y

CSCIl 476: Computer Security

Review + Lessons Learned

Reese Pearsall
Spring 2023

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

Announcements

« Lab 10 due tonight

 Fill out the course evaluation
- Current Response Rate: 92%
- Extra credit has been achieved!

» Final Lab due on Wednesday May 10" at Meatball wishes you good luck
11:59 PM on your final exams

* Project Grades have been posted

.\‘\\. 4 \\ S
N g
MONTANA
STATE UNIVERSITY

CSCl 476 Timeline

January February March April

Software Network Cryptography
Security Security

Look at a variety of attacks in the realm of software
security, web security, network security, cryptography

- Learn the countermeasures for these attacks (and how
effective they are)

MONTANA

STATE UNIVERSITY

SET-UID Programs

A SET-UID Program allows a user to run a program with the program owner’s privilege
« User runs a program w/ temporarily elevated privileges

Every process has two User IDs

 Real UID (RUID)- Identifies the
owner of the process

« Effective UID (EUID)- Identifies
current privilege of the process

If a program owner ==root,
The program runs with root privileges

* Methods of Attack

» Unsafe Function Calls (system () VvSexec())

» Overwriting important ENV variables (PATH)

» Overwriting important linking ENV variables (LD PRELOAD)

Shellshock Attack

« Bash identifies A as a function because of the leading “ () {“ and converts it to B

$ foo=() { echo "hello world"; }

Due to parsing logic in a vulnerable version of bash, we

can export an environment variable that bash will
interpret as a shell function

$ foo () { echo "hello world"; }

* In B, the string now becomes two commands

Example Payload
curl -A "() { echo :; }; echo; /bin/cat /etc/passwd” [URL]

Execute a bash shell Trigger flawed parsing logic

Two conditions are needed to exploit the vulnerability

* The target process must run a vulnerable version of bash
+ The target process gets untrusted user input via env. variables

|
<

-

env variables containing function definitions

A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

o - N
P

Network connection
through the internet

redirects input to network connection

n, ‘OU{

/ =
'\Q&

o
/bin/bash

bash is listening for input on a network connection

"~ redirects output to network connection

Buffer Overflow

When a program unsafely writes data to the stack via some buffer, we can overflow the buffer with our data
» If we are smart, we can overwrite the return address and have the code jump to our malicious function

Countermeasures:
To find the important locations in our stack, we used $ebp and $esp : 22%26 Shell (/bin/dash)
= Stack Guard
THE STACK THE STACK = Non-Executble Stack
SR The malicious code How did we bypass
... previous stack frames... - these

that we injected was countermeasures?

shellcode |

4

[
L (overwrite)

Stuff (overwrite) We filled overwrote
everything else with NOPs

“badfile”

MONTANA

STATE UNIVERSITY

SQL Injection

It is common for user input to be inserted into a back-end SQL query. If an application is not

careful about sanitizing user input, a user could supply an input that could be interpreted as
SQL code and will interfere with the query

SELECT * FROM credential WHERE
name= ' and password=" !

SELECT * FROM credential WHERE
name= ' Alice’

Username = Alice’#

NickName: * , salary='100000000
Password asdasdasd

UPDATE credential SET

nickname="'’,salary='100000000",
Countermeasure: SQL Prepare() statements email='$input email’,

address="'Sinput address’,

PhoneNumber="'$input phonenumber’
where ID=$1d;

S MMovmans

XSS Attack

Goal: Get someone else’s browser to execute our own JavaScript code

Vulnerability: Unsafe user input handling, and unsafe web communication policies

<script>document.write('') :{/script#

Connection received on 16.8.2.4 38954

GET /7c=Elgg%30c3nvrdsm57jgkd8dns@hbBbub3 HTTP/1.1

Host: 1©.9.0.1:5555
\ User-Agent: Mozilla/s5.8 (X11; Ubumtu; Limux xB6 64; rv:83.0) Gecko/20100101 Firefox/83.0
> Accept: image/webp,*/*

Accept-Language: en-US,en;gq=0.5

Accept-Encoding: gzip, deflate

Connectien: keep-alive . Samy is my hero

Referer: http://www.xsslabelgg.com/profile/alice Self-Propagating Worm

netcat server

Countermeasures:
* Filtering 22
* Encoding

. CSP, CORS
O 6 -

MONTANA
STATE UNIVERSITY

TCP Attacks

TCP Flooding- spoof a bunch of packets with bogus
source IP addresses with the SYN flag. The server
thinks these are legitimate requests and allocates
computational resources for the request. We flood a
server with these until the server can no longer accept
new requests (and essentially denying service)

TCP Reset- Break an existing TCP connection by
spoofing a TCP RST packet that looks like it came from
one of the people in the existing TCP connection.

TCP Hijack- Hijack an existing TCP connection to get
a TCP server to execute arbitrary commands. Spoofed
a packet with the correct information so that the server
thinks it came from the client

Client

/

ACK

16 bits

F 3
Y
F 3

\
/

16 bits

Y

TCP Header

DNS Poisoning

A DNS cache poisoning attack is done by tricking a server into accepting malicious, spoofed DNS information

Instead of going to the IP address of the legitime website, they will go to the IP address that we place in our
malicious DNS response (spoofed)

10.9.0.5 @ 10.9.0.53 @

Client Container Spoofed DNS | ocal DNS Server Spoofed DNS
Response Response

Symmetric Cryptography / Secret Key Encryption

Block Cipher (AES) FikEa, o

- Split messages into fixed sized blocks, encrypt each block you like me?

separately \ O
Hello there world LS k

E|— g D
01101000/01100101|01101100 k. (\j e |
01101100/01101111/00100000 (—| D] mor
01110100,01101000{01100101 Padding gets applied if the Alice R error Bob
01110010101100101100100000 plaintext is not a multiple of Cryptosystem
0111011101101111|01110010| ihe block size T —— N— o —
01101100/01100100{00001010 oo ot L et it Lok
= Ciphertext E: Encryption Program D: Decryption Program

Block 1 Block 2 Block 3

= = =

Frequency Analysis

(as a way to crack
substitutions ciphers)

An initialization vector (IV) is an arbitrary
number that can be used with a secretkey [w0 T w |

Modes of encryption: ECB, CBC, CFG, for dataencryption el

CTR, CFB
MONTANA

STATE UNIVERSITY

Hashing

31973ff867a5a4c2546ec4ccalc126b4

73bd1ddd3ef1051bf5c4bde7a2b5a6c2

Properties of Cryptographic Hash Function:

« Given a hash, it should be difficult to reverse it

« Given a message and it's hash, it should be
difficult to find another message that has the
same hash

* In general, difficult to calculate two values that
have the same hash

=P c527{c24f5932e932f44c31f1f8c674e

e2ee5b2d1719edef3f8120cff39f0180

Hash Collisions occur when two inputs map to
the same hash, which can have some scary
consequences

Expected behavior: different hashes Collision attack: same hashes

Applications of Hashing:
« Message Integrity
« Password Storing

. . e
 Fairness and Commitment mads > 4c78d..34 'El nes » 22ab..c3

Doc1 Good doc
. \ [\
Birthday Paradox @ » bd56..21 5 » 22ab..c3
md5 md5
Doc 2 Bad doc

MONTANA

STATE UNIVERSITY

Asymmetric Cryptography / Public Key Encryption

Public Key vs Private Key (Mathematically linked)

Public key used to encrypt; Private key used to decrypt

Alice knows the prime products that generated her
key, so it’s very easy for her to factorize

Eve does not know the products, and it is
computationally infeasible for her to calculate the
integer factorization of very large number

RSA can not encrypt stuff that is larger than its key size,

Key Cryptography
keys are different but
mathematically linked

» Bob's

Public
Bob's «
Bob, Public Key
Stop trying
to make h
fetch happen. ﬁ
- Alice _
mEncrypt

plaintext

Diffie Helman
Technique is used to

PIQ6NzOKW Private Key

CXSLO3zta+
soRTuwJ/7J0 °='
Q7gzwyJBuy ﬁ
CYBn

4 Decrypt

ciphertext

Alice

Commeon paint

(I

transport a secret over .

an unsecure channel

So we typically will encrypt the key for a symmetric encryption algorithm (AES)

Private Keys are also used for digital signatures, which can be used to

authenticate a message

Secret colours

\V
\

Public transport
(assume that

mixture separation

T'
/\

is expensive)

1.".

Secret colours

Common secret

Bob,
Stop trying
to make

fetch happen.

- Alice

plaintext

.T
\

| WA

.T
Al

13

Threat Modeling

« Threat modeling is a structured approach to assessing risk and defenses

1.
2.
3.
4.
5.

Set passwords on your
banking apps ‘

Someone could steal

What are you building?

What are the assets?

What can go wrong?

What should you do about those things that can go wrong?
Did you do a decent job of analysis?

__ whot con g0 uofonJ—.’ Whot ¢an vic do 2
Ouepping of Phonc. Aodhenticaticn

Get a better %ﬂ/q Ioa Mmalicas D’C‘Aa’(»{‘_ I
case (L»l“\, [C/L MK “\U'\(N 8 (V(’ ‘
Trackmg

3 Send mo/)cl 4o Ahemselx)
SE _\por ocig\ (\Qu(l’ alc (Jagsced ¢
Phone gets Ora g P\m wf")')(—\ 6&\ 005
- Feat S infstmadie hod Macir Phone
Phone gets stole

my banking
information

1

dropped

]
\

”"ﬁ“ cm’nss,gws" O walleb a5 atlabey
Mind Map ccms + Covid | ’//D,d icaun the Aevse K‘

p? kof‘ 06K for *“u" sona
”snc\&\m\s phene Lfg "“qf,’m_

MONTANA
STATE UNIVERSITY

CSCI 476 Course Outcomes

*Understand important principles of security and threats to the CIA triad

*Understand a variety of relevant vulnerabilities and defenses in software security
(SETUID, Shellshock, Buffer Overflow)

*Understand a variety of relevant vulnerabilities and defenses in network/web security
(SQL Injection, XSS, TCP/IP attacks)

*Understand a variety of relevant vulnerabilities and defenses in cryptography
(Asymmetric, symmetric, One Way Hashing)

*Given a system, develop a threat model, assess potential security weaknesses, and
be able to think from the perspective of a threat actor

*Make technical decisions during development of software with security in mind

MONTANA
STATE UNIVERSITY

Takeaways

« Trust- Trust as little as possible. We never know for sure how a user will interact with software

MONTANA

STATE UNIVERSITY

Takeaways

« Trust- Trust as little as possible. We never know for sure how a user will interact with software

« Intended Design- Users may interact with out system in ways that we did not think of.

User-ld1‘ OR 1= 1: /*

Password { X/

MONTANA
STATE UNIVERSITY

Takeaways

« Trust- Trust as little as possible. We never know for sure how a user will interact with software
« Intended Design- Users may interact with out system in ways that we did not think of.

« Separation- There should always be a clear separation of code and data (user input)

./audit “my info.txt; /bin/sh”

2

system(/bin/cat my info.txt; /bin/sh)

[09/15/22]seed@VM:~/1ab2$./audit "my info.txt; /bin/sh"
I have some information
#

MONTANA
STATE UNIVERSITY

Takeaways

Trust- Trust as little as possible. We never know for sure how a user will interact with software

Intended Design- Users may interact with out system in ways that we did not think of.

Separation- There should always be a clear separation of code and data (user input)

Control Flow Hijack- There should not be any way for an attacker to hijack the “natural flow of things”

CF— &

10.9.0.5 10.9.0.53

AR B Client Container Malicious DNS Server
[UF W oo
b '

Malicious
Website

1

9

Takeaways

« Trust- Trust as little as possible. We never know for sure how a user will interact with software

* Intended Design- Users may interact with out system in ways that we did not think of.

« Separation- There should always be a clear separation of code and data (user input)

« Control Flow Hijack- There should not be any way for an attacker to hijack the “natural flow of things”

* Privilege- Privilege is a very powerful mechanism. We should never give more privilege than needed

PRIVILEGE
ESCALATION

e SUPER

ADMIN
LISER

MONTANA
STATE UNIVERSITY

Takeaways

Trust- Trust as little as possible. We never know for sure how a user will interact with software

* Intended Design- Users may interact with out system in ways that we did not think of.

« Separation- There should always be a clear separation of code and data (user input)

« Control Flow Hijack- There should not be any way for an attacker to hijack the “natural flow of things”

* Privilege- Privilege is a very powerful mechanism. We should never give more privilege than needed

« Usability- Security and software should be useable. Too much security will push people away

it's not a
it's a Suprise Backup

’Q”\ lk«//

\

r—\’e?mafunrleit\y;

Takeaways

« Trust- Trust as little as possible. We never know for sure how a user will interact with software

* Intended Design- Users may interact with out system in ways that we did not think of.

« Separation- There should always be a clear separation of code and data (user input)

« Control Flow Hijack- There should not be any way for an attacker to hijack the “natural flow of things”
» Privilege- Privilege is a very powerful mechanism. We should never give more privilege than needed
« Usability- Security and software should be useable. Too much security will push people away

« Layering- Security should be happening at multiple layers

(Firewall - Input Sanitization - Authentication - Antivirus Scanner)

Countermeasures exist, but are they effective? And are they enabled?

* New assets
 New threats
 (ZERO days)
 New capabilities
 New technology

™

’ =,
i \ |
\
{

The,')\ﬂ ﬂy DOWZ They fly nowa r T v ’

MONTANA

STATE UNIVERSITY

Takeaways

There is always a way to:
|. Figure out how it works
2. Use it differently than intended

Takeaways

Humans will always be the weakest link.
« Social Engineering

* Phishing

* Writing bad code

Physical Security is also important

Harvesting email addresses,
conference information, etc.

WEAPDNIZATION

Coupling exploit with backdoor
into deliverable payload

Delivering weaponized bundle to the
victim via email, web, USB, etc.

Exploiting a vulnerability to execute
code on victim’s system

COMMAND & CONTROL (C2)

Command channel for remote
manipulation of victim

ACTIONS ON DBJECTIVES

With ‘Hands on Keyboard’ access,
intruders accomplish their original goals

“Cyber kill chain”

Be aware of the steps taken
by a cybercriminal to conduct
some cyber attack

MONTANA

STATE UNIVERSITY

Responding to a threat A eTough!

can have varying levels |

of difficulty - Tools = eChallenging
Network/ .
Indicators of compromise Host Artifacts *An noying
(10Cs) refer to data that
indicates a system may Domain Names Sim p|e

have been infiltrated by a

cyber threat. They provide
cybersecurity teams with - Ea SV

crucial knowledge after a
breach in security.

“Pyramid of Pain”

MONTANA

STATE UNIVERSITY

What’s next?

Cybersecurity Newsletters + Blogs

« Dark Readings (https://www.darkreading.com/)

« Schneier on Security (https://www.schneier.com/) « Be aware of new

 The Hacker News (https://thehackernews.com/) vulnerabilities, new attacks

Cybersecurity Certificate and trainings

« CompTIA

« Security+

- CySa

« SANS

« ISC2 « Have hope

Cybersecurity-related Classes at MSU
 CSCI 466 — Networks (reese)

 CSCI 460 — Operating Systems (eese)

« CSCI 351 — System Administration

* CSCI 5XX — Intro to Malware (New class in F23)

D e

https://www.darkreading.com/
https://www.schneier.com/
https://thehackernews.com/

Thank Youl!

This class has been a blast to teach. Thank you for your patience,
flexibility, kindness, and for laughing at my jokes ©

There were a lot of long nights, and | know things were not perfect, and |
had to make some sacrifices

| hope you enjoyed this class, and | hope the stuff you learned will be
helpful in your career/future classes

If | can be of assistance to you for anything in the future (reference,
advising, support), please let me know!

| will be teaching CSCI 460,
466, and 132 next semester
(not confirmed)

Connect with me on LinkedIn! If
you find a job in cybersecurity,
please keep in touch!

" Congrats to those that are
graduating next weekend! |
hope you find a job that you
love!

Reese Pearsall =/im
Instructor at Montana State University

nited States * Contact info

29

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

