
CSCI 232:
Data Structures and Algorithms

Heaps

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2024/132/main.html

2

Announcements

Lab 7 due tomorrow at 11:59 PM

Program 2 due Sunday at 11:59 PM

No class next week

the game that you play in nightmares ^

3

The Heap data structure is complete binary tree that follows the heap property

4

The Heap data structure is complete binary tree that follows the heap property

Complete tree - Every level, except possibly

the last, is completely filled, and all nodes in the

last level are as far left as possible

complete

complete

Not complete

5

The Heap data structure is complete binary tree that follows the heap property

Binary – cannot have more than two children

6

The Heap data structure is complete binary tree that follows the heap property

Two types of heaps

Max Heap – Parent nodes

are greater than both of its

children

Min Heap – Parent nodes

are less than both of its

children
maximum value minimum value

7

Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

8

Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

7

Because this is a complete

binary tree, this is the only place

a new node can go

9

Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

7

Because this is a complete

binary tree, this is the only place

a new node can go

However, we are now violating

the heap property

10

Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

7

Because this is a complete

binary tree, this is the only place

a new node can go

However, we are now violating

the heap property

When new nodes are added, we

may need to move it up in the

tree

11

Heap Operations - Insert 6

10 15

12 16 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

7

Because this is a complete

binary tree, this is the only place

a new node can go

However, we are now violating

the heap property

When new nodes are added, we

may need to move it up in the

tree

12

Heap Operations - Insert 6

10 15

12 7 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

Because this is a complete

binary tree, this is the only place

a new node can go

However, we are now violating

the heap property

When new nodes are added, we

may need to move it up in the

tree

13

Heap Operations - Insert 6

10 15

12 7 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

Because this is a complete

binary tree, this is the only place

a new node can go

However, we are now violating

the heap property

When new nodes are added, we

may need to move it up in the

tree

14

Heap Operations - Insert 6

10 15

12 7 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

Because this is a complete

binary tree, this is the only place

a new node can go

However, we are now violating

the heap property

When new nodes are added, we

may need to move it up in the

tree

15

Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

Because this is a complete

binary tree, this is the only place

a new node can go

However, we are now violating

the heap property

When new nodes are added, we

may need to move it up in the

tree

16

Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

Because this is a complete

binary tree, this is the only place

a new node can go

However, we are now violating

the heap property

When new nodes are added, we

may need to move it up in the

tree

This process is

called Heapify (up)

17

Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

This process is

called Heapify (up)

add(14);

18

Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

This process is

called Heapify (up)

add(14);

14

19

Heap Operations - Insert 6

7 15

12 10 21 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

This process is

called Heapify (up)

add(14);

14 19

add(19);

20

Heap Operations - Insert 6

7 15

12 10 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

This process is

called Heapify (up)

add(14);

14 21

add(19);

21

Heap Operations - Insert 6

7 15

12 10 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

add(7);

16

This process is

called Heapify (up)

add(14);

14 21

add(19);

Running time?

• Finding where to place new

node: O(1) (this will make sense

later)

• Insertion – O(1)

• Heapify Up – O(logn)

Total Running Time: O(logn)

22

Heap Operations – Removal (poll()) 6

7 15

12 10 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 14 21

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

23

Heap Operations – Removal (poll())

7 15

12 10 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 14 21

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

24

Heap Operations – Removal (poll()) 21

7 15

12 10 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 14

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

25

Heap Operations – Removal (poll()) 21

7 15

12 10 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 14

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

26

Heap Operations – Removal (poll()) 21

7 15

12 10 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 14

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

When the root is replaced, it

may need to be moved down in

the tree

27

Heap Operations – Removal (poll()) 7

21 15

12 10 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 14

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

When the root is replaced, it

may need to be moved down in

the tree

28

Heap Operations – Removal (poll()) 7

21 15

12 10 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 14

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

When the root is replaced, it

may need to be moved down in

the tree

When swapping down,

we want to swap it

with the smaller child

29

Heap Operations – Removal (poll()) 7

10 15

12 21 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 14

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

When the root is replaced, it

may need to be moved down in

the tree

30

Heap Operations – Removal (poll()) 7

10 15

12 21 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 14

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

When the root is replaced, it

may need to be moved down in

the tree

31

Heap Operations – Removal (poll()) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

When the root is replaced, it

may need to be moved down in

the tree

32

Heap Operations – Removal (poll()) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

When the root is replaced, it

may need to be moved down in

the tree

33

Heap Operations – Removal (poll()) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

When using a Heap, we only

remove the root node, which will

be either the maximum value or

minimum value

When the root is removed, we

replace it with the last node that

was added to the heap

When the root is replaced, it

may need to be moved down in

the tree

This process is called

Heapify (down)

34

Heap Operations – Removal (poll()) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

This process is called

Heapify (down)

Running time?

- Removing root: O(1)

- Replacing root: O(1) (this will make sense later)

- Heapify down: O(logn)

Total running time: O(logn)

35

Heap Operations – Removal (poll()) 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

Heapify (up)

Heapify (down)

Moving the new leaf node up in the tree

Moving the new root node down in the tree

36

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

How to represent a heap?

public class HeapNode{
Node leftChild;
Node rightChild;
Node parent;
(…)

}

37

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

How to represent a heap?

public class HeapNode{
Node leftChild;
Node rightChild;
Node parent;
(…)

}

38

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

39

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

40

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its children?

41

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its children?

42

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its children?

Because this is a complete binary tree,

there is a pretty nifty formula for this

43

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its children?

Because this is a complete binary tree,

there is a pretty nifty formula for this

For a given element at index i

Its left child will be located at index:

2 * i + 1

Its right child will be located at index:

2 * i + 2

44

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its children?

Because this is a complete binary tree,

there is a pretty nifty formula for this

For a given element at index i

Its left child will be located at index:

2 * i + 1

Its right child will be located at index:

2 * i + 2

Left Child = 2 * 4 + 1 = index 9 !

45

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its children?

Because this is a complete binary tree,

there is a pretty nifty formula for this

For a given element at index i

Its left child will be located at index:

2 * i + 1

Its right child will be located at index:

2 * i + 2

Left Child = 2 * 4 + 1 = index 9 !

Right Child = 2 * 4 + 2 = index 10 !

46

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its children?

Because this is a complete binary tree,

there is a pretty nifty formula for this

For a given element at index i

Its left child will be located at index:

2 * i + 1

Its right child will be located at index:

2 * i + 2

Left Child = 2 * 0 + 1 = index 1 !

Right Child = 2 * 0 + 2 = index 2 !

47

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its parent?

48

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

1

2 3

4
5 6 7

8 9 10 11

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its parent?

Because this is a complete binary tree,

there is a pretty nifty formula for this

Given an index i
Its parent will be located at index:

(i - 1) / 2

(remember that the /
operator will floor the

answer)

49

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its parent?

Because this is a complete binary tree,

there is a pretty nifty formula for this

Given an index i
Its parent will be located at index:

(i - 1) / 2

(remember that the /
operator will floor the

answer)

Parent = (6 - 1) / 2 = Index 2

50

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Given a spot in the array, how

can we find its parent?

Because this is a complete binary tree,

there is a pretty nifty formula for this

Given an index i
Its parent will be located at index:

(i - 1) / 2

(remember that the /
operator will floor the

answer)

Parent = (3 - 1) / 2 = Index 1

51

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

We can represent our tree with an array!

We have formulas to find the left child,

right child, and parent for a given node

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

52

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

insert(11);

53

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 15 12 14 19 33 25 23 16 21 11

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

11

O(1) time
(assuming we had space in the array)

54

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 15 12 14 19 33 25 23 16 21 11

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

11

Time to Heapify Up!

55

Heap Representation 7

10 15

12 14 19 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 15 12 14 19 33 25 23 16 21 11

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

11

Time to Heapify Up!

11’s parent is located at (11 – 1) / 2 = 5

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

56

Heap Representation 7

10 15

12 14 11 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 15 12 14 11 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

19

Time to Heapify Up!

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

57

Heap Representation 7

10 15

12 14 11 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 15 12 14 11 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

19

Time to Heapify Up!

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

11’s parent is located at (5 – 1) / 2 = 2

58

Heap Representation 7

10 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 11 12 14 15 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

19

Time to Heapify Up!

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

11’s parent is located at (5 – 1) / 2 = 2

59

Heap Representation 7

10 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 11 12 14 15 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

insert(11);

19

Time to Heapify Up!

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

60

Heap Representation 7

10 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

7 10 11 12 14 15 33 25 23 16 21 19

0 1 2 3 4 5 6 7 8 9 10 11

Array

poll();

19

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

61

Heap Representation 19

10 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

19 10 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

O(1) time

62

Heap Representation 19

10 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

19 10 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

63

Heap Representation 19

10 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

19 10 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

19’s left child is located at 2 * 0 + 1 = 1

19’s left child is located at 2 * 0 + 2 = 2

(We want to swap it with the lower value)

64

Heap Representation 19

10 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

19 10 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

65

Heap Representation 10

19 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

10 19 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

66

Heap Representation 10

19 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

10 19 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

19’s left child is located at 2 * 1 + 1 = 3

19’s left child is located at 2 * 1 + 2 = 4

(We want to swap it with the lower value)

67

Heap Representation 10

19 11

12 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

10 19 11 12 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

68

Heap Representation 10

12 11

19 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

10 12 11 19 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

69

Heap Representation 10

12 11

19 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

10 12 11 19 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

poll();

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Time to Heapify down!

70

Heap Representation 10

12 11

19 14 15 33

25 23

Min Heap – Parent nodes

are less than both of its

children

16 21

10 12 11 19 14 15 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

Left Child

Right Child

Parent (i - 1) / 2

2 * i + 1

2 * i + 2

Let’s code
this!!!

71

Min Heap – Parent nodes

are less than both of its

children
7

10 15

12 14 19 33

25 23 16 21

7 10 15 12 14 19 33 25 23 16 21

0 1 2 3 4 5 6 7 8 9 10

Array

72

What can a Heap do well that other data

structures cannot as well?

73

What can a Heap do well that other data

structures cannot as well?

Finding the largest/smallest element happens in O(1) time

Because we use an array, it might be more memory efficient than a

standard tree

74

Does a Heap remind you of any

other data structures?

75

Does a Heap remind you of any

other data structures?

Priority Queue

76

Does a Heap remind you of any

other data structures?

Priority Queue

Whenever we remove an element, we always remove the smallest/largest value (poll())

Whenever we add an element, it initially gets added to the back of the array, and

then swaps itself within the array

77

Whenever we remove an element, we always remove the smallest/largest value (poll())

Whenever we add an element, it initially gets added to the back of the array, and

then swaps itself within the array

A Heap is a priority queue

Takeaways

Getting the maximum/minimum value happens in O(1) time

There is a section of memory in your

computer called “The Heap”, which is

something totally unrelated to this data

structure

78

Applications

Heapsort- Sorting algorithm that converts an unsorted array to a Heap, and then

repeatedly remove the root node

Convert unsorted Array to Heap: O(n log n)

Make array: sortedArray O(n)

while(!heap.isEmpty()): O(n)

x = heap.poll() O(logn)
insert x into sortedArray O(1)

return sortedArray O(1)

Total Running Time: O(n log n)

(Same as merge sort, quick sort)

(“Heapify”)

	Slide 1: CSCI 232: Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

