
CSCI 232:
Data Structures and Algorithms

Greedy Algorithms + Tractability

Reese Pearsall
Spring 2024
https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2024/232/main.html

2

Announcements

2

Lab 12 due Sunday at 11:59 PM

Greedy Algorithms

Technique to solve a problem that involves making the choice the
best helps some objective

Objective = shortest cost, most profit, spend least money as possible

We (usually) do not look ahead, plan, or revisit past decisions

Hope that optimal local choices lead to optimal global solutions

Sometimes the greedy approach is not the best solution a problem
3

Greedy Algorithms

Kruskal’s and Dijkstra’s algorithm are both examples of greedy algorithms

At each step of the algorithm, they attempt to select the edge with the minimum cost

(The greedy approach works fine for these, because these algorithms always return the optimal result)

Running time O(|E|*log|V|)
Running time O(|E|log|E|)

4

Eating at a Buffet

Suppose you pay D dollars to enter a buffer. You can eat only N items before you get full. You know the cost of
every item in the buffet

$40
$31 $18 $23$16$11

Our goal is to get the most “bang for our buck”,

aka. maximize
C = (D – S) where S is the sum of the N items
we ate at the buffet

5

Eating at a Buffet

Suppose you pay D dollars to enter a buffer. You can eat only N items before you get full. You know the cost of
every item in the buffet

$40
$31 $18 $23$16$11

Our goal is to get the most “bang for our buck”,

aka. maximize
C = (D – S) where S is the sum of the N items
we ate at the buffet

Ideas?
6

Eating at a Buffet

Suppose you pay D dollars to enter a buffer. You can eat only N items before you get full. You know the cost of
every item in the buffet

$40 $31 $18$23
$16 $11

Our goal is to get the most “bang for our buck”,

aka. maximize
C = (D – S) where S is the sum of the N items
we ate at the buffet

1. Sort items by their value
(greatest-to-least)

7

Eating at a Buffet

Suppose you pay D dollars to enter a buffer. You can eat only N items before you get full. You know the cost of
every item in the buffet

$40 $31 $18$23
$16 $11

Our goal is to get the most “bang for our buck”,

aka. maximize
C = (D – S) where S is the sum of the N items
we ate at the buffet

1. Sort items by their value
(greatest-to-least)

2. Select the first N items
in the list

N = 3, S = $94, D = $40, C = $54
8

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

9

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5

Value: 40
Weight: 4 Value: 30

Weight: 6

Value: 50
Weight: 3

Knapsack (10)

Suppose our
knapsack can only
hold 10 pounds

Ideas?

10

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5

Value: 40
Weight: 4 Value: 30

Weight: 6

Value: 50
Weight: 3

Knapsack (0)

Suppose our
knapsack can only
hold 10 pounds

Stuff our knapsack with the
most expensive items until we
can’t fit anymore

11

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5

Value: 40
Weight: 4 Value: 30

Weight: 6

Value: 50
Weight: 3

Knapsack (7)

Suppose our
knapsack can only
hold 10 pounds

Stuff our knapsack with the
most expensive items until we
can’t fit anymore

Total value = $90

12

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5

Value: 40
Weight: 4 Value: 30

Weight: 6

Value: 50
Weight: 10

Knapsack (0)

Suppose our
knapsack can only
hold 10 pounds

Stuff our knapsack with the
most expensive items until we
can’t fit anymore

13

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5

Value: 40
Weight: 4 Value: 30

Weight: 6

Value: 50
Weight: 10

Knapsack (10)

Suppose our
knapsack can only
hold 10 pounds

Stuff our knapsack with the
most expensive items until we
can’t fit anymore

Total value = $50
Taking these two
items instead yields
a more optimal
solution!

14

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5

Value: 40
Weight: 4 Value: 30

Weight: 6

Value: 50
Weight: 10

Knapsack (0)

Suppose our
knapsack can only
hold 10 pounds

Any better ideas?

15

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5

Value: 40
Weight: 4 Value: 30

Weight: 6

Value: 50
Weight: 10

Knapsack (0)

Suppose our
knapsack can only
hold 10 pounds

Compute the ratio of value/weight,
and select items based on that

16

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5
Ratio: 2

Value: 40
Weight: 4
Ratio: 10

Value: 30
Weight: 6
Ratio: 5

Value: 50
Weight: 10
Ratio: 5

Knapsack (0)

Compute the ratio of
value/weight, and select
items based on that

17

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5
Ratio: 2

Value: 40
Weight: 4
Ratio: 10

Value: 30
Weight: 6
Ratio: 5

Value: 50
Weight: 10
Ratio: 5

Knapsack (0)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio

18

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5
Ratio: 2

Value: 40
Weight: 4
Ratio: 10

Value: 30
Weight: 6
Ratio: 5

Value: 50
Weight: 10
Ratio: 5

Knapsack (0)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

19

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5
Ratio: 2

Value: 40
Weight: 4
Ratio: 10

Value: 30
Weight: 6
Ratio: 5

Value: 50
Weight: 10
Ratio: 5

Knapsack (4)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

20

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5
Ratio: 2

Value: 40
Weight: 4
Ratio: 10

Value: 30
Weight: 6
Ratio: 5

Value: 50
Weight: 10
Ratio: 5

Knapsack (4)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

We cannot select this item, because it will exceed the knapsack

21

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5
Ratio: 2

Value: 40
Weight: 4
Ratio: 10

Value: 30
Weight: 6
Ratio: 5

Value: 50
Weight: 10
Ratio: 5

Knapsack (4)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

22

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5
Ratio: 2

Value: 40
Weight: 4
Ratio: 10

Value: 30
Weight: 6
Ratio: 5

Value: 50
Weight: 10
Ratio: 5

Knapsack (10)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

23

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5
Ratio: 2

Value: 40
Weight: 4
Ratio: 10

Value: 30
Weight: 6
Ratio: 5

Value: 50
Weight: 10
Ratio: 5

Knapsack (10)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

We cannot select this item, because it will exceed the knapsack
24

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 10
Weight: 5
Ratio: 2

Value: 40
Weight: 4
Ratio: 10

Value: 30
Weight: 6
Ratio: 5

Value: 50
Weight: 10
Ratio: 5

Knapsack (10)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

Total profit of knapsack: $40 + $30 = $70

25

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 5.5
Weight: 4
Ratio: 1.38

Value: 4
Weight: 3
Ratio: 1.33

Value: 4
Weight: 3
Ratio: 1.33

Knapsack (0)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

Let N = 6
Given these new prices, weights, and ratios, will our
algorithm still work?

26

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 5.5
Weight: 4
Ratio: 1.38

Value: 4
Weight: 3
Ratio: 1.33

Value: 4
Weight: 3
Ratio: 1.33

Knapsack (4)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

Let N = 6
Given these new prices, weights, and ratios, will our
algorithm still work?

We can’t add
these items,
because they
would exceed
our knapsack
capacity

Total profit = 5.5
27

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 5.5
Weight: 4
Ratio: 1.38

Value: 4
Weight: 3
Ratio: 1.33

Value: 4
Weight: 3
Ratio: 1.33

Knapsack (4)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

Let N = 6
Given these new prices, weights, and ratios, will our
algorithm still work? Total profit = 5.5 Optimal solution= 8

28

Knapsack Problem

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack

Value: 5.5
Weight: 4
Ratio: 1.38

Value: 4
Weight: 3
Ratio: 1.33

Value: 4
Weight: 3
Ratio: 1.33

Knapsack (4)

Compute the ratio of
value/weight, and select
items based on that

1. Sort items based on ratio
2. Add items to knapsack if

they will not exceed the
knapsack

3. Repeat step 2 until we’ve
checked every item

Let N = 6
Given these new prices, weights, and ratios, will our
algorithm still work? Total profit = 5.5 Optimal solution= 8

This is the 0/1 knapsack problem, which means that we
either take the item, or we don’t. We can’t take “half” of
a watch to fill the remaining empty space of our knapsack

The greedy approach does not always yield the optimal
solution 

29

Knapsack Problem (Fractional)

You are a thief with a knapsack that can hold up to N weight. You are robbing
a store, where each item has a weight, and a value

Goal: Maximize value of items being stolen, and don’t overfill knapsack
Knapsack (n)

Fractional variant = we can take a fraction of an item

30

Knapsack Problem (Fractional)

Knapsack (n)Value: 100
Weight: 20

Value: 40
Weight: 5

Value: 13
Weight: 10

Value: 88
Weight: 12

Value: 52
Weight: 8

Value: 13
Weight: 8

Value: 20
Weight: 1

Knapsack capacity: 35

31

Knapsack Problem (Fractional)

Knapsack (n)Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio

Knapsack capacity: 35

32

Knapsack Problem (Fractional)

Knapsack (n)Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio

Knapsack capacity: 35

33

Knapsack Problem (Fractional)

Knapsack (n)Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

34

Knapsack Problem (Fractional)

Knapsack (0)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

35

Knapsack Problem (Fractional)

Knapsack (1)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

36

Knapsack Problem (Fractional)

Knapsack (1)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

37

Knapsack Problem (Fractional)

Knapsack (6)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

38

Knapsack Problem (Fractional)

Knapsack (6)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

39

Knapsack Problem (Fractional)

Knapsack (18)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

40

Knapsack Problem (Fractional)

Knapsack (18)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

41

Knapsack Problem (Fractional)

Knapsack (26)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

42

Knapsack Problem (Fractional)

Knapsack (26)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

43

Knapsack Problem (Fractional)

Knapsack (26)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

We cannot take the full 20 pounds of the
gold bar, but we can take a fraction of it

Cut off 9 pounds of the gold bar, and
place it in out knapsack

44

Knapsack Problem (Fractional)

Knapsack (35)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

45

Knapsack Problem (Fractional)

Knapsack (35)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

Pearl: 20
Emerald: 40
Silver: 88
Sapphire: 52
9/20 of a gold bar: ???

46

Knapsack Problem (Fractional)

Knapsack (35)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

Pearl: 20
Emerald: 40
Silver: 88
Sapphire: 52
9/20 of a gold bar: 9 * 5 = 45

the ratio

47

Knapsack Problem (Fractional)

Knapsack (35)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

Pearl: 20
Emerald: 40
Silver: 88
Sapphire: 52
9/20 of a gold bar: 9 * 5 = 45

the ratio

Total profit: $245
48

Knapsack Problem (Fractional)

Knapsack (35)

Value: 100
Weight: 20
Ratio: 5

Value: 40
Weight: 5
Ratio: 8

Value: 13
Weight: 10:
Ratio 1.3

Value: 88
Weight: 12
Ratio: 7.33

Value: 52
Weight: 8
Ratio: 6.5

Value: 13
Weight: 8
Ratio: 1.625

Value: 20
Weight: 1
Ratio: 20

1. Sort items based on ratio
2. Iterate through sorted list

1. If adding item will not
exceed the capacity, add it

2. If adding item will exceed
the capacity, take a fraction
of it to fill the remaining
space of knapsack

Knapsack capacity: 35

Pearl: 20
Emerald: 40
Silver: 88
Sapphire: 52
9/20 of a gold bar: 9 * 5 = 45

the ratio

Total profit: $245

In the fractional knapsack problem, the
greedy approach will guarantee an optimal

solution

49

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

50

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

51

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

52

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min3 min 15 min 1 min 5 min

53

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min3 min 15 min 1 min 5 min

Any ideas to achieve our goal?

54

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min3 min 15 min 1 min 5 min

Select the customer that would take the least time

55

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min3 min 15 min

1 min

5 min

Select the customer that would take the least time

56

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min3 min 15 min 5 min

Select the customer that would take the least time

57

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min

3 min

15 min 5 min

Select the customer that would take the least time

58

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min

3 min

15 min 5 min

Select the customer that would take the least time

2 min

59

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min 15 min 5 min

Select the customer that would take the least time

2 min

60

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min 15 min 5 min

Select the customer that would take the least time

2 min

61

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min 15 min 5 min

Select the customer that would take the least time

2 min

6 min 8 min

62

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min 15 min

5 min

Select the customer that would take the least time

6 min 8 min

63

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min 15 min

Select the customer that would take the least time

6 min 8 min

64

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min 15 min

Select the customer that would take the least time

6 min

8 min

65

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min 15 min

Select the customer that would take the least time

8 min

66

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min

15 min

Select the customer that would take the least time

8 min

67

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min

15 min

Select the customer that would take the least time

8 min
11 min

And repeat this until
your shift is over!

68

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min

15 min

Select the customer that
would take the least time8 min

11 min

Is this algorithm good?

69

Being a Cashier at Walmart Customer are constantly arriving to a check
out line. Walmart is open 24/7

Instead of first-in-first-out, you want to
serve as many customers as possible in
your 2-hour shift

You can assume that there will always be
several waiting in line, and you know how
many minutes it will take to check them out

7 min

15 min

Select the customer that
would take the least time8 min

11 min

This customer has a longer service time, and they may potentially wait a very long time until they are served

Optimal, but not Fair!

70

Being a Cashier at Walmart CPU Job Scheduling

7
nanoseconds

15
nanoseconds

8
nanoseconds

11
nanoseconds

Process A Process B Process C Process D

This problem is very
relevant in the world of
operating systems.

There are many processes/software
running on your computer all at the
same time

Each process needs to use the hardware
on the computer to do its job.

OS oversees selecting which job will be
processed by the CPU next

Ideally, we want a fair approach ☺ 71

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Shortest possible loop that connects
every red dot, and does revisit any dot

72

Hamiltonian
cycle

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Given the nodes of major cities
in the US, what would the
greedy algorithm look like for
the TSP problem?

You can assume every node as a
direct path to every other node

73

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Given the nodes of major cities
in the US, what would the
greedy algorithm look like for
the TSP problem?

Nearest neighbor: always travel
to the nearest unvisited
neighbor, and then travel to
their nearest neighbor, and
then travel to their nearest
neighbor…
Once we have visited all nodes,
travel back to starting node

74

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Given the nodes of major cities
in the US, what would the
greedy algorithm look like for
the TSP problem?

Nearest neighbor: always travel
to the nearest unvisited
neighbor, and then travel to
their nearest neighbor, and
then travel to their nearest
neighbor…
Once we have visited all nodes,
travel back to starting node

75

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Given the nodes of major cities
in the US, what would the
greedy algorithm look like for
the TSP problem?

Lowest edge cost: add the
shortest edge that will neither
create a vertex with more than
2 edges, nor a cycle with less
than the total number of cities
until we have a cycle

76

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Given the nodes of major cities
in the US, what would the
greedy algorithm look like for
the TSP problem?

Start with a cycle, keep growing the
cycle by adding the city nearest to
the cycle

Nearest Insertion

77

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Unfortunately, the greedy algorithms for TSP do not guarantee an optimal solution

78

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Unfortunately, the greedy algorithms for TSP do not guarantee an optimal solution

The traveling salesman problem is a difficult problem… in fact, it is
one of the most difficult problems in computer science

We do not know of an algorithm that can solve TSP in polynomial time

O(1)

O(n)

O(logn)

O(N^2)

O(N^3)

O(n log n) Polynomial time
79

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Unfortunately, the greedy algorithms for TSP do not guarantee an optimal solution

The traveling salesman problem is a difficult problem… in fact, it is
one of the most difficult problems in computer science

We do not know of an algorithm that can solve TSP in polynomial time

O(1)

O(n)

O(logn)

O(N^2)

O(N^3)

O(n log n) Polynomial time

The algorithms we currently have for
solving TSP run in exponential or
factorial time, which are infeasible for
large input sizes

80

Traveling Salesman

Given a graph with edge weights and a starting node, what is the shortest path that
will visit every node, and start and end at the starting node, without visiting the
same node twice

Unfortunately, the greedy algorithms for TSP do not guarantee an optimal solution

The traveling salesman problem is a difficult problem… in fact, it is
one of the most difficult problems in computer science

We do not know of an algorithm that can solve TSP in polynomial time

O(1)

O(n)

O(logn)

O(N^2)

O(N^3)

O(n log n) Polynomial time

If you can solve TSP in polynomial
time, you will become a millionaire
(literally)

81

Tractability

Tractability refers to the problems we can solve and not solve in polynomial time

P
P is the set of all
problems that we
can solve in
polynomial time

sorting

Shortest path

Closest pair of points

Rod cutting

Change making

and much more

Fractional knapsack

82

Tractability

Tractability refers to the problems we can solve and not solve in polynomial time

P

sorting

Shortest path

Closest pair of points

Rod cutting

Change making

and much more

NP

NP = set of problems
that we don’t know how
to solve in polynomial
time, but can verify in
polynomial time

Fractional knapsack

83

Tractability

Tractability refers to the problems we can solve and not solve in polynomial time

P

sorting

Shortest path

Closest pair of points

Rod cutting

Change making

and much more

NP

NP = set of problems
that we don’t know how
to solve in polynomial
time, but can verify in
polynomial time

Verify = given a
solution to
problem, verify if it
is correct/incorrect

Fractional knapsack

84

Tractability

Tractability refers to the problems we can solve and not solve in polynomial time

P

sorting

Shortest path
Fractional knapsack

Closest pair of points

Rod cutting

Change making

and much more

NP

NP Complete

Traveling Salesman

0-1 Knapsack

3-SAT

Vertex Cover

NP-Complete-
The hardest
problems of NP. If
we can solve one
NP-Complete
problem, we can
solve all other NP-
Complete
problems

85

Tractability

Tractability refers to the problems we can solve and not solve in polynomial time

P

sorting

Shortest path
Fractional knapsack

Closest pair of points

Rod cutting

Change making

and much more

NP

NP Complete

Traveling Salesman

0-1 Knapsack

3-SAT

Vertex Cover

NP-Complete-
The hardest
problems of NP. If
we can solve one
NP-Complete
problem, we can
solve all other NP-
Complete
problems

Vertex Cover = Given a graph, compute a set of vertices S that
include at least one endpoint of every edge. 86

Tractability

87

Vertex Cover = Given a graph, compute a set of vertices S
that include at least one endpoint of every edge.

Typically, we are concerned about finding the minimum vertex cover

VC Size = 5 VC Size = 3

Tractability

88

Finding shortest paths in a distance-weighted
graph can be done in polynomial time.

Tractability

89

Finding shortest paths that cost at most 20 in a
distance-and-cost-weighted graph can be done
in polynomial time.

3

10

8
7

4

5

12

6

4

3

distance
cost

Tractability

90

Finding shortest paths that cost at most 20 in a
distance-and-cost-weighted graph can be done
in polynomial time.

3

10

8
7

4

5

12

6

4

3

distance
cost

By making a small tweak
to this problem, this
problem actually
becomes much more
challenging (NP-C)

Tractability

Tractability refers to the problems we can solve and not solve in polynomial time

P

sorting

Shortest path
Fractional knapsack

Closest pair of points

Rod cutting

Change making

and much more

NP

NP Complete

Traveling Salesman

0-1 Knapsack

3-SAT

Vertex Cover

NP-Complete-
The hardest
problems of NP. If
we can solve one
NP-Complete
problem, we can
solve all other NP-
Complete
problems

Vertex Cover = Given a graph, compute a set of vertices S that
include at least one endpoint of every edge. 91

Tractability

If you can solve TSP in polynomial time, you can win a million
dollars, probably become a tenured CS professor, and also break
cybersecurity

92

	Slide 1: CSCI 232: Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

