CSCI 232: Data Structures and Algorithms

Graphs (Representation)

Reese Pearsall Spring 2024

https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html

Announcements

Lab 8 on Friday → Short survey... should be free points for you

Program 3 will be posted later this week

Next Tuesday (April 2nd) will be an asynchronous lecture (I'll post a lecture recording but no in-person lecture) You vs. the guy she tells you not to worry about

How could we visualize: Connections in a Social Media Network?

How could we visualize: Connections in a Social Media Network?

How could we visualize: Connections in a Social Media Network?

How could we visualize: Restaurants and Potential Customers?

How could we visualize: Restaurants and Potential Customers?

How could we visualize: Restaurants and Potential Customers?

Vertices (or Nodes)

Vertices (or Nodes) Edges

• Edges can be directed...

• Edges can be directed or <u>undirected</u>.

- Edges can be directed or <u>undirected</u>.
- Edges can have **weights**

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.

a,c,d,f

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.

c,e,d,f,e

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices connected by edge with loop(s).

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices connected by edge with loop(s).
- Connected Graph = Graph that has a path between every vertex pair.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices connected by edge with loop(s).
- Connected Graph = Graph that has a path between every vertex pair.

- Edges can be directed or <u>undirected</u>.
- Edges can have weights
- <u>Simple graph</u> = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices connected by edge with loop(s).
- Connected Graph = Graph that has a path between every vertex pair.
- Degree of a vertex = deg(v) = # of edges touching it (undirected).

What are some operations we may want to perform on a graph?

- Add vertices/edges.
- Find path between vertex pair.
- Is graph connected?
- Find degree of vertex.
- Is the graph simple?

- Get number of vertices/edges.
- Get neighbors of vertex.
- Is there a cycle?
- Find max degree of graph.

1. Adjacency List

1. Adjacency List 2. Adjacency Matrix

0 \rightarrow {1,2}1 \rightarrow {0,2,3}2 \rightarrow {0,1,4}3 \rightarrow {1,4,5}4 \rightarrow {2,3,5}5 \rightarrow {3,4}

	0	1	2	3	4	5
0	F	Т	Т	F	F	F
1	Т	F	Т	Н	F	F
2	Т	Т	F	F	Т	F
3	F	Т	F	F	Т	Т
4	F	F	Т	Т	F	Т
5	F	F	F	Т	Т	F

1. Adjacency List 2. Adjacency Matrix

	0	1	2	3	4	5
0	F	Т	Т	F	F	F
1	Т	F	Т	Т	F	F
2	Т	Т	F	F	Т	F
3	F	Т	F	F	Т	Т
4	F	F	Т	Т	F	Т
5	F	F	F	Т	Т	F

3. Objects

public class Node {
private Set<Node> neighbors;

1.	Ho a g Adj	w ca Irapł	an we rep n in a com ncy List	rese iput 2.	ent er <mark>?</mark> Ad	jace	enc	0 (y M	latri	X	3 5 4 2 Objects
	0	→	{1,2}		0	1	2	3	4	5	3. Objects
	1	-	{0,2,3}	0	F	Т	Т	F	F	F	public class Node {
	2		{0,1,4}	1	Т	F	Т	Т	F	F	private Set <node> neighbors;</node>
	3	-	{1,4,5}	2	Т	Т	F	F	Т	F	 }
	4	-	{2,3,5}	3	F	Т	F	F	Т	Т	
	5		{3,4}	4	F	F	Т	Т	F	Т	
				5	F	F	F	Т	Т	F	

