
CSCI 132:
Basic Data Structures and Algorithms

Intro to Java (OOP, Methods, Control Flow)

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html

2

Announcements

• Course Questionnaire Results

• Lab 1 is due tomorrow at 11:59 PM

• Do not rename your .java files

3

Course Questionnaire

About 50% of the class are CS

majors. Lots of other majors in this

class!

Very Hardcore
Procrastinator I work full time /

20+ credits

Can't keep up
with CS majors

4

Course Questionnaire

5

Java

In this class, we will use Java as our programming language

Why do we need more than one programming language?

6

Java

In this class, we will use Java as our programming language

Why do we need more than one programming language?

Different programming languages are

better for different things

7

Java vs Python

Good for developing

large, commercial,

distributable software

Very flexible. Good for

shorter jobs, data analysis,

Web development,

Slower than JavaFaster than Python

Functional programming languageOOP Language

Verbose (sigh) Simple (but requires whitespace)

Static Typed Dynamic Typed

8

Object Oriented Programming

9

Object Oriented Programming

We write classes that is a

blueprint of something

10

Object Oriented Programming

We write classes that is a

blueprint of something

Classes consist of two

important things:

1. Instance Fields/Attributes

2. Methods/Behaviors

11

Object Oriented Programming

We write classes that is a

blueprint of something

Classes consist of two

important things:

1. Instance Fields/Attributes

2. Methods/Behaviors

This program does nothing until we start

creating objects

12

Object Oriented ProgrammingObject Oriented Programming

student1 and student2 are instances of

the Student class.

13

Object Oriented Programming

student1 and student2 are instances of

the Student class.

To create an object, we called the class name, and then pass the

necessary parameters/arguments

1. 2. 3.

1. 2. 3.

1. 2. 3.

This triggers the constructor, which will create our objects

14

Object Oriented Programming

student1 and student2 are instances of

the Student class.

1. 2. 3.

1. 2. 3.

1. 2. 3.

An object is an encapsulation of information…

Printing/accessing an object doesn’t do much on its own…

15

Object Oriented Programming student1

major: “Computer Science”

GPA: 4.0

name: “Reese”

getGPA()

Instance Field

Methods

16

Object Oriented Programming

Java is only OOP,

all our code will be going inside of

a class

17

Student.Java

StudentDemo.Java

Instance fields of our Student Class

private means they can not be directly accessed outside of the class

18

Student.Java

StudentDemo.Java

This is the constructor, the special method that creates our objects

Each of our “blueprints” needs a constructor

19

Student.Java

StudentDemo.Java

When we use the new keyword, it will invoke our constructor

20

Student.Java

StudentDemo.Java

When we use the new keyword, it will invoke our constructor

The constructor has 4 arguments

1. Name of student

2. Major of student

3. Number of credits

4. Student’s GPA

21

Student.Java

StudentDemo.Java

When we use the new keyword, it will invoke our constructor

The constructor has 4 arguments

1. Name of student

2. Major of student

3. Number of credits

4. Student’s GPA

Whenever we create a new
Student object with new, we must

make sure we pass in these 4

values

22

Student.Java

StudentDemo.Java

23

Student.Java

StudentDemo.Java

24

Student.Java

StudentDemo.Java

student1

25

Student.Java

StudentDemo.Java

student1

“Charles”
name

major

num_of_credits

gpa

year

26

Student.Java

StudentDemo.Java

student1

“Charles”

“Computer Science”

name

major

num_of_credits

gpa

year

27

Student.Java

StudentDemo.Java

student1

“Charles”

“Computer Science”

75

name

major

num_of_credits

gpa

year

28

Student.Java

StudentDemo.Java

student1

“Charles”

“Computer Science”

75

3.5

name

major

num_of_credits

gpa

year

29

Student.Java

StudentDemo.Java

student1

“Charles”

“Computer Science”

75

3.5

“Unknown”

name

major

num_of_credits

gpa

year

30

StudentDemo.Java

Let’s add a function (a method) that will get a Student’s name

31

StudentDemo.Java

Let’s add a function (a method) that will get a Student’s name

• We called this method on a Student object (student1.getName())

• So, our function needs to belong in our Student class (Student.Java)

32

StudentDemo.Java

Let’s add a function (a method) that will get a Student’s name

• We called this method on a Student object (student1.getName())

• So, our function needs to belong in our Student class (Student.Java)

What should this function take as input? What should this function output?

• Input: a Student object

• Output: the name of a student (String)

33

StudentDemo.Java

Student.Java

(instance fields and constructor go here)

34

StudentDemo.Java

Student.Java

(instance fields and constructor go here)
Name of method

35

StudentDemo.Java

Student.Java

(instance fields and constructor go here)
Name of method

When we define methods in Java,

we must declare the data type

that the method will return

This method returns a String

36

StudentDemo.Java

Student.Java

(instance fields and constructor go here)
Name of method

This method returns a String

This method is public (other classes can use it)

(Generally, all methods will be public ☺)

37

StudentDemo.Java

Student.Java

(instance fields and constructor go here)
Name of method

This method returns a String

This method is public (other classes can use it)

The this keyword refers to the object that this method was called on (student1)

(return student1’s name attribute)

38

StudentDemo.Java

Student.Java

Here is a method that doesn’t return anything
void is used to indicate that a method will not return anything

39

StudentDemo.Java

Student.Java

Here is method to change a Student’s major. When we call this

method, we pass in the Student’s new major as an argument

So when we define this method, we need to make sure it accepts one argument

40

StudentDemo.Java

Student.Java

If statements can be used to check a condition.

• If the condition is true, execute the code in the body of the if statement
• If it is false, proceed to the else statement

41

StudentDemo.Java

Student.Java

We can check multiple conditions

using the and operator (&&)

(we do not have the and keyword

in Java)

42

StudentDemo.Java

Student.Java

Example: A student is allowed to register for CSCI 476 if they have a GPA greater than 2.0, and

if they are a Junior or Senior

We can check one of two

conditions is true using the or

operator (||)

(we do not have the or keyword

in Java)

// check the first condition (Alternatively, we could use an && here)

43

Student.Java

Example: A student is allowed to register for CSCI 476 if they have a GPA greater than 2.0, and

if they are a Junior or Senior

// check the first condition (Alternatively, we could use an && here)

Why do this.year.equals("Junior") and not this.year == "Junior“

Checking for string equality in Java is a little bit funky…

Using == does not check for equivalence of values between two strings…

44

Student.Java

Example: A student is allowed to register for CSCI 476 if they have a GPA greater than 2.0, and

if they are a Junior or Senior

// check the first condition (Alternatively, we could use an && here)

Why do this.year.equals("Junior") and not this.year == "Junior“

Checking for string equality in Java is a little bit funky…

Using == does not check for equivalence of values between two strings…

Instead, we need to use the .equals() method between two string

Do not use == to
compare two

strings

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

