CSCI 232: Data Structures and Algorithms

Minimum Spanning Tree (MST) Part 1

Reese Pearsall Spring 2024

https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html

Lab 9 due on Friday

Fill out survey if you haven't already for lab 8

Graphs

G = (V, E)

Adjacency List

0 \rightarrow {1,2}1 \rightarrow {0,2,3}2 \rightarrow {0,1,4}3 \rightarrow {1,4,5}4 \rightarrow {2,3,5}5 \rightarrow {3,4}

3

Edge-weighted graph: A graph where each edge has a weight (cost).

Edge-weighted graph: A graph where each edge has a weight (cost). MST Goal: Connect all vertices to each other with a minimum weight subset of edges.

Tree – connected graph with no loops.

6

Tree – connected graph with no loops.

Spanning tree – tree that includes all vertices in a graph.

Tree – connected graph with no loops.

Spanning tree – tree that includes all vertices in a graph.

Minimum spanning tree – spanning tree whose sum of edge costs is the minimum possible value.

MST Goal: Connect all vertices to each other with a minimum weight subset of edges.

How to find MSTs?

At each iteration, add the edge with smallest weight, that does not create a cycle.

MST = [0, 1], [0, 2], [2,3], [3,5], [3,4] Total Cost = 9

MST vs Shortest Path

MST and shortest path are two different problems, and sometimes that shortest path will not be part of the MST

MST vs Shortest Path

MST and shortest path are two different problems, and sometimes that shortest path will not be part of the MST

Weighted Graph

public class Edge {

private int vertex1;
private int vertex2;

private int weight;

public int[] getVertices()

public int getWeight()

public String toString()

public boolean equals()

