
CSCI 232:
Data Structures and Algorithms

Dynamic Programming (Part 1)

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html

2

Announcements

Program 3 Due one

week from today (4/23)

Gianforte Hall Groundbreaking

Ceremony: Tomorrow @ 2:00 PM

Lab 11 due on Sunday (4/21)

→ After today, you can finish it

Tuesday April 23 will be an

optional help session for

Program 3 (no lecture)

2

Program 3 MST

3

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

4

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

5

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4

(Quarter, dime, two pennies)

6

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4

(Quarter, dime, two pennies)

Algorithm?

7

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4

(Quarter, dime, two pennies)

Use as many quarters as possible, then as many dimes as possible, …

8

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4

(Quarter, dime, two pennies)

Use as many quarters as possible, then as many dimes as possible, …

This is known as the greedy approach

9

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Use as many quarters as possible, then as many

dimes as possible, …

Greedy Algorithm

10

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Use as many quarters as possible, then as many 18

cent pieces as possible, then dimes , …

Greedy Algorithm

What if there were also an 18-cent coin?

11

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Greedy Algorithm

What if there were also an 18-cent coin?

25, 10, 1, 1 (4 coins)

Use as many quarters as possible, then as many 18

cent pieces as possible, then dimes , …

12

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Greedy Algorithm

What if there were also an 18-cent coin?

25, 10, 1, 1

Real Answer = 18, 18, 1 (3 coins)

(4 coins)

Use as many quarters as possible, then as many 18

cent pieces as possible, then dimes , …

13

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Greedy Algorithm

What if there were also an 18-cent coin?

25, 10, 1, 1

Real Answer = 18, 18, 1 (3 coins)

(4 coins)

Use as many quarters as possible, then as many 18

cent pieces as possible, then dimes , …

Lesson Learned: The Greedy approach works for the United States

denominations, but not for a general set of denominations

14

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

What can you conclude?

Does this provide an answer to any other change making problems?

15

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 38 cents

16

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 13 cents

17

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 3 cents

18

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 2 cents

19

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 1 cent

20

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

The solution to the change making problems consists of solutions to

smaller change making problems

We can use recursion to solve this problem

21

Change Making Problem

22

Change Making Problem

23

Change Making Problem

C(37) = 1 + C(12)

We used one quarter
Now find the minimum number

of coins needed to make 12

cents

24

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

We used one dime

Now find the

minimum number

of coins needed to

make 2 cents

25

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

C(2) = 1 + C(1)

C(1) = 1 + C(0)
26

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

C(2) = 1 + C(1)

C(1) = 1
27

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

C(2) = 1 + 1

28

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

C(2) = 2

29

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + 2

30

Change Making Problem

C(37) = 1 + C(12)

C(12) = 3

31

Change Making Problem

C(37) = 1 + 3

32

Change Making Problem

C(37) = 4

The minimum number of coins needed to make 37 cents is 4

33

Change Making Problem

(This algorithm must work for ALL denominations)

34

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19

35

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

36

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

Find minimum

coins needed

to make 18

cents

Find minimum

coins needed

to make 14

cents

Find minimum

coins needed

to make 9

cents

k = # denominations

To find the minimum number of coins needed to create 19 cents,

we generate k subproblems

37

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

Find minimum

coins needed

to make 18

cents

Find minimum

coins needed

to make 14

cents

Find minimum

coins needed

to make 9

cents

k = # denominations

We want to select the minimum solution of these three subproblems

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

Find minimum

coins needed

to make 18

cents

Find minimum

coins needed

to make 14

cents

Find minimum

coins needed

to make 9

cents

k = # denominations

5 5 4

For the solution of our original problem (19), we want to select this branch (one dime used)

39

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

Find minimum

coins needed

to make 17

cents

Find minimum

coins needed

to make 13

cents

Find minimum

coins needed

to make 8

cents

40

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

41

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

42

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

Eventually, we reach our base case, the minimum number of coins needed to make 0 cents0

43

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7
For each change making problem we solve, we must solve at most 3

smaller change making problems

Once we solve the smaller problems, we must select the branch that

has the minimum value

13 9 8

1
5

10 1
5

8 4

When C(9), we cant

use a 10 cent piece…

44

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7
For each change making problem we solve, we must solve at most 3

smaller change making problems

Once we solve the smaller problems, we must select the branch that

has the minimum value

13 9 8

1
5

10 1
5

8 4

When C(9), we cant

use a 10 cent piece…

45

46

Change Making Problem

For each problem P, we will solve the

problem for (P – d), where d represents

each possible denomination

47

Change Making Problem

For each problem P, we will solve the

problem for (P – d), where d represents

each possible denomination

We want to select only the branch the yields the minimum value

48

Change Making Problem

For each problem P, we will solve the

problem for (P – d), where d represents

each possible denomination

We want to select only the branch the yields the minimum value

If we ever need to

make change for 0

cents, return 0

49

Change Making Problem

For each problem P, we will solve the

problem for (P – d), where d represents

each possible denomination

We want to select only the branch the yields the minimum value

If we ever need to

make change for 0

cents, return 0

50

Change Making Problem

min_coins(D, p)

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

51

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

52

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

53

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the

minimum number of coins

needed using each valid

denomination

54

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the

minimum number of coins

needed using each valid

denomination

Select the branch that has

the minimum value

55

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the

minimum number of coins

needed using each valid

denomination

Select the branch that has

the minimum value

56

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

return 1 + min

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the

minimum number of coins

needed using each valid

denomination

Select the branch that has

the minimum value

Once, our for loop finishes, we should know the branch that

had the minimum, so return (1 + min), 1 because one coin

was used in the current method call

57

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

return 1 + min

58

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

return 1 + min

Running time?

59

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

For sufficiently large p,

every permutation of

denominations is

included.

60

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

61

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

62

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

63

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

64

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

As k and p both grow, the number of recursive calls
being made will grow exponentially

If we have a lot of coin denominations, we will
have a lot of branching

65

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

As k and p both grow, the number of recursive calls
being made will grow exponentially

Running time: O()

66

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

As k and p both grow, the number of recursive calls
being made will grow exponentially

Running time: probably O(kp) or O(k!)

For a large set of denominations, or a large p, this
algorithm will take a long time to run

67

Let’s try 81 cents!

68

69

19
1

5
10

18 14 9
1

5
10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

Change Making Problem

Why does our algorithm suck?

70

19
1

5
10

18 14 9
1

5
10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

Change Making Problem

Why does our algorithm suck?

8

…
We frequently re-compute the solution to the

sub problems we have already solved

71

19
1

5
10

18 14 9
1

5
10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

Change Making Problem

Why does our algorithm suck?

8

…
We frequently re-compute the solution to the

sub problems we have already solved

We can fix this by

utilizing some “smart

recursion” AKA

Dynamic

Programming

72

Dynamic Programming

Dynamic Programming is an algorithm technique used

for optimization problems that involves smartly using

recursion to solve a problem with many overlapping

subproblems

73

Dynamic Programming

Dynamic Programming is an algorithm technique used

for optimization problems that involves smartly using

recursion to solve a problem with many overlapping

subproblems

To use dynamic programming, we must first identify two characteristics of some problem

(If it has these two characteristics, we can use DP to solve it)

74

Dynamic Programming

Dynamic Programming is an algorithm technique used

for optimization problems that involves smartly using

recursion to solve a problem with many overlapping

subproblems

To use dynamic programming, we must first identify two characteristics of some problem

(If it has these two characteristics, we can use DP to solve it)

Optimal substructure- an optimal solution can be constructed

from optimal solutions of its sub problems

75

Dynamic Programming

Dynamic Programming is an algorithm technique used

for optimization problems that involves smartly using

recursion to solve a problem with many overlapping

subproblems

To use dynamic programming, we must first identify two characteristics of some problem

(If it has these two characteristics, we can use DP to solve it)

Optimal substructure- an optimal solution can be constructed

from optimal solutions of its sub problems

Overlapping Subproblems- we solve the same subproblem several

times during the algorithm

76

Dynamic Programming

Optimal substructure- an optimal solution can be constructed

from optimal solutions of its sub problems

Overlapping Subproblems- we solve the same subproblem several

times during the algorithm

The solution to the change making problem

consists of solution to smaller change making

problems

We frequently recompute the same subproblem

throughout the algorithm

We satisfy these two conditions, which means we can leverage Dynamic Programming

77

Dynamic Programming

Big idea of dynamic programming:

Use memoization to store solutions of sub

problems we have already solved, and don’t

re compute them
(Yes, it’s “memoization” and not “memorization”)

78

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2

1
0

1

1

1

0

1

2

3

4

5

6

7

Memoization Table

79

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2

1
0

1

1

1

0

1

2

3

4

5

6

7

Memoization Table

We eventually hit our base case,

and solve that the optimal way to

make 0 cents is with zero coins

80

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2

1
0

1

1

1

0 0

1

2

3

4

5

6

7

Memoization Table

We eventually hit our base case,

and solve that the optimal way to

make 0 cents is with zero coins

81

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2

1

1

1

0 0

1 1

2

3

4

5

6

7

Memoization Table

We then see that the optimal way

to make 1 cent is with one coin

82

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

2
1

0 0

1 1

2 2

3

4

5

6

7

Memoization Table

The optimal way to make two

cents is with 2 coins

83

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

0 0

1 1

2 2

3

4

5

6

7

Memoization Table

Using a 3 cent piece is more

optimal than 3 pennies, so we

place 1 in memoization table for 3

3

02

1

84

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

0 0

1 1

2 2

3 1

4

5

6

7

Memoization Table

Using a 3 cent piece is more

optimal than 3 pennies, so we

place 1 in memoization table for 3

85

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

1
3

3 1

0 0

1 1

2 2

3 1

4

5

6

7

Memoization Table

The optimal way to make 4 cents

is with 2 coins

86

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

0 0

1 1

2 2

3 1

4 2

5

6

7

Memoization Table

87

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

0 0

1 1

2 2

3 1

4 2

5

6

7

Memoization Table

1

1

We no longer need to branch

here, because we already know

the optimal way to make 2 cents!

88

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

1
3

5

4 2 0

0 0

1 1

2 2

3 1

4 2

5

6

7

Memoization Table

We learn the optimal way to make

five cents is with one coin

89

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

0 0

1 1

2 2

3 1

4 2

5 1

6

7

Memoization Table

90

Dynamic Programming 7

1
3

5

6 4 2

1
3

5

5 3 1

0 0

1 1

2 2

3 1

4 2

5 1

6

7

Memoization Table

All three of these branches have the

same cost, so making 6 cents requires 2

coint

91

Dynamic Programming 7

1
3

5

6 4 2

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7

Memoization Table

1
3

3 1

2

1
0

1

1

1

0
1

We no longer need to branch here, because we already know

the optimal solution for 4, so just check our memoization

table!

92

Dynamic Programming 7

1
3

5

6 4 2

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7

Memoization Table

2 2 2

93

Dynamic Programming 7

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

Memoization Table

The optimal way to make 7 cents is with 3 coins:

[1, 1, 5]

[3, 1, 3]

Code

94

Dynamic Programming 7

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

Memoization Table

95

Dynamic Programming (Bottom to Top)

If we don’t want to use recursion, we can

use a for loop to fill out this entire array

(tabulation)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

96

Dynamic Programming (Bottom to Top)

0 0

1 ∞

2 ∞

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1)

97

Dynamic Programming (Bottom to Top)

0 0

1 1

2 ∞

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1)

98

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3)

99

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 ∞

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3)

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3)

100

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 ∞

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

101

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

102

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 ∞

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

103

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

104

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 ∞

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

105

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

106

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

Cache

(1, 3, 5)

Our table is filled out, we can now query it!

107

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

return cache[P]

Cache

(1, 3, 5)

Our table is filled out, we can now query it!

108

Dynamic Programming (Bottom to Top)

0 0

1 1

2 2

3 1

4 2

5 1

6 2

7 3

cache[0] = 0 //base case
For each cent value, i, in our array (0 – P):

For each coin in our denomination set c:
if(c – cache[i] >= 0):

x = cache[i – c];
if x is smaller than what is currently in the cache:

update cache to be x + 1

return cache[P]

Cache

(1, 3, 5)

Our table is filled out, we can now query it!

109

Dynamic Programming

Top to Bottom Dynamic Programming

→ Use recursion, and fill out a memoization table as you are making recursive calls

Bottom-Up Dynamic Programming

→ Use a for loop to fill out a table (tabulation), then query the table

Both have the same running time. But a computer can handle a for loop

better than recursion

(I think recursion is easier to understand)

7

6

…

0

7

6

…

0

110

DP improves running time from exponential to O(len(D) * p)
start

start

111

Fibonacci Sequence

✓ Optimal Substructure

✓ Overlapping Subproblems

Rewrite this recursive

method using Top-Down DP

	Slide 1: CSCI 232: Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

