y

CSCI 232;

Data Structures and Algorithms

Hashing (Part 2)

Reese Pearsall
Spring 2025

‘A MONTANA
STATE UN RST

TE UNIVERSITY

https://www.cs.montana.edu/pearsall/classes/spring2025/232/main.html

Announcements

Lab 4 due tomorrow at 11:59 PM
Program 1 due one week from today (2/20) at 11:59 PM

Not feeling well. Next Tuesday's lecture may be a lecture recording

‘ry MONTANA
STATE UNIVERSITY

‘A MONTANA
STATE UNIVERSITY

Hash Tables Student[] Array

Hash Function

Student 1D ID $ 100 1

123456 12 || Sam, Political Science, 2.5 IStudent Object

121212

56 || Sally, Mathematics, 3.0 Student Object

456672
72 IJohn, Computer Science, 4.0 IStudent Object

99

‘ry MONTANA
STATE UNIVERSITY

Hash Tables Student[] Array n =100

Hash Function

Student ID ID % 100 1

12 || Sam, Political Science, 2.5 IStudent Object

Lookup time?

O(1) if you have the key

56 || Sally, Mathematics, 3.0 Student Object

72 IJohn, Computer Science, 4.0 IStudent Object

99

‘ry MONTANA
STATE UNIVERSITY

Hash Tables Student[] Array n =100

Hash Function

O

Student ID ID % 100 1

12 || Sam, Political Science, 2.5 IStudent Object

Lookup time?

O(1) if you have the key

56 || Sally, Mathematics, 3.0 Student Object

O(n) if you don’t have the key

72 IJohn, Computer Science, 4.0 IStudent Object

99

‘ry MONTANA
STATE UNIVERSITY

Hash Tables Student[] Array n =100

Hash Function

O

Student ID ID % 100 1

12 || Sam, Political Science, 2.5 IStudent Object

Lookup time?

O(1) if you have the key

56 || Sally, Mathematics, 3.0 Student Object

- you-don'thave the key
O(k) if you don’t have the key

72 IJohn, Computer Science, 4.0 IStudent Object

99

‘ry MONTANA
STATE UNIVERSITY

k = | keyspace |

Hash Tables Student[] Array n =100

Hash Function

O

Student ID ID % 100 1

12 || Sam, Political Science, 2.5 IStudent Object

Lookup time?

O(1) if you have the key*

56 || Sally, Mathematics, 3.0 Student Object

n=#of Arragy — O(logn)**

elements in

data BST — O(logn)***
structure Linked LiSt . O(n) 72 IJohn, Computer Science, 4.0 IStudent Object

* If we can avoid collisions **if the array is sorted 99
***If the tree is balanced

‘ry MONTANA
STATE UNIVERSITY

Hash Tables Student[] Array n =100

Hash Function

O

Student ID ID % 100 1

12 || Sam, Political Science, 2.5 IStudent Object

Insertion time?

O(1) *

56 || Sally, Mathematics, 3.0 Student Object

n = # of Array — O(n)

elements in

data BST — O(logn)**
structure Linked LiSt . 0(1) 72 IJohn, Computer Science, 4.0 IStudent Object

* |f we can avoid collisions **if the tree is balanced 99

‘ry MONTANA
STATE UNIVERSITY

Hash Tables Student[] Array n =100

Hash Function

O

Student ID ID % 100 1

12 || Sam, Political Science, 2.5 IStudent Object

Removal time?

O(1) *

56 || Sally, Mathematics, 3.0 Student Object

n = # of

elements in Array — O(I’\)
Sf;ff::ture BST — 0(|Ogn)**
Linked List — O(1) / O(n) 72 |[30hn, computer science, 4.8 | student object

* |f we can avoid collisions **if the tree is balanced 99

‘ry MONTANA
STATE UNIVERSITY

Hash Tables Student[] Array n =100

Hash Function

0
Student ID ID % 100 1
Insertion 12 || Sam, Political Science, 2.5 |student Object

Student newStudent = new Student(name, major, 1id);

int arrayIndex = hash(id);

database[arrayIndex] = newStudent;
56 || Sally, Mathematics, 3.0 Student Object

keySpace.add(id);

72 IJohn, Computer Science, 4.0 IStudent Object

99

‘ry MONTANA
STATE UNIVERSITY

Hash Tables Student[] Array n =100

Hash Function

0
Student ID ID % 100 1
LOOkUp (gEt) 12 || Sam, Political Science, 2.5 IStudent Object

int arrayIndex = hash(id);oq) -

return database[arrayIndex];

72 IJohn, Computer Science, 4.0 IStudent Object

99

‘ry MONTANA
STATE UNIVERSITY

Hash Tables

Student ID

Hash Function

1D

Remove Method

O

=

o

100

Student[] Array n =100

nhull

nhull

hull

hull

12 || Sam, Political Science, 2.5 IStudent Object

56

72

99

hull

nhull

null

Sally, Mathematics, 3.0 Student Object

nhull

null

hull

I John, Computer Science, 4.0 Istudent Object

null

nhull

‘A MONTANA

STATE UNIVERSITY

Hash Tables in Java

Typically, we will never have to create our own HashTable class, instead we will
iImport the one that Java provides

import java.util.HashMap;
import java.util.HashSet;

‘ry MONTANA
STATE UNIVERSITY

Hash Maps

Hash Maps are a collection of key-values pairs (Map) that
uses hashing when inserting, removing, lookup, etc

HashMap<String, String> capitalCities = new HashMap<String, String>();

\ }
|

This is a HashMap that maps Strings (keys) to Strings (values)

Adding a new Key-Value pair Removing a Value

capitalCities.put("England”, "London"); capitalCities.remove("England");
capitalCities.put("Germany", "Berlin"); Other Helpful Methods

capitalCities.put("Norway", "Oslo"); e keySet() — returns set of keys
capitalCities.put("USA", "Washington DC"); « values() — returns set of values

e containsKey()

e containsValue()
capitalCities.get("England"); e replace()

e size()

‘A MONTANA
STATE UNIVERSITY

Retrieving a Value

Hash Sets

Hash Sets is an implementation of the Set interface that uses
a Hash Map under the hood

A set is a collection of elements with no duplicate elements
* You can think of this as a List, but without the ability to use indices

HashSet<String> candy = new HashSet<String>; false
\ y } HashSet<String> true
Hash Set that stores Strings false
false
candy.add(“Twix”); “Skittles” true
candy.add(“Skittles”); fal
candy.add(“Snickers”); “Snickers” a’5€
true
candy.contains(“Skittles”);
candy.remove(“Twix”);
false

‘ry MONTANA
STATE UNIVERSITY

Hash Sets

Hash Sets is an implementation of the Set interface that uses
a Hash Map under the hood

A set is a collection of elements with no duplicate elements
* You can think of this as a List, but without the ability to use indices

The order in the HashSet may not be the same order you added with

(“Twix” , “Snickers” , “Skittles”) false
Insertion: O(l) HashSet<String> true
Lookup: O(1) false

false
When to use HashSet? “Skittles™ true
* For fast lookups and insertions «snickars® false
 When order doesn’t matter true
* Only need unique elements

false

‘ry MONTANA
STATE UNIVERSITY

Today’s Mandatory Fun

Updating our Student Database Class
* Replace Array with HashMap
* Replace ArrayList with HashSet

« Write a method that will compute the number of CS majors, Math Majors,

History majors, etc
* Add method that will compute which student(s) have a 4.0, 3.0, 3.1, etc

Write a program that will convert an English sentence to sentence in Pirate

“Hello” - “Ahoy”
“Friends” - “Mateys”

‘ry MONTANA
STATE UNIVERSITY

HashMap Inner-workings

Every object has a HashCode in Java Every object has one HashCode and two
objects usually don’t have the same hash code

String dog = "dog";
System.out.println(dog.hashcode()); // 99644

String dog = "dogs";
System.out.println(dog.hashCode()); // 3089079

‘ry MONTANA
STATE UNIVERSITY

HashMap Inner-workings

Every object has a HashCode in Java Every object has one HashCode and two
objects usually don’t have the same hash code

String dog = "dog";
System.out.println(dog.hashcode()); // 99644

String dog = "dogs";
System.out.println(dog.hashCode()); // 3089079

Value is run through the HashMap hash() method

static final int hash(Object key) {

int h;
return (key == null) 2 @ : (h = key.hashCode()) ™ (h >»> 16);
} Y
Bucket is determined by: Bit-level XOR operator Shift bits right by 16 places
index = hash & (n - 1) (& = bit-level AND operator, n = table size)

‘ry MONTANA
STATE UNIVERSITY

HashMap Inner-workings

Every object has a HashCode in Java

String dog = "dog";
System.out.println(dog.hashCode());

String dog = "dogs";
System.out.println(dog.hashCode());

Value is run through the HashMap hash() method

static final int hash(Object key) {
int h;

return (key == null) 2 @ : (h =

return null;
}

key.hashCode()}) ™ (h »>»> 168);

Every object has one H
objects usually don’t ha

// 99644

// 3089079

shCode and two

final v putval{int hash, K key, Vv value, boolean onlyIfAbsent,
boolean evict) {
Node<k,v>[] tab; Mode<k,v> p; int n, i;
if ((tab = table) == null || {n = tab.length) == &)
n = (tab = resize(}}.length;
if ((p = tab[i = (n - 1) & hash]) == r.u11}|
tab[i] = newnode(hash, key, walue, null);
else {
Node<k,V> e; K K;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.eguals({k))))
g =P
else if {p instancecf TreeNode)
e = {{TreeNode<K,v>)p).putTreeval{this, tab, hash, key, value};
else {
for {imt binCount = @; ; ++bimCount) {
if {{e = p.next) == null) {
p.next = newNode(hash, key, value, null};
if (binCount »= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin{tab, hash};
break;
H
if (e.hash == hash &&
((k = e.key) == key || (key !'= null && key.eguals(k)}}}
break;
p=g;
3
}
if (e !'= mull) { // existing mapping for key
V oldvalue = e.value;
if {lonlyIfabsent || oldvalue == null)
e.value = value;
afternodeaccess(e);
return oldvalue;
e
¥
++modCount;
if (++size » threshold)
resize();

afternodeInsertion(evict);

HashMap Inner-workings

Every object has a HashCode in Java Every object has one HashCode and two
objects usually don’t have the same hash code

String dog = "dog";
System.out.println(dog.hashcode()); // 99644

String dog = "dogs";
System.out.println(dog.hashCode()); // 3089079

Value is run through the HashMap hash() method

static final int hash(Object key) {

int h;

return (key == null) 2 @ : (h = key.hashCode()) ™ (h >»>> 16);
¥

Bucket is determined by: _ _
put() callsaputvVal() method that inserts into the array

index = hash & (n - 1) and deals with collisions

‘ry MONTANA
STATE UNIVERSITY

HashMap Inner-workings

A new HashMap can fit 16 values

‘ry MONTANA
STATE UNIVERSITY

HashMap Inner-workings

A new HashMap can fit 16 values

If it ever reaches 75% capacity, it will double
the array size (16 - 32 - 64 - 128)

‘ry MONTANA
STATE UNIVERSITY

HashMap Inner-workings

A new HashMap can fit 16 values

If it ever reaches 75% capacity, it will double
the array size (16 - 32 - 64 - 128)

When the arrays doubles, we have to re-hash
all our Key-Value pairs

‘ry MONTANA
STATE UNIVERSITY

HashMap Inner-workings

A new HashMap can fit 16 values

If it ever reaches 75% capacity, it will double
the array size (16 - 32 - 64 - 128)

When the arrays doubles, we have to re-hash
all our Key-Value pairs
= This most likely will require O(k) moves

‘ry MONTANA
STATE UNIVERSITY

HashMap Inner-workings

A new HashMap can fit 16 values

If it ever reaches 75% capacity, it will double
the array size (16 - 32 - 64 - 128)

When the arrays doubles, we have to re-hash
all our Key-Value pairs
= This most likely will require O(k) moves

Why is this not taken into consideration for running time?

‘A MONTANA
STATE UNIVERSITY

HashMap Inner-workings

A new HashMap can fit 16 values

If it ever reaches 75% capacity, it will double
the array size (16 - 32 - 64 - 128)

When the arrays doubles, we have to re-hash
all our Key-Value pairs
= This most likely will require O(k) moves

Why is this not taken into consideration for running time?

(Amortized analysis)
On average, expansion happens very rarely compared to put() method calls when N is really big.

“Since doubling happens exponentially, the total cost of resizing is spread out across many operations, making amortized time per operation O(1).”

‘A MONTANA
STATE UNIVERSITY

	Slide 1: CSCI 232: Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

