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Announcements

• Course Questionnaire Results

• Lab 1 is due tomorrow at 11:59 PM

• Do not rename your .java files
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Course Questionnaire

About  50% of the class are CS 

majors. Lots of other majors in this 

class!

Very Hardcore 
Procrastinator I work full time / 

20+ credits

Can't keep up 
with CS majors
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Course Questionnaire
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Java

In this class, we will use Java as our programming language

Why do we need more than one programming language?
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Java

In this class, we will use Java as our programming language

Why do we need more than one programming language?

Different programming languages are 

better for different things
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Java vs Python

Good for developing 

large, commercial, 

distributable software

Very flexible. Good for 

shorter jobs, data analysis, 

Web development, 

Slower than JavaFaster than Python

Functional programming languageOOP Language

Verbose (sigh) Simple (but requires whitespace)

Static Typed Dynamic Typed
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Object Oriented Programming
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Object Oriented Programming

We write classes that is a 

blueprint of something
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Object Oriented Programming

We write classes that is a 

blueprint of something

Classes consist of two 

important things:

1. Instance Fields/Attributes

2. Methods/Behaviors
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Object Oriented Programming

We write classes that is a 

blueprint of something

Classes consist of two 

important things:

1. Instance Fields/Attributes

2. Methods/Behaviors

This program does nothing until we start 

creating objects 
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Object Oriented ProgrammingObject Oriented Programming

student1 and student2 are instances of 

the Student class.
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Object Oriented Programming

student1 and student2 are instances of 

the Student class.

To create an object, we called the class name, and then pass the 

necessary parameters/arguments

1.        2.        3.

1.             2.                          3.

1.             2.                 3.

This triggers the constructor, which will create our objects
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Object Oriented Programming

student1 and student2 are instances of 

the Student class.

1.        2.        3.

1.             2.                          3.

1.             2.                 3.

An object is an encapsulation of information…

Printing/accessing an object doesn’t do much on its own…
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Object Oriented Programming student1

major: “Computer Science”

GPA: 4.0

name: “Reese”

getGPA()

Instance Field

Methods
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Object Oriented Programming

Java is only OOP, 

all our code will be going inside of 

a class
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Student.Java

StudentDemo.Java

Instance fields of our Student Class

private means they can not be directly accessed outside of the class
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Student.Java

StudentDemo.Java

This is the constructor, the special method that creates our objects

Each of our “blueprints” needs a constructor
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Student.Java

StudentDemo.Java

When we use the new keyword, it will invoke our constructor
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Student.Java

StudentDemo.Java

When we use the new keyword, it will invoke our constructor

The constructor has 4 arguments

1. Name of student

2. Major of student

3. Number of credits 

4. Student’s GPA
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Student.Java

StudentDemo.Java

When we use the new keyword, it will invoke our constructor

The constructor has 4 arguments

1. Name of student

2. Major of student

3. Number of credits 

4. Student’s GPA

Whenever we create a new 
Student object with new, we must 

make sure we pass in these 4 

values
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Student.Java

StudentDemo.Java
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Student.Java

StudentDemo.Java
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Student.Java

StudentDemo.Java

student1
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Student.Java

StudentDemo.Java

student1

“Charles”
name

major

num_of_credits

gpa

year
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Student.Java

StudentDemo.Java

student1

“Charles”

“Computer Science”

name

major

num_of_credits

gpa

year
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Student.Java

StudentDemo.Java

student1

“Charles”

“Computer Science”

75

name

major

num_of_credits

gpa

year
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Student.Java

StudentDemo.Java

student1

“Charles”

“Computer Science”

75

3.5

name

major

num_of_credits

gpa

year
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Student.Java

StudentDemo.Java

student1

“Charles”

“Computer Science”

75

3.5

“Unknown”

name

major

num_of_credits

gpa

year
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StudentDemo.Java

Let’s add a function (a method) that will get a Student’s name
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StudentDemo.Java

Let’s add a function (a method) that will get a Student’s name

• We called this method on a Student object (student1.getName())

• So, our function needs to belong in our Student class (Student.Java)
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StudentDemo.Java

Let’s add a function (a method) that will get a Student’s name

• We called this method on a Student object (student1.getName())

• So, our function needs to belong in our Student class (Student.Java)

What should this function take as input? What should this function output?

• Input: a Student object

• Output: the name of a student (String)
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StudentDemo.Java

Student.Java

(instance fields and constructor go here)
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StudentDemo.Java

Student.Java

(instance fields and constructor go here)
Name of method
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StudentDemo.Java

Student.Java

(instance fields and constructor go here)
Name of method

When we define methods in Java, 

we must declare the data type

that the method will return

This method returns a String
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StudentDemo.Java

Student.Java

(instance fields and constructor go here)
Name of method

This method returns a String

This method is public (other classes can use it) 

(Generally, all methods will be public ☺ )
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StudentDemo.Java

Student.Java

(instance fields and constructor go here)
Name of method

This method returns a String

This method is public (other classes can use it) 

The this keyword refers to the object that this method was called on (student1)

(return student1’s name attribute)
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StudentDemo.Java

Student.Java

Here is a method that doesn’t return anything
void is used to indicate that a method will not return anything
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StudentDemo.Java

Student.Java

Here is method to change a Student’s major. When we call this 

method, we pass in the Student’s new major as an argument

So when we define this method, we need to make sure it accepts one argument
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StudentDemo.Java

Student.Java

If statements can be used to check a condition.

• If the condition is true, execute the code in the body of the if statement
• If it is false, proceed to the else statement
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StudentDemo.Java

Student.Java

We can check multiple conditions 

using the and operator (&&)

(we do not have the and keyword 

in Java)
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StudentDemo.Java

Student.Java

Example: A student is allowed to register for CSCI 476 if they have a GPA greater than 2.0, and

if they are a Junior or Senior

We can check one of two 

conditions is true using the or 

operator ( || )

(we do not have the or keyword 

in Java)

// check the first condition (Alternatively, we could use an && here)
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Student.Java

Example: A student is allowed to register for CSCI 476 if they have a GPA greater than 2.0, and

if they are a Junior or Senior

// check the first condition (Alternatively, we could use an && here)

Why do this.year.equals("Junior") and not this.year == "Junior“

Checking for string equality in Java is a little bit funky…

Using == does not check for equivalence of values between two strings…
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Student.Java

Example: A student is allowed to register for CSCI 476 if they have a GPA greater than 2.0, and

if they are a Junior or Senior

// check the first condition (Alternatively, we could use an && here)

Why do this.year.equals("Junior") and not this.year == "Junior“

Checking for string equality in Java is a little bit funky…

Using == does not check for equivalence of values between two strings…

Instead, we need to use the .equals() method between two string

Do not use == to 
compare two 

strings
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