
CSCI 232:
Data Structures and Algorithms

Red Black Trees

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html

2

Announcements

Lab 7 due Friday at 11:59 PM

Program 2 due Sunday at 11:59 PM

No class next week

3

Lab 7

4

Binary Search Tree – Insertion/Searching/Removing

Running time?

“Good Tree”

O(n)

“Bad Tree”
O(logn)

5

Balanced BST

A balanced binary tree, is defined as a binary tree in which given n

nodes, the height of the tree is O(logn).

Depth

0 1

1 2

2 4

3 8

Num

Nodes

6

Balanced BST

A balanced binary tree, is defined as a binary tree in which given n

nodes, the height of the tree is O(logn).

1

5

8

10

4 nodes

→ If this is a balanced tree,

the height should be less

than or equal to 2 (log(4))

Height = 3 → not balanced

7

Balanced BST

40

36 49

35 38

6 nodes

→ If this is a balanced tree,

the height should be less

than or equal to 3

ceil(log(6))

A balanced binary tree, is defined as a binary tree in which given n

nodes, the height of the tree is O(logn).

39

Height = 3 → balanced

8

Balanced BST If we are building a BST,

there is no guarantee that

the tree will be balanced (it

depends on the order that

we add nodes)

“Good Tree” O(n)

“Bad Tree”

O(logn)

44

17

11 32

88

65 97

44, 17, 88, 11, 32, 65, 97

44, 17, 32, 88, 11, 97, 65

44, 88, 65, 97, 17, 32, 11

11

17

32

44

65

88

97

9

Balanced BST

Red-Black Trees are a type of BST with

some more rules, and if we follow the rules,

we will be guaranteed a balanced BST

Guaranteed Balanced BST =

• O(logn) insertion time

• O(logn) deletion time

• O(logn) searching time

10

Balanced BST

Because a RBT is a BST, we still need to make sure

• Everything to the left of the node is less than the node

• Everything to the right of the node is greater than the node

• A node cannot have more than two children

• No duplicate nodes

(BST Rules)

11

Red-Black Tree Rules

1. Every node is either red or black

Each Node now has a color (red or black)

12

Red-Black Tree Rules Each Node now has a color (red or black)

1. Every node is either red or black
2. The null children are black

null

null null

null null null null

null null nullnull

13

Red-Black Tree Rules Each Node now has a color (red or black)

1. Every node is either red or black
2. The null children are black

3. The root node is black

null

null null

null null null null

null null nullnull

14

Red-Black Tree Rules Each Node now has a color (red or black)

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must be black

null

null null

null null null null

null null nullnull

15

Red-Black Tree Rules Each Node now has a color (red or black)

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must

be black

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

null

null null

null null null null

null null nullnull

16

Red-Black Tree Rules

5. For each node, all

paths from the node to

descendant leaves

contain the same number

of black nodes

10

18

5012

17

2

null

null null

null null

null null

17

Red-Black Tree Rules

5. For each node, all

paths from the node to

descendant leaves

contain the same number

of black nodes

10

18

5012

17

2

null

null null

null null

null null

Path 1: 2 black nodes visited

18

Red-Black Tree Rules

5. For each node, all

paths from the node to

descendant leaves

contain the same number

of black nodes

Path 1: 2 black nodes visited

Path 2: 2 black nodes visited

10

18

5012

17

2

null

null null

null null

null null

19

Red-Black Tree Rules

5. For each node, all

paths from the node to

descendant leaves

contain the same number

of black nodes

Path 1: 2 black nodes visited

Path 2: 2 black nodes visited

Path 3: 2 black nodes visited

10

18

5012

17

2

null

null null

null null

null null

20

Red-Black Tree Rules

5. For each node, all

paths from the node to

descendant leaves

contain the same number

of black nodes

Path 1: 2 black nodes visited

Path 2: 2 black nodes visited

Path 3: 2 black nodes visited

10

18

5012

17

2

null

null null

null null

null null

21

Red-Black Tree Rules

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must be black

5. For each node, all paths from the node to

descendant leaves contain the same number of

black nodes

null

null null

null null null null

null null nullnull

When we insert or delete

something from a Red-Black

tree, the new tree may

violate one of these rules

22

Red-Black Tree Insertion/Deletion 10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion

23

Red-Black Tree Insertion/Deletion 10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion

15

Our tree no longer has

log(n) height, so we need

to do some operations to

reduce the height of the

tree

24

Red-Black Tree Insertion/Deletion 10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion

15

Our tree no longer has

log(n) height, so we need

to do some operations to

reduce the height of the

tree

These operations are known as rotations

25

Red-Black Tree Rotation

Local transformation (we rotate just a section– not the entire tree)

(We also do some

recoloring if

needed!)

26

Red-Black Tree Rotation

Local transformation (we rotate just a section– not the entire tree)

27

Red-Black Tree Insertion/Deletion 10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion

15

Our tree no longer has

log(n) height, so we need

to do some operations to

reduce the height of the

tree

These operations are known as rotations

28

Red-Black Tree Insertion/Deletion

10

23

5012

17

2

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

15

10

23

5012

15

2

17

(Rotate Right around 17)

29

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

10

23

5012

15

2

17

30

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

10

23

5012

15

2

17

10

23

5015

12

2

17(Rotate left around 12)

31

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

32

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

15 has to be black because….

33

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

15 has to be black because 23 is red

3. If a node is red, both children must be black

34

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

Is this a Red-Black tree?

35

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

Is this a Red-Black tree?

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

Path 1: 3 black nodes (including null nodes)

36

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

Is this a Red-Black tree?

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

Path 1: 3 black nodes (including null nodes)

Path 2: 2 black nodes (including null nodes)

37

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

Is this a Red-Black tree?

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

Path 1: 3 black nodes (including null nodes)

Path 2: 2 black nodes (including null nodes)

Red-Black Tree Insertion/Deletion

38

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

10

23

5015

12

2

17

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must

be black

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

(A lot more needs to be done here)

39

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

1. Every node is either red or black
2. The null children are black

3. The root node is black

4. If a node is red, both children must be black

5. For each node, all paths from the node to descendant

leaves contain the same number of black nodes

10

2 15

2312

17 50

40

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

41

Red-Black Tree Insertion/Deletion

insert(15)

Step 1: Do the normal BST insertion

Step 2: Do rotation(s)

Step 3: Recolor

Fact:

There will at most 3 rotations

needed, and each rotation

happens in O(1) time

So, maintaining a Red/Black try

happens in O(1) time

10

2 15

2312

17 50

42

43

Takeaways

We can add a color (red or black) instance field to our nodes to create a Red

Black Tree

If we follow the rules of a Red Black Tree, and follow the proper

rotations/recoloring steps, we can guarantee that our tree will be balanced

Guaranteed Balanced BST =

❑O(logn) insertion

❑ O(logn) deletion

❑ O(logn) Searching/Contains

There are also BSTs called

AVL tree and 2-3 trees that

serve the same purpose of

RB trees

Adding Red/Black functionality to a BST
does not affect the running time

You will never have to write code for a red black tree, but you should

know the purpose of red black trees, and be able to verify if a red

black tree is valid or not

44

10

18

5012

17

2

null

null null

null null

null null

45

10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

46

10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

1. Get Leaf Nodes from starting node

47

10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

1. Get Leaf Nodes from starting node

leaves = [2, 17, 50]

48

10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

1. Get Leaf Nodes from starting node

leaves = [2, 17, 50]

2. Calculate the path from leaf to

root, and count the number of black

nodes visited

2 : 3
17: 3
50: 3

49

10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

1. Get Leaf Nodes from starting node

leaves = [2, 17, 50]

2. Calculate the path from leaf to

root, and count the number of black

nodes visited

2 : 3
17: 3
50: 3

50

10

18

5012

17

2

null

null null

null null

null null

5. For each node, all paths from the

node to descendant leaves contain

the same number of black nodes

1. Get Leaf Nodes from starting node

leaves = [2, 17, 50]

2. Calculate the path from leaf to

root, and count the number of black

nodes visited

2 : 3
17: 3
50: 3

3. Make sure all these numbers

are the same

This node is not

calculated, but I don’t

think it matters ☺

	Slide 1: CSCI 232: Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

