
CSCI 132:
Basic Data Structures and Algorithms

Queues (Array Implementation)

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

2

Announcements

Lab 9 due tomorrow 4/2

@ 11:59 PM (Queues)

No office hours tomorrow ☺

Program 3 due this Friday 4/5

3

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

Once again, we need a data structure

to hold the data of the queue

• Linked List

• Array

Elements get added to the Back of

the Queue.

Elements get removed from the
Front of the queue

4

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

The Queue ADT has the following methods:

Enqueue- Add new element to the queue

Dequeue- Remove element from the queue

** Always remove the front-most element

Peek()- Return the element that is at the front of the queue

IsEmpty() – Returns true if queue is empty, returns false is queue is not empty

5

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

6

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

We need to keep track

of a few things:

1. The index of the

front of the queue

2. The index of the

rear of the queue

3. The size of the

queue

4. The capacity of

the queue

7

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

We need to keep track

of a few things:

1. The index of the

front of the queue

2. The index of the

rear of the queue

3. The size of the

queue

4. The capacity of

the queue
capacity = 6

size = 0

front = 0

rear = 0

8

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 0

front = 0

rear = 0

9

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 1

Order
Tom

Order
Jane

10

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 1

Order
Tom

Order
Jane

Enqueue?

11

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 1

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

12

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

13

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

14

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

15

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

16

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

17

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 3

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

18

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 3

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

19

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

20

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Issues with this?

21

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

This if statement is not

satisfied, so we will try to

add to a full queue →

Array index out of

bounds

22

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(size == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

23

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet Dequeue?

24

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Remove the front element,

move front pointer forward

one spot

25

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Remove the front element,

move front pointer forward

one spot

26

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Enqueue again?

public void enqueue(Order newOrder) {
if(size == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

27

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Enqueue again?

public void enqueue(Order newOrder) {
if(size == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Array index out of bounds error!

28

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Dequeue?

1. Remove the front element

2. Make some room in the back

29

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Dequeue?

1. Remove the front element

2. Make some room in the back

30

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 6

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Dequeue?

1. Remove the front element

2. Make some room in the back

Shift all of our data over one spot

31

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Dequeue?

1. Remove the front element

2. Make some room in the back

Shift all of our data over one spot

The front of our

queue will always

stay at zero

32

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

33

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

34

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Shift everything over one spot

35

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

36

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

37

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

38

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 5

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

39

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

40

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

41

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

42

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

43

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

44

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

45

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

46

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 5

front = 0

rear = 4

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

47

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

48

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

49

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Order
Cosmo

Order
Leo

Order
Juliet

50

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

Order
Leo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Order
Cosmo

Order
Leo

Order
Juliet

51

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Jane

Order
John

Order
Cosmo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Cosmo

Order
Leo

Order
Juliet

52

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 2

Order
Jane

Order
John

Order
Cosmo

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Cosmo

Order
Leo

Order
Juliet

53

54

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Runtime Analysis

55

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Runtime Analysis

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

56

public void enqueue(Order newOrder) {
if(rear == capacity) {
System.out.println("full...");
return;

}
else {
rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Runtime Analysis

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

Total running time:

O(1)

57

Runtime Analysis

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

58

Runtime Analysis

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(N-1)

O(1)

N = # elements

in our queue

59

Runtime Analysis

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(N-1)

O(1)

N = # elements

in our queue

Total running time:

O(N)

60

Runtime Analysis

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(N-1)

O(1)

Total running time:

O(N)

This algorithm works fine,

but the issue is that shifting

data can be costly

(think about if this queue

has 1000000 things in it→

we must shift 999999

elements!)

61

How to improve our queue?

62

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

Order
John

Order
Cosmo

We are going to

make use of the

modulus (%)

operator !

10 % 6 = 4

3 % 6 = 3

6 % 6 = 0

63

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

Order
John

Order
Cosmo

Let’s enqueue

Here is the formula for

determining where to insert the

new element

insert_spot = (front + size) % 6

64

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

insert_spot = 4

Order
John

Order
Cosmo

Let’s enqueue

Here is the formula for

determining where to insert the

new element

insert_spot = (front + size) % 6

Order
Todd

(0 + 4) % 6 = Insert at spot 4

65

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

insert_spot = 4

Order
John

Order
Cosmo

Let’s enqueue

Here is the formula for

determining where to insert the

new element

insert_spot = (front + size) % 6Order
Todd

66

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

insert_spot = 4

Order
John

Order
Cosmo

Let’s dequeue

data[front] = null

Order
Todd

67

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Jane

capacity = 6

size = 4

front = 1

insert_spot = 4

Order
John

Order
Cosmo

Let’s dequeue

data[front] = null

Order
Todd

front = (front + 1) % 6

move the front pointer to the next element

= (0 + 1) % 6 = 1

68

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Jane

capacity = 6

size = 4

front = 1

insert_spot = 4

Order
John

Order
Cosmo

Let’s dequeue (again)

data[front] = null

Order
Todd

front = (front + 1) % 6

move the front pointer to the next element

= (0 + 1) % 6 = 1

69

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 3

front = 2

insert_spot = 4

Order
John

Order
Cosmo

Let’s dequeue (again)

data[front] = null

Order
Todd

front = (front + 1) % 6

move the front pointer to the next element

= (1 + 1) % 6 = 2

70

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 3

front = 2

insert_spot = 5

Order
John

Order
Cosmo

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

insert_spot = (2 + 3) % 6

5%6 = 5

71

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 5

Order
John

Order
Cosmo

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

insert_spot = (2 + 3) % 6

5%6 = 5

72

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 0

Order
John

Order
Cosmo

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

(2 + 4) % 6 = 0

Order
Jin

73

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 0

Order
John

Order
Cosmo

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

(2 + 4) % 6 = 0

Order
Jin

The modulus operator

allows us to “wrap around”

in our array!

74

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 0

Order
John

Order
Cosmo

Let’s dequqe (again)

Order
Todd

Order
Sam

Order
Jin

The modulus operator

allows us to “wrap around”

in our array!

data[front] = null

front = (front + 1) % 6

75

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 3

insert_spot = 0

Order
Cosmo

Let’s dequqe (again)

Order
Todd

Order
Sam

Order
Jin

The modulus operator

allows us to “wrap around”

in our array!

data[front] = null

front = (front + 1) % 6

(2+1) % 6 = 3

76

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 2

front = 5

insert_spot = 0

Let’s dequqe (again)

Order
Sam

Order
Jin

data[front] = null

front = (front + 1) % 6

77

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 2

front = 5

insert_spot = 0

Let’s dequqe (again)

Order
Sam

Order
Jin

data[front] = null

front = (front + 1) % 6

Front = (5 + 1) % 6 = 0

78

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 1

front = 0

insert_spot = 0

Let’s dequqe (again)

Order
Jin

data[front] = null

front = (front + 1) % 6

Front = (5 + 1) % 6 = 0

79

80

Queue Runtime Analysis

Linked List Array

Creation

Enqueue

Dequeue

Peek

Print Queue

81

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue

Dequeue

Peek

Print Queue

O(1)

O(n), n = | array |

82

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue

Dequeue

Peek

Print Queue

83

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue

Peek

Print Queue

O(1)
O(1)

O(1)

O(1)

O(1)

O(1)
O(1)

O(1)

84

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue

Peek

Print Queue

85

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek

Print Queue

O(1)

O(1)

O(1)

O(1)

86

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek

Print Queue

return this.orders.getFirst() return this.orders[front]

87

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue

return this.orders.getFirst() return this.orders[front] O(1) O(1)

88

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue

89

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue O(n) O(n)

O(1)
O(n) O(n)

O(1)
O(1)

O(1)

O(1)
O(1)

O(1)

n = # of elements in queue

n = # of elements in queue

90

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue O(n) O(n)

w/ Array w/ Linked List

Creation O(n) O(1)

Push() O(1) O(1)

Pop() O(1) O(1)

peek() O(1) O(1)

Print() O(n) O(n)

Stack Runtime Analysis

Takeaway: Adding and

removing elements from a

stack runs in constant time
(O(1))

Takeaway: Adding and

removing elements from a

queue runs in constant
time (O(1))

(FIFO)

(LIFO)

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

