
CSCI 132:
Basic Data Structures and Algorithms

Lessons Learned so far + Importing Linked Lists

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

2

Come get your midterm exam

• Exam average was 83

• Don’t stress if you didn’t do well

• Make sure I calculated your score correctly

Lab 7 due tomorrow

Class Registration

Announcements

3

Lab 7

4

Class Registration

5

Next Class to Register for:

CSCI 232- Data Structures and Algorithms
(Offered in Summer 2024 and Fall 2024)

Other classes that may be of interest:

CS 145 – Web Design

CSCI 112- Programming in C

CSCI 215 – Social and Ethical issues in Computer Science

CSCI 204 – Multimedia Dev Methods (Game Design)

CSCI 291- Introduction to Data Science (NEW)

6

Resources Available to you

CS Tutoring Center: Barnard Hall 259

Smarty Cats Tutoring

TA Office Hours and Email

My email,

Discord, office

hours

7

Big-O

Big-O notation is a way to describe the running-time/time

complexity of an algorithm regarding the number of

operations that are executed in the algorithm (in relation to
some input n)
• Focus on worst-case scenario, and how the algorithm scales as n gets really big

8

Big-O

Big-O notation is a way to describe the running-time/time

complexity of an algorithm regarding the number of

operations that are executed in the algorithm (in relation to
some input n)
• Focus on worst-case scenario, and how the algorithm scales as n gets really big

A very powerful computer and a very weak computer running the same algorithm

will both execute the same number of operations (the speed at which they execute

these operations will be different)

Takeaway: the asymptotic running time (the big-o running time) will be the same for each computer

9

Big-O

Big-O notation is a way to describe the running-time/time

complexity of an algorithm regarding the number of

operations that are executed in the algorithm (in relation to
some input n)
• Focus on worst-case scenario, and how the algorithm scales as n gets really big

To find the total running time of an algorithm, we calculate the running-

time of each operation in the algorithm and then add everything together

• In Big-O, we can drop non-dominant factors and multiplicative

constants (coefficients)

O(n) + O(n) + O(n): Total running time = O(3n) O(n)∈ Where n is ________

10

Big-O

11

Data Structures so far:

ArrayLists (Arrays) Linked Lists

12

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can hold one data type Can hold multiple data types

13

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can hold one data type
• Can also store objects, which allow for multiple data types

Nodes in the linked list can hold

multiple data types

14

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can hold one data type
• Can also store objects, which allow for multiple data types

Nodes in the linked list can hold

multiple data types

Entire array is stored at a

contiguous spot in memory
Linked list nodes are stored at

non-contiguous spots in memory

15

Can hold one data type
• Can also store objects, which allow for multiple data types

Nodes in the linked list can hold

multiple data types

Entire array is stored at a

contiguous spot in memory
Linked list nodes are stored at

non-contiguous spots in memory

16

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Objects in the ArrayLists can

hold multiple data types
Nodes in the linked list can hold

multiple data types

Entire array is stored at a

contiguous spot in memory
Linked list nodes are stored at

non-contiguous spots in memory

Elements are ordered by index

(Easy to go directly to array spot)

Elements are ordered by their

next pointer
(Must traverse from the head to reach node)

17

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can hold one data type
• Can also store objects, which allow for multiple data types

Nodes in the linked list can hold

multiple data types

Entire array is stored at a

contiguous spot in memory

Linked list nodes are stored at

non-contiguous spots in memory

Traversing a linked list requires more work than traversing an array

18

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can add new elements to data

structure (resizable)

Can add new elements to data

structure (resizable)

Both data structures can grow dynamically, and new elements can be

added, but they way they add new elements is drastically different

19

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Create a brand-new array, copy everything

over from old array

Update pointers

20

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Create a brand-new array, copy everything

over from old array

Update pointers

O(n)
O(1)

21

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Takeaway: Adding a new element to an ArrayList requires much more

work than adding a new element to a Linked List

22

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Arrays are generally much easier to sort than Nodes in a Linked List

Arrays are more memory efficient (adding is not very memory efficient though)

If you are constantly needing to add new elements to the data

structure, using a Linked List requires much less work in the long run

23

Data Structures so far:

ArrayLists (Arrays) Linked Lists

When to use each data structure?

It depends on how you are using your data and if you know how much data you have

If you don’t know how much data you need to store, or if you are constantly

needing to add new elements to the data structure → Linked Lists

If you know how much data you need to store, and if you can add all your

data at once → Arrays/ArrayLists

24

Data Structures so far:

ArrayLists (Arrays) Linked Lists

These two data structures are implementations of a List Abstract Data Type (ADT)

ADT is a class whose behavior is defined by a set of operations and how a user interacts with it.

A list data type must be able to get an element, add an element, remove an element, etc

→ How they do these operations is up to the subclass (LL and AL)

As programmers, we use handy methods that were written by other people that

allows us to use these data structures

25

References

Car car1 = new Car(“Ferrari”,”Black”);

26

References

Car car1 = new Car(“Ferrari”,”Black”);
car1 make: “Ferrari”

color: “Black”

27

References

Car car1 = new Car(“Ferrari”,”Black”);
Car car2 = new Car(“Toyota”,”Blue”); car1 make: “Ferrari”

color: “Black”

car2 make: “Toyota”

color: “Blue”

28

References

Car car1 = new Car(“Ferrari”,”Black”);
Car car2 = new Car(“Toyota”,”Blue”);
Car car3 = car1;

car1 make: “Ferrari”

color: “Black”

car2 make: “Toyota”

color: “Blue”

29

References

Car car1 = new Car(“Ferrari”,”Black”);
Car car2 = new Car(“Toyota”,”Blue”);
Car car3 = car1;

car1 make: “Ferrari”

color: “Black”

car2 make: “Toyota”

color: “Blue”

The new keyword is not used,

so a new object is not created.

Instead, it will point to the same

object that car1 is pointing to

car3

30

References

Car car1 = new Car(“Ferrari”,”Black”);
Car car2 = new Car(“Toyota”,”Blue”);
Car car3 = car1;

car3.set_color(“Red”);

car1 make: “Ferrari”

color: “Red”

car2 make: “Toyota”

color: “Blue”

car3

31

References

Car car1 = new Car(“Ferrari”,”Black”);
Car car2 = new Car(“Toyota”,”Blue”);
Car car3 = car1;

car3.set_color(“Red”);
System.out.println(car1.getColor());

car1 make: “Ferrari”

color: “Red”

car2 make: “Toyota”

color: “Blue”

car3

32

References

Car car1 = new Car(“Ferrari”,”Black”);
Car car2 = new Car(“Toyota”,”Blue”);
Car car3 = car1;

car3.set_color(“Red”);
System.out.println(car1.getColor());

car1 make: “Ferrari”

color: “Red”

car2 make: “Toyota”

color: “Blue”

car3

Red

33

34

The Linked List Class

We will no longer be writing our own Linked List class, instead

we will now import the Java-provided Linked List Class

import java.util.LinkedList;

35

The Linked List Class

We will no longer be writing our own Linked List class, instead

we will now import the Java-provided Linked List Class

import java.util.LinkedList;

LinkedList<String> names = new LinkedList<String>();

The data type the

linked list will be

holding

Reference

variable for LL

36

The Linked List Class

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

The documentation describe how the LinkedList class was implemented, and all the

methods/operations we can do with the Linked List class

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

37

The Linked List Class

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

