y
CSCI 132:

Basic Data Structures and Algorithms

Lessons Learned so far + Importing Linked Lists

Reese Pearsall
Spring 2024

https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html *All images are stolen from the internet 1

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

Announcements

Come get your midterm exam

« Exam average was 83

* Don't stress if you didn’'t do well

« Make sure | calculated your score correctly

Lab 7 due tomorrow

Class Registration

Whenithel code}ﬁthat
wou & QiR Sull glves

youlthe! gélm@
||r\e-ran ii]n@@m@-no
I ‘code M@@{t@w

prOVEY,

W
wrongd %’ ‘
A

o
|

|
lj;

|

! l
il
[

Lab 7

MONTANA
STATE UNIVERSITY

Class Registration

MONTANA
STATE UNIVERSITY

H . Term: 2024 Fall Semester v
Next Class to Register for: e 2024t semester <]
(switch to subject index)||COMX - Communication
CRWR - Creative Writing
CS - Computer Science
CSCI - Computer Science/Programming
CSTN - Construction Trades
CULA - Culinary Arts
DANC - Dance

CSCI 232- Data Structures and Algorithms
(Offered in Summer 2024 and Fall 2024)

DDSN - Drafting Design
DENT - Dental

Instructor: All Instructors
Aamot, Kirk
Adams, Kay
Al Kaisy, Ahmed F

Course Type: Any

Other classes that may be of interest: Face o ace

Hyflex
Blended

Course Number: H—\

CS 145 — Web Design i i il 5) il
CSCI 112- Programming in C oo oo™ [55+1]a0"

CSCI 215 — Social and Ethical issues in Computer Science
CSCI 204 — Multimedia Dev Methods (Game Design)
CSCI 291- Introduction to Data Science wew

S MWMoNmans

Resources Available to you

Student Success Center - Spring 2024

Tutoring Schedule - Barnard Hall 259: Monday, January 22nd - Friday, May 3rd

Schedule
8:00 a.m.

9:00 a.m.

10:00 a.m.

11:00 a.m.

Noon

1:10 p.m.

2:10 p.m.

3:10 p.m.

4:10 p.m.

Monday

Sultan Yarylgassimov

Sultan Yarylgassimov

Asibul Islam

Shahnaj Mou
Jake Rivers

Angelo Porcello

Gideon Popoola

Angelo Porcello

Brayden Miller

Tuesday

Ruby Martin

Katie Harmon

Riley Slater

Sage James

Riley Slater

Joshua Bowen

Racquel Bowen

Muhammad Arju

Muhammad Arju

Justin Mau

Justin Mau

Wednesday

Alex Ellingsen

Jack Ruder

Jack Ruder

Karishma Rahman

Gideon Popoola

Karishma Rahman

Shama Maganur

Fatima Ododo

Shama Maganur

Fatima Ododo

Thursday

Muzhou Chen

Muzhou Chen

Nicholas Addotey

Ryan Johnson

Nicholas Addotey

Muhammad Bhatti

Nishu Nath

Muhammad Bhatti

Nishu Nath

Friday

Kaden Bach

Gerard Shu Fuhnwi

Gerard Shu Fuhnwi

Jared Matury

Matthew Phillips

Teaching Assistants/Graders

Section 005- Fatima Cdodo
« Email: fatima.cdodo@student montana.edu
+ Office Hours: Wednesdays 3:10 - 5:10 PM in Barnard Hall 259

+ Section 004- Shama Maganur
+ Email: shama maganuri@gmail.com
+ Office Hours: Wednesdays 3:10 - 5:10 PM in Barnard Hall 259

+ Section 003- Shama Maganur
+ Email: shama maganuri@gmail.com
« Office Hours: Wednesdays 3:10 - 5:10 PM in Barnard Hall 259

» Section 006- Fatima Ododo
+ Email: fatima.ododo@student. montana.edu
« Office Hours: Wednesdays 3:10 - 5:10 PM in Barnard Hall 259

CS Tutoring Center: Barnard Hall 259

TA Office Hours and Email

Smarty Cats Tutoring

Reese Pearsall

Discord: @reese p

Email: reese.pearsall@montana.edu
Office Hours: Monday and Wednesday 1:00 - 2:00 PM, Tuesday and Friday 12:10 - 1:00 PM
Office: Barnard Hall 361

My email,
Discord, office
hours

Big-O

Big-O notation is a way to describe the running-time/time
complexity of an algorithm regarding the number of
operations that are executed in the algorithm (in relation to

some input n)
* Focus on worst-case scenario, and how the algorithm scales as n gets really big

Big-O

Big-O notation is a way to describe the running-time/time
complexity of an algorithm regarding the number of
operations that are executed in the algorithm (in relation to

some input n)
* Focus on worst-case scenario, and how the algorithm scales as n gets really big

A very powerful computer and a very weak computer running the same algorithm
will both execute the same number of operations (the speed at which they execute

these operations will be different)

Takeaway: the asymptotic running time (the big-o running time) will be the same for each computer

T Moo

Big-O

Big-O notation is a way to describe the running-time/time
complexity of an algorithm regarding the number of
operations that are executed in the algorithm (in relation to

some input n)
* Focus on worst-case scenario, and how the algorithm scales as n gets really big

To find the total running time of an algorithm, we calculate the running-
time of each operation in the algorithm and then add everything together
* In Big-O, we can drop non-dominant factors and multiplicative

constants (coefficients)

O(n) + O(n) + O(n): Total running time = O(3n) € O(n) Wheren s

T Moo

Big-O

public int print_array(int[] array) {
for(int i = 9; i < array.length; i++)
{
System.out.println(array[i]);

O(n)

public int print_array(int[] array) {

for(int i = @; i < array.length; i++)

System.out.println(array[i]);

public int print_array(int[] array) {
for(int i = @; i < array.length; i++)

System.out.println(array[i]);

O(n)

The same algorithm
will have the same
asymptotic running
time no matter what
the computer’s
hardware is

public int print_array(int[] array) {
for(int i = @; i < array.length; i++)

System.out.println(ar

ray[i]);

126

10

Data Structures so far:

head tail

Array Elements J/

amay (2] o s] e[e

0 1 2 3 4 5 «—— Array Indexes nud G-

Sarah

Susan N
d \'
se / o - &
next

ArrayLists (Arrays) Linked Lists

Data Structures so far:

head tail
Array Elements
amay (2] o s] e[e _.?; & 1
0 1 2 3 4 5 «—— Array Indexes nutd @" Reese \ Saran

ArrayLists (Arrays) Linked Lists

Can hold one data type Can-hold-multiple-data-types

Data Structures so far:

Array Elements

0 1 2 3 4 5 «—— Array Indexes

ArrayLists (Arrays)

head tail

\l/’ Susan N
d \\\EJ >
7 / o - & | ™
)
v next P next

Reese Sarah

Linked Lists

Can hold one data type

Can also store objects, which allow for multiple data types

Nodes in the linked list can hold
multiple data types

Data Structures so far:

head tail

Array Elements L
Susan N
_,’---"“-'\‘ _,’---"“-'\‘ _,’--_"“-'\‘ _,"--"“-'\‘ _,"--"“"\‘ _,"--"“"\‘ L»

Reese
0 1 2 3 4 5 «—— Array Indexes sz Sarah

ArrayLists (Arrays) Linked Lists
Can hold one data type Nodes in the linked list can hold
Can also store objects, which allow for multiple data types multiple data types
Entire array is stored at a Linked list nodes are stored at
contiguous spot in memory non-contiguous spots in memory

T M o,

n Gy Gy G
N G Ean G
ia&m‘

G
m.-eim.

Can hold one data type

Can also store objects, which allow for multiple data types

Entire array is stored at a
contiguous spot in memory

Nodes in the linked list can hold
multiple data types

Linked list nodes are stored at
non-contiguous spots in memory

1

5

Data Structures so far:

head tail

Array Elements L
\ Ao —¥ Y Y Susan N
Array [2 [{f___f‘____f." [-‘If.,j_c_’__.f." [5 [1 5. [3J] ?’ Q 15

Reese Sarah
0 1 2 3 4 5 «—— Array Indexes ““”@

ArrayLists (Arrays) Linked Lists
Objects in the ArrayLists can Nodes in the linked list can hold
hold multiple data types multiple data types
Entire array is stored at a Linked list nodes are stored at
contiguous spot in memory non-contiguous spots in memory

Elements are ordered by their

| next pointer
(Easy to go directly to array spot) (Must traverse from the head to reach node)

T Moo

Elements are ordered by index

Data Structures so far:

head tail
Array Elements L \l/
G s d il A T
[0 [1 [2 [3 [4 [5 «J— Array Indexes ""“G- Reese /p v &~ saxah -
ArrayLists (Arrays) Linked Lists
Can hold one data type Nodes in the linked list can hold
Can also store objects, which allow for multiple data types multiple data types
Entire array is stored at a Linked list nodes are stored at
contiguous spot in memory non-contiguous spots in memory

Traversing a linked list requires more work than traversing an array

17

Data Structures so far:

head tail
Array Elements L \l/
Amay |2 34 D]10)05 B8 0|03 2 | T I e
[0 [1 [2 [3 [4 [54J—Arraylndexes mir | Reese -‘/mv &~ sarah ~
ArrayLists (Arrays) Linked Lists
Can add new elements to data Can add new elements to data
structure (resizable) structure (resizable)

Both data structures can grow dynamically, and new elements can be
added, but they way they add new elements is drastically different

T Moo

Data Structures so far:

Array Elements

Rl EEEERDER

0 1 2 3 4 5 «—— Array Indexes

ArrayLists (Arrays)

null e—
prev

head tail
L Susan N \L
d \\\EJ
. - 11
Reese - / prev next & Sarah _9 nu
)
next pre next

Linked Lists

int[] newArray = new int[myArray.length + 1];

for(int i = @; i < myArray.length; i++) {
newArray[i] = myArray[i];

}

int new value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Create a brand-new array, copy everything
over from old array

public void addToFront(Node newNode) {
if(head == null) {
head = newNode;

}

else {
newNode.setNext(head);
head = newNode;

}

Update pointers

19

Data Structures so far:

Rl EEEERDER

0 1 2 3 &

ArrayLists (Arrays)

Array Elements

5 «—— Array Indexes

head tail

Susan N

Reese Sarah

/ o

null <E--
prev

e \
=
prev

Linked Lists

int[] newArray = new int[myArray.length + 1];
@; 1 < myArray.length; i++) {

for(int 1 =
newArray[i] = myArray[i];

}

int new_value = 4;
newArray[myArray.length] =
myArray = newArray;

new_value;

Create a brand-new array, copy everything

over from old array O(n)

public void addToFront(Node newNode) {
if(head == null) {

head = newNode;

}

else {
newNode.setNext(head);
head = newNode;

}

Update pointers

O(1)

20

Data Structures so far:

M ENEIEINENEDEN

0 1 2 3 4 5 «—— Array Indexes

ArrayLists (Arrays)

Array Elements

null e—
prev

head tail
L Susan N \L
d \\\EJ
. - 11
Reese = / prev next & Sarah _9 nu
)
next pre next

Linked Lists

int[] newArray = new int[myArray.length + 1];

for(int i = @; i < myArray.length; i++) {
newArray[i] = myArray[i];

}

int new value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

public void addToFront(Node newNode) {
if(head == null) {
head = newNode;

}

else {
newNode.setNext(head);
head = newNode;

}

}

Takeaway: Adding a new element to an ArrayList requires much more
work than adding a new element to a Linked List

21

Data Structures so far:

head tail

Array Elements L
Susan N
Array [2[4[10[5[15[3J ,% Q 15

Reese
0 1 2 3 4 5 «—— Array Indexes sz Sarah

ArrayLists (Arrays) Linked Lists

Arrays are generally much easier to sort than Nodes in a Linked List

If you are constantly needing to add new elements to the data
structure, using a Linked List requires much less work in the long run

Arrays are more memory efficient (adding is not very memory efficient though)

22

Data Structures so far:
head tail

Array Elements L
Susan N
Array [2 p [4 A ['_10__,.' [5' [15' [3} d?prh mxt& __9 null

Reese Sarah

0 1 2 3 4 5 «—— Array Indexes ““”@

ArrayLists (Arrays) Linked Lists

When to use each data structure?
It depends on how you are using your data and if you know how much data you have

If you don’t know how much data you need to store, or if you are constantly
needing to add new elements to the data structure - Linked Lists

If you know how much data you need to store, and if you can add all your
data at once = Arrays/ArrayLists

23

Data Structures so far:

head tail

Array Elements L
Susan N

Reese | 7
0 1 2 3 4 5 «—— Array Indexes sz Sarah

ArrayLists (Arrays) Linked Lists

These two data structures are implementations of a List Abstract Data Type (ADT)

ADT is a class whose behavior is defined by a set of operations and how a user interacts with it.

A list data type must be able to get an element, add an element, remove an element, etc
- How they do these operations is up to the subclass (LL and AL)

As programmers, we use handy methods that were written by other people that
allows us to use these data structures

24

References

Car carl = new Car(“Ferrari”,”Black”);

MONTANA
STATE UNIVERSITY

References

Car carl = new Car(“Ferrari”,”Black”);

carl —) (| make: “Ferrari”

color: “Black”

MONTANA

STATE UNIVERSITY

M

References

Car carl
Car car2

new Car(“Ferrari”,”Black”);
new Car(“Toyota”,”Blue”);

carl 'ﬁ

car2 ﬁ

make: “Ferrari’

color: “Black”

make: “Toyota”

color; “Blue”

27

References

Car carl
Car car2
Car car3

new Car(“Ferrari”,”Black”);
new Car(“Toyota”,”Blue”);
carl;

carl 'ﬁ

car2 ﬁ

make: “Ferrari’

color: “Black”

make: “Toyota”

color; “Blue”

28

References

Car carl = new Car(“Ferrari”,”Black”);
Car car2 = new Car(“Toyota”,”Blue”);
Car car3 = carl;

The new keyword is not used,
S0 a new object is not created.
Instead, it will point to the same
object that carl is pointing to

carl 'ﬁ
car3 /'>,

car2 ﬁ

make: “Ferrari’

color: “Black”

make: “Toyota”

color; “Blue”

29

References

Car carl = new Car(“Ferrari”,”Black™);
Car car2 = new Car(“Toyota”,”Blue”); carl —) [make: “Ferrari”

Car car3 = carl; color: “"Red”
car3 /'>'

car3.set _color(“Red”);

car2 ~—) [| make: “Toyota"

color; “Blue”

References

Car carl = new Car(“Ferrari”,”Black”);
Car car2 = new Car(“Toyota”,”Blue”);
Car car3 = carl;

car3.set _color(“Red”);
System.out.println(carl.getColor());

carl 'ﬁ
car‘3/":>7

car2 ﬁ

make: “Ferrari’

color: “Red”

make: “Toyota”

color; “Blue”

31

References

Car carl = new Car(“Ferrari”,”Black”);
Car car2 = new Car(“Toyota”,”Blue”);
Car car3 = carl;

car3.set _color(“Red”);
System.out.println(carl.getColor());

Red

carl 'ﬁ
car‘3/":>7

car2 ﬁ

make: “Ferrari’

color; “Red”

make: “Toyota”

color; “Blue”

32

Abstract Classes are restricted classes that cannot be

used to create objects. To access it, it must be inherited
from another class.

public abstract class Employee {

}

j>x<iEmployee e = new Employee("Sally", 4444, 123456);

You cannot create instances of an abstract class.

Accountant kevin = new Accountant("Kevin Malone", 4444, 42000, 'C'),

Instead, we use objects from another class that inherits from the abstract class

33

The Linked List Class

We will no longer be writing our own Linked List class, instead
we will now import the Java-provided Linked List Class

import java.util.LinkedList;

The Linked List Class

We will no longer be writing our own Linked List class, instead
we will now import the Java-provided Linked List Class

import java.util.LinkedList;

LinkedList<String> names = new LinkedList<String>();
S
The data type the Reference

linked list will be variable for LL
holding

T M o,

The Linked List Class

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

public class LinkedList<E>
extends AbstractSequentiallist<E>

implements List<E>, Deque<E>», Cloneable, Serializable

Doubly-linked list implementation of the List and Deque interfaces. Implements all optional list operations, and permits all elements (including null).

All of the operations perform as could be expected for a doubly-linked list. Operations that index into the list will traverse the list from the beginning or the end, whichever is closer to the specified index.

The documentation describe how the LinkedList class was implemented, and all the
methods/operations we can do with the Linked List class

Modifier and Type
boolean

void
boolean
boolean
void
void
void
Object
boolean
Iterator<E>
E

E

E

Method and Description

add(E e)

Appends the specified element to the end of this list.

add(int index, E element)

Inserts the specified element at the specified position in this list
addAll(Collection<? extends E> c)

Appends all of the elements in the specified collection to the end of this list, in the order that they are returned by the sp.

addAll({int index, Collection<? extends E> c)

Inserts all of the elements in the specified collection into this list, starting at the specified position.

addFirst(E e)

Inserts the specified element at the beginning of this list.
addLast(E e)

Appends the specified element to the end of this list.
clear()

Removes all of the elements from this list

clone()

Returns a shallow copy of this LinkedList.
contains(Object o)

Returns true if this list contains the specified element.

descendingIterator()

Returns an iterator over the elements in this deque in reverse sequential order.

element()

Retrieves, but does not remove, the head (first element) of this list.
get(int index)

Returns the element at the specified position in this list.
getFirst()

Ratiirne tha firet alamant in thie lict

when you start coding in a new language
without reading the documentation:

o N s T, I
i e

36

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

The Linked List Class

import java.util.LinkedList;

public class march20demo {

s public static void main(String[] args) {
LinkedList<String> names = new LinkedList<String>();
names.add("Reese");

names.add("Spencer");
names.add("Susan");

System.out.println(names);

MONTANA

STATE UNIVERSITY

M

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

