
CSCI 232: 
Data Structures and Algorithms

Dynamic Programming (Part 1)

Reese Pearsall 
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html


2

Announcements

Program 3 Due one

week from today (4/23)

Gianforte Hall Groundbreaking 

Ceremony: Tomorrow @ 2:00 PM

Lab 11 due on Sunday (4/21)

→ After today, you can finish it

Tuesday April 23 will be an 

optional help session for 

Program 3 (no lecture)
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Program 3 MST

3



Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 25]

K = 37
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4 

(Quarter, dime, two pennies)
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4 

(Quarter, dime, two pennies)

Algorithm?
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4 

(Quarter, dime, two pennies)

Use as many quarters as possible, then as many dimes as possible, … 
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4 

(Quarter, dime, two pennies)

Use as many quarters as possible, then as many dimes as possible, … 

This is known as the greedy approach
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Use as many quarters as possible, then as many 

dimes as possible, … 

Greedy Algorithm
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Use as many quarters as possible, then as many 18 

cent pieces as possible, then dimes , … 

Greedy Algorithm

What if there were also an 18-cent coin?
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Greedy Algorithm

What if there were also an 18-cent coin?

25, 10, 1, 1 (4 coins)

Use as many quarters as possible, then as many 18 

cent pieces as possible, then dimes , … 
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Greedy Algorithm

What if there were also an 18-cent coin?

25, 10, 1, 1

Real Answer = 18, 18, 1  (3 coins)

(4 coins)

Use as many quarters as possible, then as many 18 

cent pieces as possible, then dimes , … 
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Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the 

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Greedy Algorithm

What if there were also an 18-cent coin?

25, 10, 1, 1

Real Answer = 18, 18, 1  (3 coins)

(4 coins)

Use as many quarters as possible, then as many 18 

cent pieces as possible, then dimes , … 

Lesson Learned: The Greedy approach works for the United States 

denominations, but not for a general set of denominations
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Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are 

the minimum number of coins needed to make 63 cents

25  +  25 +  10  + 1  + 1 +  1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25]  (NO 50 CENT PIECE)

What can you conclude?

Does this provide an answer to any other change making problems?
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Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are 

the minimum number of coins needed to make 63 cents

25  +  25 +  10  + 1  + 1 +  1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25]  (NO 50 CENT PIECE)

This is the minimum coins needed to make 38 cents
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Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are 

the minimum number of coins needed to make 63 cents

25  +  25 +  10  + 1  + 1 +  1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25]  (NO 50 CENT PIECE)

This is the minimum coins needed to make 13 cents
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Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are 

the minimum number of coins needed to make 63 cents

25  +  25 +  10  + 1  + 1 +  1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25]  (NO 50 CENT PIECE)

This is the minimum coins needed to make 3 cents
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Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are 

the minimum number of coins needed to make 63 cents

25  +  25 +  10  + 1  + 1 +  1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25]  (NO 50 CENT PIECE)

This is the minimum coins needed to make 2 cents
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Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are 

the minimum number of coins needed to make 63 cents

25  +  25 +  10  + 1  + 1 +  1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25]  (NO 50 CENT PIECE)

This is the minimum coins needed to make 1 cent
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Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are 

the minimum number of coins needed to make 63 cents

25  +  25 +  10  + 1  + 1 +  1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25]  (NO 50 CENT PIECE)

The solution to the change making problems consists of solutions to 

smaller change making problems

We can use recursion to solve this problem
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Change Making Problem
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Change Making Problem
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Change Making Problem

C(37) =  1  + C(12)

We used one quarter
Now find the minimum number 

of coins needed to make 12 

cents
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Change Making Problem

C(37) =  1  + C(12)

C(12) =  1  + C(2)

We used one dime

Now find the 

minimum number 

of coins needed to 

make 2 cents
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Change Making Problem

C(37) =  1  + C(12)

C(12) =  1  + C(2)

C(2) =  1  + C(1)

C(1) =  1  + C(0)
26



Change Making Problem

C(37) =  1  + C(12)

C(12) =  1  + C(2)

C(2) =  1  + C(1)

C(1) =  1
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Change Making Problem

C(37) =  1  + C(12)

C(12) =  1  + C(2)

C(2) =  1  + 1
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Change Making Problem

C(37) =  1  + C(12)

C(12) =  1  + C(2)

C(2) =  2
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Change Making Problem

C(37) =  1  + C(12)

C(12) =  1  + 2
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Change Making Problem

C(37) =  1  + C(12)

C(12) =  3
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Change Making Problem

C(37) =  1  + 3
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Change Making Problem

C(37) =  4

The minimum number of coins needed to make 37 cents is 4
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Change Making Problem

(This algorithm must work for ALL denominations)
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

Find minimum 

coins needed 

to make 18 

cents

Find minimum 

coins needed 

to make 14 

cents

Find minimum 

coins needed 

to make 9 

cents

k = # denominations

To find the minimum number of coins needed to create 19 cents, 

we generate k subproblems
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

Find minimum 

coins needed 

to make 18 

cents

Find minimum 

coins needed 

to make 14 

cents

Find minimum 

coins needed 

to make 9 

cents

k = # denominations

We want to select the minimum solution of these three subproblems



Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

Find minimum 

coins needed 

to make 18 

cents

Find minimum 

coins needed 

to make 14 

cents

Find minimum 

coins needed 

to make 9 

cents

k = # denominations

5 5 4

For the solution of our original problem (19), we want to select this branch (one dime used)
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

Find minimum 

coins needed 

to make 17 

cents

Find minimum 

coins needed 

to make 13 

cents

Find minimum 

coins needed 

to make 8 

cents
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

Eventually, we reach our base case, the minimum number of coins needed to make 0 cents0

43



Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7
For each change making problem we solve, we must solve at most 3 

smaller change making problems

Once we solve the smaller problems, we must select the branch that 

has the minimum value

13 9 8

1
5

10 1
5

8 4

When C(9), we cant

use a 10 cent piece…
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7
For each change making problem we solve, we must solve at most 3 

smaller change making problems

Once we solve the smaller problems, we must select the branch that 

has the minimum value

13 9 8

1
5

10 1
5

8 4

When C(9), we cant

use a 10 cent piece…
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Change Making Problem

For each problem P, we will solve the 

problem for (P – d), where d represents 

each possible denomination
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Change Making Problem

For each problem P, we will solve the 

problem for (P – d), where d represents 

each possible denomination

We want to select only the branch the yields the minimum value
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Change Making Problem

For each problem P, we will solve the 

problem for (P – d), where d represents 

each possible denomination

We want to select only the branch the yields the minimum value

If we ever need to 

make change for 0 

cents, return 0
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Change Making Problem

For each problem P, we will solve the 

problem for (P – d), where d represents 

each possible denomination

We want to select only the branch the yields the minimum value

If we ever need to 

make change for 0 

cents, return 0
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Change Making Problem

min_coins(D, p)

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)
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Change Making Problem

min_coins(D, p)

if p == 0 

return 0;

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case
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Change Making Problem

min_coins(D, p)

if p == 0 

return 0;

else

min = ∞
a = ∞

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case
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Change Making Problem

min_coins(D, p)

if p == 0 

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di )   

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the 

minimum number of coins 

needed using each valid 

denomination
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Change Making Problem

min_coins(D, p)

if p == 0 

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di )

if a < min

min = a   

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the 

minimum number of coins 

needed using each valid 

denomination

Select the branch that has 

the minimum value
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Change Making Problem

min_coins(D, p)

if p == 0 

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di )

if a < min

min = a   

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the 

minimum number of coins 

needed using each valid 

denomination

Select the branch that has 

the minimum value
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Change Making Problem

min_coins(D, p)

if p == 0 

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di )

if a < min

min = a

return 1 + min   

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the 

minimum number of coins 

needed using each valid 

denomination

Select the branch that has 

the minimum value

Once, our for loop finishes, we should know the branch that 

had the minimum, so return (1 + min), 1 because one coin 

was used in the current method call
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Change Making Problem

min_coins(D, p)

if p == 0 

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di )

if a < min

min = a

return 1 + min   
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Change Making Problem

min_coins(D, p)

if p == 0 

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di )

if a < min

min = a

return 1 + min   

Running time?
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

For sufficiently large p, 

every permutation of 

denominations is 

included.
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

64



Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

As k and p both grow, the number of recursive calls 
being made will grow exponentially

If we have a lot of coin denominations, we will 
have a lot of branching
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

As k and p both grow, the number of recursive calls 
being made will grow exponentially

Running time: O(      )
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Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

As k and p both grow, the number of recursive calls 
being made will grow exponentially

Running time: probably O(kp) or O(k!)

For a large set of denominations, or a large p, this 
algorithm will take a long time to run
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Let’s try 81 cents!
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19
1

5
10

18 14 9
1

5
10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

Change Making Problem

Why does our algorithm suck?
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19
1

5
10

18 14 9
1

5
10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

Change Making Problem

Why does our algorithm suck?

8

…
We frequently re-compute the solution to the 

sub problems we have already solved
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19
1

5
10

18 14 9
1

5
10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

Change Making Problem

Why does our algorithm suck?

8

…
We frequently re-compute the solution to the 

sub problems we have already solved

We can fix this by 

utilizing some “smart 

recursion” AKA 

Dynamic 

Programming
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Dynamic Programming

Dynamic Programming is an algorithm technique used 

for optimization problems that involves smartly using 

recursion to solve a problem with many overlapping 

subproblems
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Dynamic Programming

Dynamic Programming is an algorithm technique used 

for optimization problems that involves smartly using 

recursion to solve a problem with many overlapping 

subproblems

To use dynamic programming, we must first identify two characteristics of some problem

(If it has these two characteristics, we can use DP to solve it)
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Dynamic Programming

Dynamic Programming is an algorithm technique used 

for optimization problems that involves smartly using 

recursion to solve a problem with many overlapping 

subproblems

To use dynamic programming, we must first identify two characteristics of some problem

(If it has these two characteristics, we can use DP to solve it)

Optimal substructure- an optimal solution can be constructed 

from optimal solutions of its sub problems
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Dynamic Programming

Dynamic Programming is an algorithm technique used 

for optimization problems that involves smartly using 

recursion to solve a problem with many overlapping 

subproblems

To use dynamic programming, we must first identify two characteristics of some problem

(If it has these two characteristics, we can use DP to solve it)

Optimal substructure- an optimal solution can be constructed 

from optimal solutions of its sub problems

Overlapping Subproblems- we solve the same subproblem several 

times during the algorithm
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Dynamic Programming

Optimal substructure- an optimal solution can be constructed 

from optimal solutions of its sub problems

Overlapping Subproblems- we solve the same subproblem several 

times during the algorithm

The solution to the change making problem 

consists of solution to smaller change making 

problems

We frequently recompute the same subproblem 

throughout the algorithm

We satisfy these two conditions, which means we can leverage Dynamic Programming
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Dynamic Programming

Big idea of dynamic programming: 

Use memoization to store solutions of sub 

problems we have already solved, and don’t 

re compute them
(Yes, it’s “memoization” and not “memorization”)
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2

1
0

1

1

1

0

1

2

3

4

5

6

7

Memoization Table
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2

1
0

1

1

1

0

1

2

3

4

5

6

7

Memoization Table

We eventually hit our base case, 

and solve that the optimal way to 

make 0 cents is with zero coins



80

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2

1
0

1

1

1

0 0

1

2

3

4

5

6

7

Memoization Table

We eventually hit our base case, 

and solve that the optimal way to 

make 0 cents is with zero coins
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2

1

1

1

0 0

1 1

2

3

4

5

6

7

Memoization Table

We then see that the optimal way 

to make 1 cent is with one coin
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2
1

0 0

1 1

2 2

3

4

5

6

7

Memoization Table

The optimal way to make two 

cents is with 2 coins
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

0 0

1 1

2 2

3

4

5

6

7

Memoization Table

Using a 3 cent piece is more 

optimal than 3 pennies, so we 

place 1 in memoization table for 3

3

02

1
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

0 0

1 1

2 2

3 1

4

5

6

7

Memoization Table

Using a 3 cent piece is more 

optimal than 3 pennies, so we 

place 1 in memoization table for 3
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

0 0

1 1

2 2

3 1

4

5

6

7

Memoization Table

The optimal way to make 4 cents 

is with 2 coins
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

0 0

1 1

2 2

3 1

4 2

5

6

7

Memoization Table
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

0 0

1 1

2 2

3 1

4 2

5

6

7

Memoization Table

1

1

We no longer need to branch 

here, because we already know 

the optimal way to make 2 cents!
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

0 0

1 1

2 2

3 1

4 2

5

6

7

Memoization Table

We learn the optimal way to make

five cents is with one coin
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

0 0

1 1

2 2

3 1

4 2

5 1

6

7

Memoization Table
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Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

0 0

1 1

2 2

3 1

4 2

5 1

6

7

Memoization Table

All three of these branches have the 

same cost, so making 6 cents requires 2 

coint
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Dynamic Programming 7

1
3

5

6 4 2

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7

Memoization Table

1
3

3 1

2

1
0

1

1

1

0
1

We no longer need to branch here, because we already know 

the optimal solution for 4, so just check our memoization

table!
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Dynamic Programming 7

1
3

5

6 4 2

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7

Memoization Table

2 2 2
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Dynamic Programming 7

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

Memoization Table

The optimal way to make 7 cents is with 3 coins:

[1, 1, 5]

[3, 1, 3]

Code
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Dynamic Programming 7

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

Memoization Table



95

Dynamic Programming (Bottom to Top)

If we don’t want to use recursion, we can 

use a for loop to fill out this entire array 

(tabulation)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3
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Dynamic Programming (Bottom to Top)

0 0

1 ∞

2 ∞

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1)
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Dynamic Programming (Bottom to Top)

0 0

1 1

2 ∞

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1)
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Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3)
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Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 ∞

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3)



Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3)

100



Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)
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Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)
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Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

103



Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

104



Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

105



Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)
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Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

Our table is filled out, we can now query it!
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Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

return cache[P]

Cache

(1, 3, 5)

Our table is filled out, we can now query it!
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Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0): 

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

return cache[P]

Cache

(1, 3, 5)

Our table is filled out, we can now query it!

109



Dynamic Programming

Top to Bottom Dynamic Programming

→ Use recursion, and fill out a memoization table as you are making recursive calls

Bottom-Up Dynamic Programming

→ Use a for loop to fill out a table (tabulation), then query the table

Both have the same running time. But a computer can handle a for loop 

better than recursion

(I think recursion is easier to understand)

7

6

…

0

7

6

…

0

110

DP improves running time from exponential to O( len(D) * p )
start

start
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Fibonacci Sequence

✓ Optimal Substructure

✓ Overlapping Subproblems

Rewrite this recursive 

method using Top-Down DP
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