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Announcements

Lab 7 due Friday at 11:59 PM

Program 2 due Sunday at 11:59 PM

No class next week
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Lab 7
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Binary Search Tree – Insertion/Searching/Removing

Running time?

“Good Tree”

O(n)

“Bad Tree”
O(logn)
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Balanced BST

A balanced binary tree, is defined as a binary tree in which given n 

nodes, the height of the tree is O(logn).

Depth

0          1

1          2

2          4

3          8

Num 

Nodes
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Balanced BST

A balanced binary tree, is defined as a binary tree in which given n 

nodes, the height of the tree is O(logn).

1

5

8

10

4 nodes

→ If this is a balanced tree, 

the height should be less 

than or equal to 2  (log(4))

Height = 3 → not balanced
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Balanced BST

40

36 49

35 38

6 nodes

→ If this is a balanced tree, 

the height should be less 

than or equal to 3  

ceil(log(6))

A balanced binary tree, is defined as a binary tree in which given n 

nodes, the height of the tree is O(logn).

39

Height = 3 → balanced
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Balanced BST If we are building a BST, 

there is no guarantee that 

the tree will be balanced (it 

depends on the order that 

we add nodes)

“Good Tree” O(n)

“Bad Tree”

O(logn)

44

17

11 32

88

65 97

44, 17, 88, 11, 32, 65, 97

44, 17, 32, 88, 11, 97, 65

44, 88, 65, 97, 17, 32, 11

11

17

32

44

65

88

97
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Balanced BST

Red-Black Trees are a type of BST with 

some more rules, and if we follow the rules, 

we will be guaranteed a balanced BST

Guaranteed Balanced BST =

• O(logn) insertion time

• O(logn) deletion time

• O(logn) searching time
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Balanced BST

Because a RBT is a BST, we still need to make sure

• Everything to the left of the node is less than the node

• Everything to the right of the node is greater than the node

• A node cannot have more than two children

• No duplicate nodes

(BST Rules)
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Red-Black Tree Rules

1. Every node is either red or black

Each Node now has a color (red or black)
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Red-Black Tree Rules Each Node now has a color (red or black)

1. Every node is either red or black
2. The null children are black

null

null null

null null null null

null null nullnull
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Red-Black Tree Rules Each Node now has a color (red or black)

1. Every node is either red or black
2. The null children are black

3. The root node is black

null

null null

null null null null

null null nullnull
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Red-Black Tree Rules Each Node now has a color (red or black)

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must be black

null

null null

null null null null

null null nullnull
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Red-Black Tree Rules Each Node now has a color (red or black)

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must 

be black

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

null

null null

null null null null

null null nullnull
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Red-Black Tree Rules

5. For each node, all 

paths from the node to 

descendant leaves 

contain the same number 

of black nodes

10

18

5012

17

2

null

null null

null null

null null
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Red-Black Tree Rules

5. For each node, all 

paths from the node to 

descendant leaves 

contain the same number 

of black nodes

10

18

5012

17

2

null

null null

null null

null null

Path 1: 2 black nodes visited 
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Red-Black Tree Rules

5. For each node, all 

paths from the node to 

descendant leaves 

contain the same number 

of black nodes

Path 1: 2 black nodes visited

Path 2: 2 black nodes visited 

10

18

5012

17

2

null

null null

null null

null null
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Red-Black Tree Rules

5. For each node, all 

paths from the node to 

descendant leaves 

contain the same number 

of black nodes

Path 1: 2 black nodes visited

Path 2: 2 black nodes visited

Path 3: 2 black nodes visited 

10

18

5012

17

2

null

null null

null null

null null
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Red-Black Tree Rules

5. For each node, all 

paths from the node to 

descendant leaves 

contain the same number 

of black nodes

Path 1: 2 black nodes visited

Path 2: 2 black nodes visited

Path 3: 2 black nodes visited 

10

18

5012

17

2

null

null null

null null

null null
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Red-Black Tree Rules

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must be black

5. For each node, all paths from the node to 

descendant leaves contain the same number of 

black nodes

null

null null

null null null null

null null nullnull

When we insert or delete

something from a Red-Black 

tree, the new tree may 

violate one of these rules
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Red-Black Tree Insertion/Deletion 10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion



23

Red-Black Tree Insertion/Deletion 10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion

15

Our tree no longer has 

log(n) height, so we need 

to do some operations to 

reduce the height of the 

tree
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Red-Black Tree Insertion/Deletion 10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion

15

Our tree no longer has 

log(n) height, so we need 

to do some operations to 

reduce the height of the 

tree

These operations are known as rotations
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Red-Black Tree Rotation

Local transformation (we rotate just a section– not the entire tree)

(We also do some 

recoloring if 

needed!)
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Red-Black Tree Rotation

Local transformation (we rotate just a section– not the entire tree)
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Red-Black Tree Insertion/Deletion 10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion

15

Our tree no longer has 

log(n) height, so we need 

to do some operations to 

reduce the height of the 

tree

These operations are known as rotations
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Red-Black Tree Insertion/Deletion

10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

15

10

23

5012

15

2

17

(Rotate Right around 17)
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

10

23

5012

15

2

17
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

10

23

5012

15

2

17

10

23

5015

12

2

17(Rotate left around 12)
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

15 has to be black because….
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

15 has to be black because 23 is red

3. If a node is red, both children must be black



34

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

Is this a Red-Black tree?
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

Is this a Red-Black tree?

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

Path 1: 3 black nodes (including null nodes)
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

Is this a Red-Black tree?

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

Path 1: 3 black nodes (including null nodes)

Path 2: 2 black nodes (including null nodes)
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insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

Is this a Red-Black tree?

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

Path 1: 3 black nodes (including null nodes)

Path 2: 2 black nodes (including null nodes)

Red-Black Tree Insertion/Deletion
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must 

be black

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

(A lot more needs to be done here)
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must be black

5. For each node, all paths from the node to descendant 

leaves contain the same number of black nodes

10

2 15

2312

17 50
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https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
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Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

Fact: 

There will at most 3 rotations 

needed, and each rotation 

happens in O(1) time

So, maintaining a Red/Black try 

happens in O(1) time

10

2 15

2312

17 50
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Takeaways

We can add a color (red or black) instance field to our nodes to create a Red 

Black Tree

If we follow the rules of a Red Black Tree, and follow the proper 

rotations/recoloring steps, we can guarantee that our tree will be balanced

Guaranteed Balanced BST = 

❑O(logn) insertion

❑ O(logn) deletion

❑ O(logn) Searching/Contains

There are also BSTs called 

AVL tree and 2-3 trees that 

serve the same purpose of 

RB trees 

Adding Red/Black functionality to a BST 
does not affect the running time

You will never have to write code for a red black tree, but you should 

know the purpose of red black trees, and be able to verify if a red 

black tree is valid or not



44

10

18

5012

17

2

null

null null

null null

null null
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10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes
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10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

1. Get Leaf Nodes from starting node
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10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

1. Get Leaf Nodes from starting node

leaves = [ 2, 17, 50 ]
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10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

1. Get Leaf Nodes from starting node

leaves = [ 2, 17, 50 ]

2. Calculate the path from leaf to 

root, and count the number of black 

nodes visited

2 :  3
17:  3
50:  3
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10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

1. Get Leaf Nodes from starting node

leaves = [ 2, 17, 50 ]

2. Calculate the path from leaf to 

root, and count the number of black 

nodes visited

2 :  3
17:  3
50:  3
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10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the 

node to descendant leaves contain 

the same number of black nodes

1. Get Leaf Nodes from starting node

leaves = [ 2, 17, 50 ]

2. Calculate the path from leaf to 

root, and count the number of black 

nodes visited

2 :  3
17:  3
50:  3

3. Make sure all these numbers 

are the same

This node is not 

calculated, but I don’t 

think it matters ☺
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