
CSCI 132:
Basic Data Structures and Algorithms

Static methods, Polymorphism, Exceptions,
Abstract Classes, Debugging

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html

2

Opening a project in Eclipse

3

Static methods are methods in Java that can be called

without creating an object of a class

public class StaticDemo {
public static void fun1(String arg1) {

System.out.println(arg1);
}
public static void main(String[] args) {

fun1("Hello");
}

}

I do not need to create a StaticDemo object in order to call the

fun1() method

4

Static methods are methods in Java that can be called

without creating an object of a class

public class StaticDemo {
public static void main(String[] args) {

AnotherClass.funMethod("Hello");
}

}

If the static method is in another class, we can access it by giving
the class name (AnotherClass)

Once again, I do not need to create an AnotherClass object to

call this static method

However, now objects are no longer an implicit argument to this
method (cant use this anymore)

public class AnotherClass {
public static void funMethod(String arg)
{

System.out.println(arg);
}

} StaticDemo.java AnotherClass.java

5

Static methods are methods in Java that can be called

without creating an object of a class

funMethod("Hello");

Error: static method cannot be referenced from a non static context

This is a very common error to see in Java.

• You can turn the method static by adding the static

keyword in the method definition

• Or you use OOP and call the method on an instance of the

class
AnotherClass obj = new AnotherClass()

obj.funMethod(“Hello”)

(Usually this is the better solution

80% of the time)

(Easy and quick fix)

6

Abstract Classes are restricted classes that cannot be

used to create objects. To access it, it must be inherited

from another class.

public abstract class Employee {
…

}

Employee e = new Employee("Sally", 4444, 123456);

You cannot create instances of an abstract class.

Accountant kevin = new Accountant("Kevin Malone", 4444, 42000, 'C');

Instead, we use objects from another class that inherits from the abstract class

7

Polymorphism is the ability of a class to provide

different implementations of a method, depending on the

type of object that is passed to the method.

Bird a2 = new Bird("Puffin",27.0, "North America",7400000,21.5);
Wolf b2 = new Wolf("Arctic Wolf",120.0, "North America",200000, 16);

a2.makeSound();
b2.makeSound();

The makeSound()method does something different for each object

8

Polymorphism is the ability of a class to provide

different implementations of a method, depending on the

type of object that is passed to the method.

Programmer me = new Programmer(“Reese", 12345, 80000, “Python”);

Employee me = new Programmer(“Reese", 12345, 80000, “Python”);

Polymorphism also refers to the ability for an object to take many forms

We can also treat the me reference variable as an Employee, since Programmer inherits from Employee

Dog tater = new Dog();
Cat meatball = new Cat();

Animal[] myAnimalArray = {tater, meatball}; CatDog

Animal

9

try/catch and exceptions are a way to run a piece of

code (“try”), and then deal (“catch”) with errors

It will execute the body of try, and if a certain

error/exceptions arises, then it will run the body of the

catch statement

You can catch any error, or a specific error (FileNotFound,

ArrayIndexOutOfBounds, NullPointerException)

10

11

while(userChoice != 3) {
try {

Scanner scanner = new Scanner(System.in);
userChoice = scanner.nextInt();
if(userChoice == 1) {

System.out.println("Hello");
}
else if(userChoice == 2) {

System.out.println("Hey");
}
else if(userChoice == 3) {

System.out.println("Goodbye");
}
else {

System.out.println("Enter a valid integer");
}

}
catch(Exception e) {

System.out.println(e);
System.out.println("Invalid input detected. Please try again");

}
printOptions();

Java will try to

execute this block

of code

12

while(userChoice != 3) {
try {

Scanner scanner = new Scanner(System.in);
userChoice = scanner.nextInt();
if(userChoice == 1) {

System.out.println("Hello");
}
else if(userChoice == 2) {

System.out.println("Hey");
}
else if(userChoice == 3) {

System.out.println("Goodbye");
}
else {

System.out.println("Enter a valid integer");
}

}
catch(Exception e) {

System.out.println(e);
System.out.println("Invalid input detected. Please try again");

}
printOptions();

Java will try to

execute this block

of code

If any error happens,

instead of crashing, it

will execute the body of

the catch

13

Debugging Code

Our IDE has a super slick debugger built in to it. I highly

recommend learning how to use the debugger tool (see lecture)

Rubber Duck Debugging

Many programmers have had the experience of explaining a problem to someone else,

possibly even to someone who knows nothing about programming, and then hitting upon

the solution in the process of explaining the problem. In describing what the code is

supposed to do and observing what it actually does, any incongruity between these two

becomes apparent.[2] More generally, teaching a subject forces its evaluation from different

perspectives and can provide a deeper understanding.[3] By using an inanimate object, the

programmer can try to accomplish this without having to interrupt anyone else, and with

better results than have been observed from merely thinking aloud without an audience.

(From Wikipedia)

https://en.wikipedia.org/wiki/Rubber_duck_debugging#cite_note-cardboarddog-2
https://en.wikipedia.org/wiki/Learning_by_teaching
https://en.wikipedia.org/wiki/Rubber_duck_debugging#cite_note-3

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

