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Announcements

Lab 7 due tomorrow at 11:59 PM

Program 2 due Sunday at 11:59 PM

No class next week

the game that you play in nightmares ^
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The Heap data structure is complete binary tree that follows the heap property
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The Heap data structure is complete binary tree that follows the heap property

Complete tree - Every level, except possibly 

the last, is completely filled, and all nodes in the 

last level are as far left as possible

complete

complete

Not complete
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The Heap data structure is complete binary tree that follows the heap property

Binary – cannot have more than two children
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The Heap data structure is complete binary tree that follows the heap property

Two types of heaps

Max Heap – Parent nodes 

are greater than both of its 

children

Min Heap – Parent nodes 

are less than both of its 

children
maximum value minimum value
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Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);
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Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

7

Because this is a complete 

binary tree, this is the only place 

a new node can go
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Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

7

Because this is a complete 

binary tree, this is the only place 

a new node can go

However, we are now violating 

the heap property
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Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

7

Because this is a complete 

binary tree, this is the only place 

a new node can go

However, we are now violating 

the heap property

When new nodes are added, we 

may need to move it up in the 

tree
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Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

7

Because this is a complete 

binary tree, this is the only place 

a new node can go

However, we are now violating 

the heap property

When new nodes are added, we 

may need to move it up in the 

tree
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Heap Operations - Insert 6

10 15

12 7 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

Because this is a complete 

binary tree, this is the only place 

a new node can go

However, we are now violating 

the heap property

When new nodes are added, we 

may need to move it up in the 

tree
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Heap Operations - Insert 6

10 15

12 7 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

Because this is a complete 

binary tree, this is the only place 

a new node can go

However, we are now violating 

the heap property

When new nodes are added, we 

may need to move it up in the 

tree
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Heap Operations - Insert 6

10 15

12 7 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

Because this is a complete 

binary tree, this is the only place 

a new node can go

However, we are now violating 

the heap property

When new nodes are added, we 

may need to move it up in the 

tree
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Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

Because this is a complete 

binary tree, this is the only place 

a new node can go

However, we are now violating 

the heap property

When new nodes are added, we 

may need to move it up in the 

tree
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Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

Because this is a complete 

binary tree, this is the only place 

a new node can go

However, we are now violating 

the heap property

When new nodes are added, we 

may need to move it up in the 

tree

This process is 

called  Heapify (up)
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Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

This process is 

called  Heapify (up)

add(14);
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Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

This process is 

called  Heapify (up)

add(14);

14
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Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

This process is 

called  Heapify (up)

add(14);

14 19

add(19);
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Heap Operations - Insert 6

7 15

12 10 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

This process is 

called  Heapify (up)

add(14);

14 21

add(19);
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Heap Operations - Insert 6

7 15

12 10 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

add(7);

16

This process is 

called  Heapify (up)

add(14);

14 21

add(19);

Running time?

• Finding where to place new 

node: O(1) (this will make sense 

later)

• Insertion – O(1)

• Heapify Up – O(logn)

Total Running Time: O(logn)
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Heap Operations – Removal ( poll() ) 6

7 15

12 10 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 14 21

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value
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Heap Operations – Removal ( poll() )

7 15

12 10 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 14 21

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap
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Heap Operations – Removal ( poll() ) 21

7 15

12 10 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 14

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap
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Heap Operations – Removal ( poll() ) 21

7 15

12 10 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 14

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap
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Heap Operations – Removal ( poll() ) 21

7 15

12 10 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 14

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap

When the root is replaced, it 

may need to be moved down in 

the tree
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Heap Operations – Removal ( poll() ) 7

21 15

12 10 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 14

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap

When the root is replaced, it 

may need to be moved down in 

the tree
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Heap Operations – Removal ( poll() ) 7

21 15

12 10 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 14

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap

When the root is replaced, it 

may need to be moved down in 

the tree

When swapping down, 

we want to swap it 

with the smaller child
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Heap Operations – Removal ( poll() ) 7

10 15

12 21 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 14

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap

When the root is replaced, it 

may need to be moved down in 

the tree
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Heap Operations – Removal ( poll() ) 7

10 15

12 21 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 14

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap

When the root is replaced, it 

may need to be moved down in 

the tree
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Heap Operations – Removal ( poll() ) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap

When the root is replaced, it 

may need to be moved down in 

the tree
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Heap Operations – Removal ( poll() ) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap

When the root is replaced, it 

may need to be moved down in 

the tree
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Heap Operations – Removal ( poll() ) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

When using a Heap, we only 

remove the root node, which will 

be either the maximum value or 

minimum value

When the root is removed, we 

replace it with the last node that 

was added to the heap

When the root is replaced, it 

may need to be moved down in 

the tree

This process is called  

Heapify (down)
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Heap Operations – Removal ( poll() ) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

This process is called  

Heapify (down)

Running time?

- Removing root: O(1)

- Replacing root: O(1) (this will make sense later)

- Heapify down: O(logn)

Total running time: O(logn)
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Heap Operations – Removal ( poll() ) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

Heapify (up)

Heapify (down)

Moving the new leaf node up in the tree

Moving the new root node down in the tree
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

How to represent a heap?

public class HeapNode{
Node leftChild;
Node rightChild;
Node parent;
(…)

}
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

How to represent a heap?

public class HeapNode{
Node leftChild;
Node rightChild;
Node parent;
(…)

}
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its children?
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its children?
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its children?

Because this is a complete binary tree, 

there is a pretty nifty formula for this
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its children?

Because this is a complete binary tree, 

there is a pretty nifty formula for this

For a given element at index i

Its left child will be located at index:

2 * i + 1

Its right child will be located at index:

2 * i + 2
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its children?

Because this is a complete binary tree, 

there is a pretty nifty formula for this

For a given element at index i

Its left child will be located at index:

2 * i + 1

Its right child will be located at index:

2 * i + 2

Left Child = 2 * 4 + 1  = index 9 !
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its children?

Because this is a complete binary tree, 

there is a pretty nifty formula for this

For a given element at index i

Its left child will be located at index:

2 * i + 1

Its right child will be located at index:

2 * i + 2

Left Child = 2 * 4 + 1  = index 9 !

Right Child = 2 * 4 + 2  = index 10 !
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its children?

Because this is a complete binary tree, 

there is a pretty nifty formula for this

For a given element at index i

Its left child will be located at index:

2 * i + 1

Its right child will be located at index:

2 * i + 2

Left Child = 2 * 0 + 1  = index 1 !

Right Child = 2 * 0 + 2  = index 2 !
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its parent?
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its parent?

Because this is a complete binary tree, 

there is a pretty nifty formula for this

Given an index i
Its parent will be located at index:

(i - 1) / 2

(remember that the /
operator will floor the 

answer)
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its parent?

Because this is a complete binary tree, 

there is a pretty nifty formula for this

Given an index i
Its parent will be located at index:

(i - 1) / 2

(remember that the /
operator will floor the 

answer)

Parent = (6 - 1) / 2  = Index 2
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how 

can we find its parent?

Because this is a complete binary tree, 

there is a pretty nifty formula for this

Given an index i
Its parent will be located at index:

(i - 1) / 2

(remember that the /
operator will floor the 

answer)

Parent = (3 - 1) / 2  = Index 1
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

We can represent our tree with an array! 

We have formulas to find the left child, 

right child, and parent for a given node

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

insert(11);
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 15 12 14 19 33 25 23 16 21 11

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

11

O(1) time
(assuming we had space in the array)
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Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 15 12 14 19 33 25 23 16 21 11

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

11

Time to Heapify Up!



55

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 15 12 14 19 33 25 23 16 21 11

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

11

Time to Heapify Up!

11’s parent is located at (11 – 1) / 2 = 5

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2
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Heap Representation 7

10 15

12 14 11 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 15 12 14 11 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

19

Time to Heapify Up!

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2
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Heap Representation 7

10 15

12 14 11 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 15 12 14 11 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

19

Time to Heapify Up!

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

11’s parent is located at (5 – 1) / 2 = 2
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Heap Representation 7

10 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 11 12 14 15 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

19

Time to Heapify Up!

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

11’s parent is located at (5 – 1) / 2 = 2
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Heap Representation 7

10 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 11 12 14 15 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

19

Time to Heapify Up!

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2
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Heap Representation 7

10 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

7 10 11 12 14 15 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

poll();

19

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2
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Heap Representation 19

10 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

19 10 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

O(1) time 
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Heap Representation 19

10 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

19 10 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!
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Heap Representation 19

10 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

19 10 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

19’s left child is located at 2 * 0 + 1 = 1

19’s left child is located at 2 * 0 + 2 = 2

(We want to swap it with the lower value)
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Heap Representation 19

10 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

19 10 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!



65

Heap Representation 10

19 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

10 19 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!
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Heap Representation 10

19 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

10 19 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

19’s left child is located at 2 * 1 + 1 = 3

19’s left child is located at 2 * 1 + 2 = 4

(We want to swap it with the lower value)
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Heap Representation 10

19 11

12 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

10 19 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!
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Heap Representation 10

12 11

19 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

10 12 11 19 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!
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Heap Representation 10

12 11

19 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

10 12 11 19 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!
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Heap Representation 10

12 11

19 14 15 33

25 23

Min Heap – Parent nodes 

are less than both of its 

children

16 21

10 12 11 19 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Let’s code 
this!!!
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Min Heap – Parent nodes 

are less than both of its 

children
7

10 15

12 14 19 33

25 23 16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array
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What can a Heap do well that other data 

structures cannot as well?
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What can a Heap do well that other data 

structures cannot as well?

Finding the largest/smallest element happens in O(1) time

Because we use an array, it might be more memory efficient than a 

standard tree
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Does a Heap remind you of any 

other data structures?
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Does a Heap remind you of any 

other data structures?

Priority Queue
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Does a Heap remind you of any 

other data structures?

Priority Queue

Whenever we remove an element, we always remove the smallest/largest value (poll())

Whenever we add an element, it initially gets added to the back of the array, and 

then swaps itself within the array
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Whenever we remove an element, we always remove the smallest/largest value (poll())

Whenever we add an element, it initially gets added to the back of the array, and 

then swaps itself within the array

A Heap is a priority queue

Takeaways

Getting the maximum/minimum value happens in O(1) time

There is a section of memory in your 

computer called “The Heap”, which is 

something totally unrelated to this data 

structure



78

Applications

Heapsort- Sorting algorithm that converts an unsorted array to a Heap, and then 

repeatedly remove the root node 

Convert unsorted Array to Heap: O(n log n)

Make array: sortedArray O(n)

while(!heap.isEmpty()):         O(n)

x = heap.poll()             O(logn)
insert x into sortedArray O(1)

return sortedArray O(1)

Total Running Time: O(n log n)

(Same as merge sort, quick sort)

(“Heapify”)
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