
CSCI 232:
Data Structures and Algorithms

Dynamic Programming (Part 3)

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html

22

WARM UP EXERCISE

Finding 2nd smallest value in a BST

3

Announcements

3

Program 3 due tonight at 11:59 PM
→ Make sure you read over the rubric

Lab 12 due Sunday at 11:59 PM

After this short lecture, I’ll be in Barnard 254
helping people w/ program 3

Rod Cutting

n = 8
(no cuts)

Total profit
$20

n = 2

n = 2

n = 2

n = 2

Total profit
$20

n = 3

n = 5

Total profit
$18

n = 2

n = 6

Total profit
$22

Optimal profit!

Given a rod of length n inches, and an array of prices that includes prices of all pieces of size smaller
than n, determine the maximum value obtainable by cutting up the road and selling the pieces.

4

Rod Cutting

n = 2

n = 6

Total profit
$22

Optimal profit!

Given a rod of length n inches, and an array of prices that includes prices of all pieces of size smaller
than n, determine the maximum value obtainable by cutting up the road and selling the pieces.

Optimal Substructure

Our solution for a rod length of n=8, has the
optimal solution for rod length of n = 6, and n = 2

5

Rod Cutting

n = 2

n = 6

Total profit
$22

Optimal profit!

Given a rod of length n inches, and an array of prices that includes prices of all pieces of size smaller
than n, determine the maximum value obtainable by cutting up the road and selling the pieces.

General Approach:

Compute all possible ways to cut the
rod using dynamic programming, and
return which one had the highest
profit

6

Rod Cutting Given a rod of length n inches, and an array of prices that includes prices of all pieces of size smaller
than n, determine the maximum value obtainable by cutting up the road and selling the pieces.

n = 2

n = 2

n = 2

n = 2

Total profit
$20

Overlapping subproblems

We will compute the optimal way to
cut a rod of length n=2 many times.
We will use memoization to make
sure we don’t compute problems
that we have already solved.

7

Rod Cutting

indexn = 8

Technically, out algorithm will
consider making a cut of length 8
first, but we will skip over this
part to avoid confusion

8

Rod Cutting

indexn = 8

9

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index 10

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

We want to select the
option that yield the
highest profit

11

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

Now we recurse, and check a new cut value

12

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

Now we recurse, and check a new cut value

(index – 1)

13

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

n = 2

n = 6

Make cut of
length index 14

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

n = 2

n = 6

Make cut of
length index

We want to select the
option that yield the
highest profit

15

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

n = 2

n = 6

Make cut of
length index

16

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

n = 2

n = 6

Make cut of
length index

17

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

n = 2

n = 6

Make cut of
length index

N = 5

N = 3

Make cut of
length index 18

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

n = 2

n = 6

Make cut of
length index

N = 5

N = 3

Make cut of
length index

Whenever we don’t make the cut,
we don’t adjust the size of the rod,
but we check the next cut length

19

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index 20

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

We made a cut of length index,
so lets figure out how much that
piece is worth!

prices[index]

21

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

We made a cut of length index,
so lets figure out how much that
piece is worth!

prices[index]

We have 1 inch of rod left, so we
need to now figure out the
optimal way to cut this

22

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

We made a cut of length index,
so lets figure out how much that
piece is worth!

prices[index]

We have 1 inch of rod left, so we
need to now figure out the
optimal way to cut this
--Recurse!

Length of cut made = (index + 1)

23

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

We made a cut of length index,
so lets figure out how much that
piece is worth!

prices[index]

We have 1 inch of rod left, so we
need to now figure out the
optimal way to cut this
--Recurse!

Length of cut made = (index + 1)

New subproblem = n- length_of_cut

24

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

We made a cut of length index,
so lets figure out how much that
piece is worth!

prices[index]

We have 1 inch of rod left, so we
need to now figure out the
optimal way to cut this
--Recurse!

Length of cut made = (index + 1)

New subproblem = n- length_of_cut

25

Rod Cutting

indexn = 8
n = 8

Don’t Cut

n = 7

n = 1

Make cut of
length index

Whenever we make the cut, we
adjust the size of the rod, but keep
the same index

26

Rod Cutting

indexn = 8

n = 4

Don’t Cut

n = 2

Make cut of
length index

n = 2

27

Rod Cutting

indexn = 8

n = 4

Don’t Cut

n = 2

Make cut of
length index

n = 2

Profit: 9 Profit: 10

Given a rod of length 4 and a
potential cut value of length 2,
the optimal solution is to make
the cut

28

Rod Cutting

indexn = 8

n = 4

Don’t Cut

n = 2

Make cut of
length index

n = 2

Profit: 9 Profit: 10

Given a rod of length 4 and a
potential cut value of length 2,
the optimal solution is to make
the cut

If we ever encounter this same
subproblem again, we want to
make sure we don’t recompute
it

29

Rod Cutting

indexn = 8

n = 4

Don’t Cut

n = 2

Make cut of
length index

n = 2

Profit: 9 Profit: 10

We need to put this solution (10)
into our memorization table

30

Rod Cutting

index

n = 2

Make cut of
length index

n = 2

Profit: 10

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Rod Length

31

Rod Cutting

index

n = 2

Make cut of
length index

n = 2

Profit: 10

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Rod Length

32

Rod Cutting

index

n = 2

Make cut of
length index

n = 2

Profit: 10

1 2 3 4 5 6 7 8

1

2 10

3

4

5

6

7

8

Rod Length

dp[index][n] = 10

33

Rod Cutting

index

n = 2

Make cut of
length index

n = 2

Profit: 10

1 2 3 4 5 6 7 8

1

2 10

3

4

5

6

7

8

Rod Length

dp[index][n] = 10

Whenever we solve a subproblem, remember to place it inside of our memoization table
34

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

35

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

36

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = -4
cut_length = 6

n = 2
cut_length = 5

37

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = -4
cut_length = 6

n = 2
cut_length = 5

38

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = -4
cut_length = 6

n = 2
cut_length = 5

Only make the cut if its possible

39

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = 8
cut_length = 4

n = 3
cut_length = 5

40

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = 8
cut_length = 4

n = 3
cut_length = 5

n = 3
cut_length = 4

41

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = 8
cut_length = 4

n = 3
cut_length = 5

n = 3
cut_length = 4

n = 3
cut_length = 4

n = 3
cut_length = 3

n = 3
cut_length = 2

n = 3
cut_length = 1 (index = 0)

42

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = 8
cut_length = 4

n = 3
cut_length = 5

n = 3
cut_length = 4

n = 3
cut_length = 4

n = 3
cut_length = 3

n = 3
cut_length = 2

n = 3
cut_length = 1 (index = 0)

We can’t chop into lengths less than 1, so we can
compute a solution right here

43

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = 8
cut_length = 4

n = 3
cut_length = 5

n = 3
cut_length = 4

n = 3
cut_length = 4

n = 3
cut_length = 3

n = 3
cut_length = 2

n = 3
cut_length = 1 (index = 0)

Profit made into chopping into rods of length 1:

- n * prices[0] = 3
44

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = 8
cut_length = 4

n = 3
cut_length = 5

n = 3
cut_length = 4

n = 3
cut_length = 4

n = 3
cut_length = 3

n = 3
cut_length = 2

n = 3
cut_length = 1 (index = 0)

Profit made into chopping into rods of length 1:

- n * prices[0] = 3 This will be our base case
45

Rod Cutting
n = 8
cut_length = 7

n = 8
cut_length = 6

n = 1
cut_length = 7

n = 8
cut_length = 5

n = 2
cut_length = 6

n = 8
cut_length = 4

n = 3
cut_length = 5

n = 3
cut_length = 4

n = 3
cut_length = 4

n = 3
cut_length = 3

n = 3
cut_length = 2

n = 3
cut_length = 1 (index = 0)

Profit made into chopping into rods of length 1:

- n * prices[0] = 3 This will be our base case

LETS TRY TO CODE THIS

If you are confused are the recursion is set up, don’t stress out
about it. Its not a big deal.

The goal here is to show how we are using dynamic programming
to solve this problem

46

	Slide 1: CSCI 232: Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

