
CSCI 132:
Basic Data Structures and Algorithms

Circular Linked Lists

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

2

Announcements

Program 2 due Friday

March 8th @ 11:59 PM

→ After today, you

should be able to

complete it.

3

Linked Lists

A Linked List is a data structure that consists of a collection of

connected nodes

Reese

Susan

Sarah

Nodes consists of data (String, int, array, etc) and a pointer to the next node

4

Linked Lists

A Doubly Linked List keeps track of the next node and the previous node

Reese

Susan

Sarah

next

prev

null

null

prev next

prev next

prev next

head tail

5

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

A Circular Linked List is a linked list where the first and last node are

connected, which creates a circle

6

We will take our Doubly Linked List Implementation, and

convert it into a Circular Doubly Linked List

7

Case 2: The user is inserting a node at the very beginning (N = 1)

SEA

Seattle

prev next

head

LAX

Los Angeles

prev next

tail

BZN

Bozeman

prev next

newNode

???

8

Case 2: The user is inserting a node at the very beginning (N = 1)

SEA

Seattle

prev next

head

LAX

Los Angeles

prev next

tail

BZN

Bozeman

prev next

newNode

Update the head node prev value to newNode

Update the newNode’s next value to be

the current head node

Update the head node to be the

newNode

NEW: Because this is a circular linked list, we

need to make sure our tail and head are

connected

9

Case 2: The user is inserting a node at the very beginning (N = 1)

SEA

Seattle

prev next

head

LAX

Los Angeles

prev next

tail

BZN

Bozeman

prev next

newNode

Update the head node prev value to newNode

Update the newNode’s next value to be

the current head node

Update the head node to be the

newNode

NEW: Reconnect the head and

tail node

10

Case 2: The user is inserting a node at the very beginning (N = 1)

SEA

Seattle

prev next

head

LAX

Los Angeles

prev next

tail

BZN

Bozeman

prev next

newNode

Update the head node prev value to newNode

Update the newNode’s next value to be

the current head node

Update the head node to be the

newNode

NEW: Reconnect the head and

tail node

11

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize() + 1)

prev next

LAX

Los Angeles

prev next

tail

prev next

newNode

BZN

Bozeman
SEA

Seattle

head

12

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize() + 1)

prev next

LAX

Los Angeles

prev next

tail

prev next

newNode

SEA

Seattle

head

Update the tail node next value to newNode

Update the newNode’s prev value to be the

current tail node

Update the tail node to be the

newNode

NEW: Reconnect the head and

tail node

BZN

Bozeman

13

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize() + 1)

prev next

LAX

Los Angeles

prev next

tail

prev next

newNode

SEA

Seattle

head

Update the tail node next value to newNode

Update the newNode’s prev value to be the

current tail node

Update the tail node to be the

newNode

NEW: Reconnect the head and

tail node

BZN

Bozeman

14

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

15

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

1. Find the second-to-last node
(current)

2. Get the nextNode

(current.getNext())

3. Update current’s next value

to the newNode

current
nextNode

4. Update nextNode’s prev

value to be the newNode

5. Update the newNode’s next

value to be the nextNode

6. Update the newNode’s prev

value to be the current

16

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

1. Find the second-to-last node
(current)

2. Get the nextNode

(current.getNext())

3. Update current’s next value

to the newNode

current
nextNode

4. Update nextNode’s prev

value to be the newNode

5. Update the newNode’s next

value to be the nextNode

6. Update the newNode’s prev

value to be the current

We don’t need to change anything for
case #4 and case #1

17

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“SEA”)

What if the removed node is the head?

18

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tail
head

1. Traverse the Linked List and look for a match

remove(“SEA”)

What if the removed node is the head?

2. Update the head to be the next node

3. Update the new head’s prev value to be null

19

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tail
head

1. Traverse the Linked List and look for a match

remove(“SEA”)

What if the removed node is the head?

2. Update the head to be the next node

3. Update the new head’s prev value to be null

4. NEW: Reconnect the head and tail nodes

20

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

head

1. Traverse the Linked List and look for a match

remove(“BZN”)

What if the removed node is the tail?

tail

21

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“BZN”)

What if the removed node is the tail?

2. Update the tail to be the previous node

3. Update the new tail’s next value to be

null

4. NEW: Reconnect the head and tail nodes

22

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List public void printList() {
Node current = this.head;
while(current != null) {

current.printNode();
current = current.getNext();

}
}

This was our previous

code for traversing and

printing out nodes in a

linked list

This will no longer work because…

23

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List public void printList() {
Node current = this.head;
while(current != null) {

current.printNode();
current = current.getNext();

}
}

This was our previous

code for traversing and

printing out nodes in a

linked list

This will no longer work because…

We will never
reach null

24

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List

Suppose our goal is

to print out each

node only once

25

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List

Suppose our goal is

to print out each

node only once

How do we know that

we’ve reached the

“end” of the CLL ?

26

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List

Suppose our goal is

to print out each

node only once

How do we know that

we’ve reached the

“end” of the CLL ?

If we start from the head, we should stop looping

once we reach the head again

27

LAX
Los

Angeles

SEA
Seattle

ORD
Chicago

BOS
Boston

head

BZN
Bozeman

tail

Traversing a Circular Linked List If we start from the head, we

should stop looping once we
reach the head again

public void printLinkedList() {
Node current = this.head.getNext();
while(current != this.head) {

current.printNode();
current = current.getNext();

}
}

28

LAX
Los

Angeles

SEA
Seattle

ORD
Chicago

BOS
Boston

head

BZN
Bozeman

tail

Traversing a Circular Linked List If we start from the head, we

should stop looping once we
reach the head again

public void printLinkedList() {
Node current = this.head.getNext();
while(current != this.head) {

current.printNode();
current = current.getNext();

}
}

This won’t work because…

29

LAX
Los

Angeles

SEA
Seattle

ORD
Chicago

BOS
Boston

head

BZN
Bozeman

tail

Traversing a Circular Linked List If we start from the head, we

should stop looping once we
reach the head again

public void printLinkedList() {
Node current = this.head.getNext();
while(current != this.head) {

current.printNode();
current = current.getNext();

}
}

This won’t work because… The head node will never be printed out

30

LAX
Los

Angeles

SEA
Seattle

ORD
Chicago

BOS
Boston

head

BZN
Bozeman

tail

Traversing a Circular Linked List If we start from the head, we

should stop looping once we
reach the head again

public void printLinkedList() {
Node current = this.head;
do {

current.printNode();
current = current.getNext();

}
while(current != this.head);

}

A do/while loop executed the body of the loop, and then checks the looping condition

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

