
CSCI 476: Computer Security
Hashing (Part 1)

Reese Pearsall
Fall 2022
https://www.cs.montana.edu/pearsall/classes/fall2022/476/main.html 1

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

2

Announcements

Lab 8 due Wednesday April 19th

Research Project due April 23rd

3

Applications of Hashing

MD5
password123

e2ee5b2d1719edef3f8120cff39f0180

31973ff867a5a4c2546ec4cca1c126b4

Output space of MD5 (128 bits)

00000000000000000000000000000000

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

73bd1ddd3ef1051bf5c4bde7a2b5a6c2

c527fc24f5932e932f44c31f1f8c674e

4

Hash Functions Properties

5

Hash Functions Properties (tl;dr)

Hash values are very difficult to reverse. They were designed

to be one-way

Gives an arbitrary size input a fixed-size unique* hash identifier

The go-to way to reverse a hash is through brute force

6

7

Brute Force Approaches

Long time, and for very unfeasible for cryptographically secure hash functions

afc285bebb3dd733796cb06db01cd59a

Given a hashed password, can you brute force the original password?

Techniques

• Dictionary Attack

• Rainbow Tables

8

Dictionary Attack

We will use an existing list of common passwords

1. Iterate through each line of file

2. Compute hash of word

3. Check for match

This works for cracking weak, unsalted passwords

9

Rainbow Tables

Project-RainbowCrack

Efficient way to store password hashes. Consists of plaintext-hash chains

Word Hash Word Hash
Hash Reduce Hash Reduce

Looking up a value in the rainbow table can happen quick, but these files are typically very large

A large file of pre-computed hashes

Not efficient for complex, salted passwords

(Brute force can take years, with rainbow tables, it can take weeks/months)

10

Rainbow Tables

• Project-RainbowCrack

Tables for alphanumeric, special

character passwords can take a

long time to generate, so instead

of doing it yourself, you can buy

rainbow tables that other people

have generated!

There are free, open-source tools that can generate rainbow tables for you

11

Rainbow Tables using RainbowCrack

12

Hash Collisions

Goal: Create two different files with the same md5 hash

Motivation

Our ultimate goal would be to create two executables (one benign, one malicious) with the same hash

(This is difficult to do, but we will show that it can theoretically happen)

13

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

MD5 Under the hood

Fact: Message is divided into blocks, and each block is run through a compression function

Important Fact: Each block will be 64 bytes

14

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

15

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

16

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

Same Hash!

17

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

Same Hash!

Compare with xxd

18

What if out prefix is a multiple of 64?

Our prefix is exactly 64 bytes

→ No padding is added!

Hash Collisions (MD5collgen)

19

What if out prefix is a multiple of 64?

Hash Collisions (MD5collgen)

20

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

21

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

H H H H H H H H H

64 64 64 64 64 64 64 64 64

Final Hash

(same for each)

22

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

H H H H H H H H H

64 64 64 64 64 64 64 64 64

Suffix

Suffix

H H H H

If we append the same suffix,

then this computation will also

be the exact same for M and N

23

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

H H H H H H H H H

64 64 64 64 64 64 64 64 64

Suffix

Suffix

H H H H

If we append the same suffix,

then this computation will also

be the exact same for M and N

H(m || s) == H(n || s) s = shared suffix

24

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

H H H H H H H H H

64 64 64 64 64 64 64 64 64

Suffix

Suffix

H H H H

If we append the same suffix,

then this computation will also

be the exact same for M and N

H(m || s) == H(n || s) s = shared suffixs = shared suffix

25

This is a program that will print

out the contents of an array

We will create two variants of

this program, but the program

will have the same hash

Prefix SuffixP

Prefix SuffixQ

Hash Collisions (Generating Two executable files with the same MD5 hash)

26

Hash Collisions (Generating Two executable files with the same MD5 hash)

We will create two variants of

this program, but the program

will have the same hash

Prefix

Suffix

27

Hash Collisions (Generating Two executable files with the same MD5 hash)

We will create two variants of

this program, but the program

will have the same hash

Prefix

Suffix

md5collgen()

Prefix P Prefix Q

These will have the same hash!

P and Q will be 128 bytes (multiple of 64)

Prefix P Prefix Q Suffix

Because we know the suffix extension property holds true, we

know the hash of these two programs will also be the same

28

Hash Collisions (Generating Two executable files with the same MD5 hash)

Prefix

P Q

Suffix Suffix

Prefix

29

Hash Collisions (Generating Two executable files with the same MD5 hash but

behave very differently)

We can change the contents of this section of the

program because it is just array data (it won’t break

anything)

First, we need to find the starting location (the

offset) of the xyz array → this will be the

beginning of P and Q

30

Hash Collisions (Generating Two executable files with the same MD5 hash but

behave very differently)

We can find where xyz begins in our program easily,

because we filled it with A’sFirst Byte of xyz array

Start of XYZ = 0x3020 (Hexadecimal)

12320 (decimal)

31

Task 4 on the lab

0

12320
Our prefix will be bytes 0-

12320 of the program!
Prefix

We want our P and Q to be 128 bytes

Why 128?

→ Multiple of 64

→ Wont overflow an array of size 200

(12320 is not a multiple of 64, which means that some padding will

be added on, but in this case it’s fine because it will just go in our

array section)

32

Task 4 on the lab

0

12320
Our prefix will be bytes 0-

12320 of the program!
Prefix

We want our P and Q to be 128 bytes

Why 128?

→ Multiple of 64

→ Wont overflow an array of size 200

(12320 is not a multiple of 64, which means that some padding will

be added on, but in this case it’s fine because it will just go in our

array section)

QP

1
2
8
 b

y
te

s

33

Task 4 on the lab

0

12320
Our prefix will be bytes 0-

12320 of the program!
Prefix

We want our P and Q to be 128 bytes

Why 128?

→ Multiple of 64

→ Wont overflow an array of size 200

QP

1
2
8
 b

y
te

s

Therefore, our suffix will begin at byte # 12320 + 128 = 13448

13448

Suffix

16992 (size of executable)

34

Task 4 on the lab

0

12320
Prefix

QP

1
2
8
 b

y
te

s

13448

Suffix

16992 (size of executable)

Get contents of prefix and suffix

Use collision tool to get (prefix + P) and (prefix + Q)

35

Task 4 on the lab

0

12320
Prefix

QP

1
2
8
 b

y
te

s

13448

Suffix

16992 (size of executable)

Get contents of prefix and suffix

Use collision tool to get (prefix + P) and (prefix + Q)

Add suffix to programs

Verify that executables are different, but have the same hash

36

Task 4 on the lab

0

12320
Prefix

QP

1
2
8
 b

y
te

s

13448

Suffix

16992 (size of executable)

Make sure you still have a valid program ☺

Somewhere in this output, you

should find a small difference

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

