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Announcements

Lab 9 due tomorrow 4/2

@ 11:59 PM (Queues)

No office hours tomorrow ☺

Program 3 due this Friday 4/5
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

Once again, we need a data structure 

to hold the data of the queue

• Linked List 

• Array

Elements get added to the Back of 

the Queue. 

Elements get removed from the 
Front of the queue
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

The Queue ADT has the following methods:

Enqueue- Add new element to the queue

Dequeue- Remove element from the queue

** Always remove the front-most element

Peek()- Return the element that is at the front of the queue

IsEmpty() – Returns true if queue is empty, returns false is queue is not empty
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

We need to keep track 

of a few things:

1. The index of the 

front of the queue

2. The index of the 

rear of the queue

3. The size of the 

queue

4. The capacity of 

the queue
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

We need to keep track 

of a few things:

1. The index of the 

front of the queue

2. The index of the 

rear of the queue

3. The size of the 

queue

4. The capacity of 

the queue
capacity = 6

size = 0

front = 0

rear = 0
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 0

front = 0

rear = 0
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 1

Order
Tom

Order
Jane
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 1

Order
Tom

Order
Jane

Enqueue?
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 1

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 3

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 3

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Issues with this?
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

This if statement is not 

satisfied, so we will try to 

add to a full queue →

Array index out of 

bounds
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(size == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet Dequeue?
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Remove the front element, 

move front pointer forward 

one spot
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Remove the front element, 

move front pointer forward 

one spot
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Enqueue again?

public void enqueue(Order newOrder) {
if(size == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}



27

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Enqueue again?

public void enqueue(Order newOrder) {
if(size == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Array index out of bounds error!
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Dequeue?

1. Remove the front element

2. Make some room in the back
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Dequeue?

1. Remove the front element

2. Make some room in the back
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Dequeue?

1. Remove the front element

2. Make some room in the back

Shift all of our data over one spot
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Dequeue?

1. Remove the front element

2. Make some room in the back

Shift all of our data over one spot

The front of our 

queue will always

stay at zero
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Shift everything over one spot
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Cosmo

Order
Leo

Order
Juliet
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0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 2

Order
Jane

Order
John

Order
Cosmo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Cosmo

Order
Leo

Order
Juliet
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public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Runtime Analysis
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public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Runtime Analysis

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)
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public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Runtime Analysis

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

Total running time:

O(1)
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Runtime Analysis

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}
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Runtime Analysis

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(N-1)

O(1)

N = # elements 

in our queue
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Runtime Analysis

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(N-1)

O(1)

N = # elements 

in our queue

Total running time:

O(N)
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Runtime Analysis

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(N-1)

O(1)

Total running time:

O(N)

This algorithm works fine, 

but the issue is that shifting 

data can be costly 

(think about if this queue 

has 1000000 things in it→ 

we must shift 999999 

elements!) 
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How to improve our queue?
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

Order
John

Order
Cosmo

We are going to 

make use of the 

modulus (%) 

operator !

10 % 6 = 4

3 % 6 = 3

6 % 6 = 0
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

Order
John

Order
Cosmo

Let’s enqueue

Here is the formula for 

determining where to insert the 

new element

insert_spot = (front + size) % 6
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

insert_spot = 4

Order
John

Order
Cosmo

Let’s enqueue

Here is the formula for 

determining where to insert the 

new element

insert_spot = (front + size) % 6

Order
Todd

(0 + 4) % 6 = Insert at spot 4
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

insert_spot = 4

Order
John

Order
Cosmo

Let’s enqueue

Here is the formula for 

determining where to insert the 

new element

insert_spot = (front + size) % 6Order
Todd
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

insert_spot = 4

Order
John

Order
Cosmo

Let’s dequeue

data[front] = null

Order
Todd
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Jane

capacity = 6

size = 4

front = 1

insert_spot = 4

Order
John

Order
Cosmo

Let’s dequeue

data[front] = null

Order
Todd

front = (front + 1) % 6

move the front pointer to the next element

= (0 + 1) % 6 = 1
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Jane

capacity = 6

size = 4

front = 1

insert_spot = 4

Order
John

Order
Cosmo

Let’s dequeue (again)

data[front] = null

Order
Todd

front = (front + 1) % 6

move the front pointer to the next element

= (0 + 1) % 6 = 1
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 3

front = 2

insert_spot = 4

Order
John

Order
Cosmo

Let’s dequeue (again)

data[front] = null

Order
Todd

front = (front + 1) % 6

move the front pointer to the next element

= (1 + 1) % 6 = 2
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 3

front = 2

insert_spot = 5

Order
John

Order
Cosmo

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

insert_spot = (2 + 3) % 6

5%6 = 5 
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 5

Order
John

Order
Cosmo

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

insert_spot = (2 + 3) % 6

5%6 = 5 
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 0

Order
John

Order
Cosmo

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

(2 + 4) % 6  = 0

Order
Jin
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 0

Order
John

Order
Cosmo

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

(2 + 4) % 6  = 0

Order
Jin

The modulus operator 

allows us to “wrap around” 

in our array!
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 0

Order
John

Order
Cosmo

Let’s dequqe (again)

Order
Todd

Order
Sam

Order
Jin

The modulus operator 

allows us to “wrap around” 

in our array!

data[front] = null

front = (front + 1) % 6
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 3

insert_spot = 0

Order
Cosmo

Let’s dequqe (again)

Order
Todd

Order
Sam

Order
Jin

The modulus operator 

allows us to “wrap around” 

in our array!

data[front] = null

front = (front + 1) % 6

(2+1) % 6 = 3
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 2

front = 5

insert_spot = 0

Let’s dequqe (again)

Order
Sam

Order
Jin

data[front] = null

front = (front + 1) % 6
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 2

front = 5

insert_spot = 0

Let’s dequqe (again)

Order
Sam

Order
Jin

data[front] = null

front = (front + 1) % 6

Front = (5 + 1) % 6 = 0
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A Queue is a data structure that holds data, but 

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 1

front = 0

insert_spot = 0

Let’s dequqe (again)

Order
Jin

data[front] = null

front = (front + 1) % 6

Front = (5 + 1) % 6 = 0
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Queue Runtime Analysis

Linked List Array

Creation

Enqueue

Dequeue

Peek

Print Queue
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue

Dequeue

Peek

Print Queue

O(1)

O(n),   n = | array |
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue

Dequeue

Peek

Print Queue
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue

Peek

Print Queue

O(1)
O(1)

O(1)

O(1)

O(1)

O(1)
O(1)

O(1)
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue

Peek

Print Queue
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek

Print Queue

O(1)

O(1)

O(1)

O(1)
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek

Print Queue

return this.orders.getFirst() return this.orders[front] 
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue

return this.orders.getFirst() return this.orders[front] O(1) O(1)
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue O(n) O(n)

O(1)
O(n) O(n)

O(1)
O(1)

O(1)

O(1)
O(1)

O(1)

n = # of elements in queue

n = # of elements in queue
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Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue O(n) O(n)

w/ Array w/ Linked List

Creation O(n) O(1)

Push() O(1) O(1)

Pop() O(1) O(1)

peek() O(1) O(1)

Print() O(n) O(n)

Stack Runtime Analysis

Takeaway: Adding and 

removing elements from a 

stack runs in constant time 
( O(1) )

Takeaway: Adding and 

removing elements from a 

queue runs in constant 
time ( O(1) )

(FIFO)

(LIFO)
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