooooeneeeneeeenn
packets for us!

pkt_dst == MY MAC? Xv/ |ncMmery| O NIC_MODE == PMODE

26

Packet Sniffing (Python) scapy is a python module

designed for packet sniffing
and spoofing
sniffer.py

#!/usr/bin/python3
from scapy.all import *

def print pkt(pkt):
print(pkt.summary())

pkt = sniff(filter ="icmp', prn=print pkt)

_ | When a matching packet is
Sniff only icmp packets caught, run the print pkt

function

Scapy uses Berkeley Packet Filter (BPF) syntax to filter packets

¢

 \ |

MONTANA

STATE UNIVERSITY

Packet Sniffing (Python)

1. Start the sniffer program

[03/20/23] seed@VM:
[03/20/23] seed@VM:

Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP
Ether / IP / ICMP

10.0.2.5 >

142.251.33.

10.0.2.5 >

142.251.33.

10.0.2.5 >

142.251.33.

10.0.2.5 >

142.251.33.

10.0.2.5 >

142.251.33.

10.0.2.5 >

142.251.33.

10.0.2.5 >

142,
110
142.
110
142,
110
142,
110
142,
110
142,
110
142,

110
2.5
110
2.5
110
2.5
110
2.5
110
2.5
110
2.5
110

~/.../sniff_spoof$ vi sniffer.py
~/.../sniff spoof$ sudo python3 sniffer.py
251.33.
> 10.0.
251.33.
> 10.0.
251.33.
> 10.0.
251.33.
> 10.0.
251.33.
> 10.0.
251.33.
> 10.0.
251.33.

echo-request
echo-reply 0
echo-request
echo-reply 0
echo-request
echo-reply 0
echo-request
echo-reply 0
echo-request
echo-reply 0
echo-request
echo-reply 0
echo-request

O~ O0O~NO0O~N~NO~NOO~NO~O

/ Raw
Raw
/ Raw
Raw
/ Raw
Raw
/ Raw
Raw
/ Raw
Raw
/ Raw
Raw
/ Raw

2. In another terminal, start generating ICMP packets

[03/20/23]seed@VM:~$ ping google.com
PING google.com (142.251.33.110) 56(84)
from sea30s10-in-

64 bytes
=15.8 ms
64 bytes
=16.8 ms
64 bytes
=16.6 ms
64 bytes
=16.5 ms
64 bytes
=15.6 ms
64 bytes
=19.1 ms

from

from

from

from

from

sea30s10-

sea30s10-

sea30s10-

sea30s10-

sea30s10-

in-

in

in-

in-

in-

14

14

-f14

14

14

14

.1lel00.

.1el00.

.1lel00.

.1el00.

.1el00.

.1el00.

seed@VM: ~

bytes of

net (142.251.

net (142.251.

net (142.251.

net (142.251.

net (142.251.

net (142.251.

We can see all the packets being sent in the ping request

data.

33.110):
33.110):
33.110):
33.110):
33.110):

33.110):

icmp seg=1
icmp _seq=2
icmp seq=3
icmp seq=4
icmp seqg=5

icmp seqg=6

ttl=55

ttl=55

tt1=55

ttl=55

tt1=55

ttl=55

tim

tim

tim

tim

tim

tim

28

#!/usr/bin/python3 We can write a program that will craft and
from scapy.all import *

send out packets that we create

.print("SENDING SPOOFED UDP PACKET......... ")

ip = IP(src="1.2.3.4", dst="10.0.2.69") # IP Layer :

‘udp = UDP(sport=8888, dport=9090) # UDP Layer e We can modify

‘data = "Hello UDP!\n" # Payload * Src/dst IP address

'pkt = ip/udp/data # Construct the complete packet e Port #s

'pkt.show() . .
'send(pkt,verbose=0) « TCP Header information

We can set the packets source IP and destination
IP

Souce ip: 1.2.3.4 (bogus)
Destination IP: 10.0.2.69 (also bogus)

We can set the packets source port
e and destination port (udp)

Source port: 8888 (bogus)
Destination port: 9090 (also bogus)

MONTANA

STATE UNIVERSITY

M

Ether / IP / UDP 1.2.3.4:8888 > 10.0.2.69:9090 / Raw
Ether / IP / UDP / DNS Qry "b'connectivity-check.ubuntu.com."'"
Ether / IP / UDP / DNS Ans "2620:2d:4000:1::2a"

[03/20/23]seed@VM:~/.../sniTT_spoof$ vi udp spoof.py
[03/20/23] seed@VM:~/.../sniff_spoof$ sudo python3 udp spoof.py
SENDING SPOOFED UDP PACKET.........

#H#] IP | ###

version = 4

ihl = None
tos = 0x0

len = None

id =1

flags =

frag =0

ttl = 64
proto = udp
chksum = None
src = 1.2.3.4
dst = 10.0.2.69

\options \
[UDP]###

30

O Sniff/listen for ICMP packets coming
from 10.0.2.4

O When we intercept an ICMP packet, extract the
packets source IP, and then create a spoofed
packet

e 44.22.11.33 will receive a packet from 10.0.2.4
We can sniff for
icmp sniff spoof.py

#1/ust /bin/python3 packets, and then spoof
from scapy.all import paCketS US|ng the

def spoof pkt(pkt): . . .
if ICMP in pkt and pkt[ICMP].type == &: shiffed information!
print("Original Packet......... ")
print("Source IP : ", pkt[IP].src)
print("Destination IP :", pkt[IP].dst)

ip = IP(src=pkt[IP].src, dst="44.22.11.33", ihl=pkt[IP].ihl)
icmp ICMP(type=0, id=pkt[ICMP].id, seq=pkt[ICMP].seq)

data pkt[Raw] . load

newpkt = ip/icmp/data

print("Spoofed Packet......... ")
print("Source IP : ", newpkt[IP].src)
print("Destination IP :", newpkt[IP].dst)
print("")

send(newpkt,verbose=0)

pkt = sniff(filter="icmp and src host 1@.@.2.4',prn=sp00f_pkt)<::>

¢

 \ |

MONTANA

STATE UNIVERSITY

Wireshark is a very popular network analysis tool that allows you to
analyze and view network traffic

We will use Wireshark to sniff packets instead of Python ©

Seed-Labs2 [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

Ether|/ IP / ICMP 142.251.33.110 >
~C[03)20/23]seed@VM:~/.../sniff_spo
p/23]seed@VM:~/.../sniff_spoof
Ether / IPv6é / UDP / DNS Qry "b' ip
Ether / IP / UDP / DNS Qry "b' ipps
o pownt|Ether / IP / UDP 1.2.3.4:8888 > 10.
1 M“m“C[03/20/23]5eed@VM:~/.../sniff_spc

~ |Ether / IP / UDP 1.2.3.4:8888 > 10.
= piccurlfEther / IP / UDP / DNS Qry "b'conne
Ether / IP / UDP / DNS Ans "2620:2d
Ether / IP / UDP 10.0.2.5:bootpc >
i TreshlFther / TP /7 1IDP 10 O 2 3:-hnntns >

And it's installed on your VM!!

H video

¢

 \ |

MONTANA

STATE UNIVERSITY

Sniffing packets using Wireshark

[SEED Labs] Capturing from enp0s3 - 0 X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

A ® X € QA 2 k=S= EREN]

= m
EELLABS

[‘é.p:pl;.- a dis filter ... <Ctrl-/> ~] 4
No. Time Source Destination Protocol Length Info
20 2023-83-20 15:2.. 142.251.33.110 10.0.2.5 ICMP 98 Echo (ping) reply id=ex0002, seq=8/
21 2623-83-20 15:2.. 16.0.2.5 142.251.33.116 ICMP 98 Echo (ping) request id=8x8002, seq=9/
22 2023-83-20 15:2.. 142.251.33.110 10.0.2.5 ICMP 98 Echo (ping) reply 1d=0x0002, seq=9/
23 2023-03-20 15:2.. 10.6.2.5 142.251.33.110 ICMP 98 Echo (ping) request id=ex8802, seq=10 seed@VM: ~/.../sniff_spoof
24 2023-83-20 15:2.. 142.251.33.116 10.0.2.5 ICMP 98 Echo (ping) reply id=0x0002, seq=10@
25 2023-83-20 15:2.. 10.0.2.5 142.251.33.110 ICMP 98 Echo (ping) request id=8x@002, seq=11 ###[Raw |###
26 2023-83-20 15:2.. 142.251.33.116 10.0.2.5 ICMP 98 Echo (ping) reply id=8x8002, seq=11 load "Hello UDP!\n'
27 2623-83-20 15:2.. 16.0.2.5 142.251.33.11@ ICMP 98 Echo (ping) request id=8x8002, seq=12
28 2023-83-20 15:2.. 142.251.33.110 10.0.2.5 ICMP 98 Echo (ping) reply id=exe002, seq=12
29 2023-03-20 15:2.. 16.0.2.5 142.251.33.118 ICMP 98 Echo (ping) request 1d=8x0802, seq=13 [03/20/23]seed@VM:~/.../sniff spoof$
30 2023-03-20 15:2.. 142.251.33.110 10.0.2.5 IcMP 98 Echo (ping) reply id=0x0002, seq=13 . . .
31 2023-83-20 15:2.. 10.0.2.5 142.251.33.110 ICMP 98 Echo (ping) request id=8x@002, seq=14 [03/20/23]seed@M:~/.../sniff_spoof$ ping google.
32 2023-83-260 15:2.. 142.251.33.110 18.0.2.5 ICMP 98 Echo (ping) reply id=ex@002, seq=14 _ PING google.com (142.251.33.110) 56(84) bytes of
J C 64 bytes from sea30s1l0-in-fl4.1lel00.net (142.251. : icmp seqg=1
» Frame 1: 81 bytes on wire (648 bits), 81 bytes captured (648 bits) on interface enp®s3, id @ =15.6 ms -
+ Ethernet II, Src: PcsCompu_37:f9:5e (08:080:27:37:f9:5e), Dst: RealtekU_12:35:00 (52:54:80:12:35:00) n " X .
+ Internet Protocol Version 4, Src: 10.8.2.5, Dst: 153.90.2.1 64 bytes from sea30s1l0-in-fl4.1lel00.net (142.251. : icmp_seq=2
» User Datagram Protocol, Src Port: 43922, Dst Port: 53 =15.6 ms -
» Domain Name System (query) * . .
64 bytes from sea30s10-in-fl4.1lel00.net (142.251.33. : icmp seq=3
=15.6 ms
64 bytes from sea30sl0-in-f1l4.1el00.net (142.251.33. : icmp seq=4
=15.5 ms
64 bytes from sea30s10-in-fl4.1lel00.net (142.251.33. : icmp seqg=5
=16.0 ms
64 bytes from sea30s10-in-fl4.1lel00.net (142.251.33. : icmp seq=6
52 54 G0 12 35 00 08 B0 27 37 9 5e 08 00 45 8@ RT- -5 "7AE _ . . .
9910 00 43 3c 97 40 00 40 11 56 b3 Ga 00 02 05 [EJEE C< @@ V 2] ! from sea30s10-in-fl4.1el00.net (142.251.33. : lcmp_seq=7
0020 [FJEE ab 92 @0 35 @0 2f a7 a0 8b 8e 01 00 00 01 [H -5/
00 00 00 00 @0 01 @6 67 6f 6f 67 6c 65 03 63 6f g oogle-co

6d 06 60 61 60 ©1 BO @6 29 02 6O 0O 60 00 80 80 m) ' from sea30s10-in-f14.1el00.net (142.251.33. : icmp seq=8
00

from sea30s1l0-in-f14.1el00.net (142.251.33. : icmp seq=9

© 7 enp0s3: <live capture in progress> Packets: 32 - Displayed: 32 (100.0%) Profile: Default

Sniffing packets using Wireshark

[SEED Labs] *enp0s3

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Ethernet II, Src:
Internet Protocol

ip.add

14
No. Time Source
223 2023-03-20 15:2_1.2.3

PcsCompu_37:f9:5e (08:00:27:37:f9:5e), Dst: RealtekU_12:35:080

Version 4, Src: 10.0.2.5, Dst: 142.251.33.110

Internet Control Message Protocol

[SEED Labs] "enp0s3
Eile gdit iew Go Capture Analyze statistics Telephony wireless Iools Help

p——

P F i ==

Destination
10.0.2.69

Sniff

Protocol _Length Info
UDP 53 8868 - 9090 Len=11

=] 799 packets transmitted, 99 received, 0% packet loss, time 98433ms

(52:54:00:12:35:00)

B G QA »FI e85 a8

[icmpl <] <)

No. Time Source Destination Protocol Length Info
104 -03- 5:2.. 142.251.33.110 10.0.2.5 ICMP 98 Echo (ping) reply id=0x8002, seq=49
105 2023-83-20 15:2.. 10.0.2.5 142.251.33.11@ ICMP 98 Echo (ping) request id=0x8002, seq=50
186 2023-03-28 15:2.. 142.251.33.110 16.0.2.5 ICMP 98 Echo (ping) reply 1d=6x00082, seq=50
107 2023-03-20 15:2.. 10.0.2.5 142.251.33.110 ICMP 98 Echo (ping) request 1id=6x@002, seq=51
108 2023-03-208 15:2.. 142.251.33.110 10.8.2.5 ICMP 98 Echo (ping) reply id=0x0082, seq=51
109 2023-03-20 15:2.. 10.0.2.5 142.251.33.110 ICMP 98 Echo (ping) request id=0x@002, seq=52
116 2023-03-28 15:2.. 142.251.33.110 16.0.2.5 ICMP 98 Echo (ping) reply 1d=6x00082, seq=52
111 2623-83-20 15:2.. 10.0.2.5 142.251.33.11@ ICMP 98 Echo (ping) request id=0x8002, seq=53
112 2023-03-20 15:2.. 142.251.33.110 10.0.2.5 ICMP 98 Echo (ping) reply 1d=0x0002, seq=53
113 2023-03-20 15:2.. 10.0.2.5 142.251.33.110 ICMP 98 Echo (ping) request 1id=-0x@002, seq=54
114 2023-03-28 15:2.. 142.251.33.110 10.0.2.5 ICMP 98 Echo (ping) reply id=6x0002, seq=54

L 115 2023-03-28 15:2.. 18.0.2.5 142.251.33.116 ICMP 98 Echo (ping) request id=0x@002, seq=55

L 116 2023-03-28 15:2.. 142.251.33.110 18.0.2.5 ICMP 98 Echo (ping) reply 1d=6x0002, seq=55._

[

Frame 5: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface enp@s3, id ©

seed@VM: ~/.../sniff_spoof

‘rtt min/avg/max/mdev = 15.271/15.811/16.703/0.331 ms

[03/20/23]seed@VM:~/.../sniff_spoof$ sudo python3 udp spoof.py

SENDING SPOOFED UDP PACKET
###[IP |###
version =4
ihl = None
tos = 0x0
len = None
id =1
flags =
| frag =0
ttl = 64
proto = udp
chksum = None
src =1.2.3.4
dst =10.8.2.69
\options \
###[UDP | ###
sport = 8888
dport = 9090
len = None
| chksum = None
###[Raw |###

Spoof

We can apply filters in Wireshark to sniff for certain packers

Show only ICMP packets

Show packets going to/coming from a
certain IP address

34

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4: Router
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: The Journey of a packet
	Slide 23: The Journey of a packet
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

