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Strings are encoded using a specific format

CConvert characters to zeros and ones (binary)

Example: UTF
Character | UTF Encoding Strl ng . uhel Iou
a 01100001
b 01100010
UTF Encoding:
C 01100011 01101000 01100101 01101100 01101100 01101111
d 01100100
e 01100101

Each character has an 8-bit binary representation
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Huffman Coding is a way to encode a string using a binary tree

36

Internal Nodes are the sum
16 20 of the chl_ldren S
frequencies

Leaf nodes are characters
with their frequency

e'ld (@) (a4 (4 4 4 5) ['']7)

- — — When the Huffman tree is
2 @ (v (w2 (77 @) (w2 [s12 @) (f3 built, we can extract a

binary encoding for each
o'1] [uf1] (1 [pTY 1) (1[4 character
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Huffman Coding

Step 1: Generate the frequencies of each
character, and sort them from least to greatest
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Huffman Coding

Step 1: Generate the frequencies of each
character, and sort them from least to greatest

“hello world!” _
Step 2: Insert them into a
char freg PriorityQueue

1
! 1
d 1
e 1
h 1
r 1
" 1
o) 2
| 3
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Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>
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Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

Repeat until all nodes are inserted!

PriorityQueue<HuffmanNode>
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Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

These nodes have frequencies of two, but | am adding a way to
distinguish them in the queue (.1, .2, .3)

—~

PriorityQueue<HuffmanNode> ! B
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Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

Because it is a priority queue, it is not necessary FIFO...

PriorityQueue<HuffmanNode>
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Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue
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Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

6o

Ho%

PriorityQueue<HuffmanNode>
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Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,

Place new internal node in queue
PriorityQueue<HuffmanNode>

The frequencies of the internal
node is the sum of the
frequencies of its children

6o
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Huffman Coding

X

PriorityQueue<HuffmanNode>

Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

6o
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Create an internal node with the two nodes at front of queue,
Place new internal node in queue
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Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree
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Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

PriorityQueue<HuffmanNode>
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Huffman Coding

12 is still added to
the queue, but
when there is only
one node left, we
know there is no
more merging to
be done!

PriorityQueue<HuffmanNode>
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Huffman Coding
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Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g
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Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code

d 000
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Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000
e 001

‘ry MONTANA
STATE UNIVERSITY



Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000
e 001
W 010
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Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000

e 001

W 010

h 0110
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Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000

e 001

W 010

h 0110

r 0111
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Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000

e 001

W 010

h 0110

r 0111

| 10



Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000

e 001

W 010

h 0110

r 0111

| 10

(space character) | 1100



Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
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Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code

d 000

e 001

W 010

h 0110

r 0111

| 10

(space character) | 1100

! 1101
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Huffman Coding

We now have encodings for each character!

Character Code
d 000

e 001

W 010

h 0110

r 0111

| 10

(space character) | 1100

! 1101

0 111

‘ry MONTANA
STATE UNIVERSITY



Huffman Coding

We now have encodings for each character!

Character Code
d 000

e 001

W 010

h 0110
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Huffman Coding

We now have encodings for each character!

Character Code

d 000 String: “hello world!”

e 001

vy, 010 Encoding w/ Huffman codes:

h 0110 0110001 1010 111 1100010111 0111 10000 1101
r 0111

I 10

(space character) | ] 100

| 1101

0] 111
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Huffman Coding

We now have encodings for each character!

Character Code

0 000 String: “hello world!”

e 001

vy, 010 Encoding w/ Huffman codes:

h 0110 0110 001 1100 010 0111 10 000 1101
r 0111

I 10

(space character) | 1100

| 1101

0] 111
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Huffman Coding

We now have encodings for each character!

Character Code

0 000 String: “hello world!”

e 001

vy, 010 Encoding w/ Huffman codes:

h 0110 0110 001 1100 010 0111 10 000 1101
r 0111

I 10

et | 1100 Let’s code !!

| 1101

0] 111
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Huffman Coding

We now have encodings for each character!

Character Code

d 000 String: “hello world!”

e 001

vy, 010 Encoding w/ Huffman codes:

h 0110 0110001 1010 111 1100010111 011110000 1101
r 0111 Message size: 37 bits

I 10

(space character) | ] 100

| 1101

0] 111
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Huffman Coding

We now have encodings for each character!

Character Code
d 000 String: “hello world!”
e 001
W 010 Encoding w/ Huffman codes:
H 0110 0110001 1010111 1100010111 011110000 1101
} 0111 Message size: 37 bits
| 10 Encoding w/ UTF:
01101000 01100101 01101100 01101100 01101111 00100000
space character) | 1100 01110111 01101111 01110010 01101100 01100100
| . .
' 1101 Message size: 88 bits
o) 111
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Huffman Coding

We now have encodings for each character! . ‘\(\('(\
ot

Character Code Q(esé\o _
d 000 | o™ 10!
e .

man codes:

(\’\3‘\ 901 1010111 1100 010111 0111 10000 1101
Message size: 37 bits

h \,\\)’V‘

r
Encoding w/ UTF:

I
01101000 01100101 01101100 01101100 01101111 00100000
(space character) | 1100 01110111 01101111 01110010 01101100 01100100

! 1101
0 111
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Huffman Coding is a way to encode a string using a binary tree

It also acts as a lossless compression algorithm
for data, by creating smaller encodings for
36 frequently used characters

16 20 When we compress files with formats such
as .zip, .7z, .rar , Huffman Coding is

used to compress the data!

J It is also used for image, video, audio file
5 (7 compression, and even fax machines !

m—
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2) (2 @) (r[2) [s]2) @) (3]

22 @ [t{2) [m

Huffman Coding Algorithm

[G"ﬂ u'[1] E‘ﬂ p'[1] 1] (11 1. Putnodesin PQ O(n)

2. Extract two smallest nodes and merge
(repeated n times)

3. Iterate through to all leaf nodes and get encoding O(n)

Total Running time: O(nlogn) where n = # of characters
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Huffman Coding Visualization

eople.ok.ubc.ca Huffman.html

/
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https://cmps-people.ok.ubc.ca/ylucet/DS/Huffman.html
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