y

CSCI 232;

Data Structures and Algorithms

Huffman Coding

Reese Pearsall
Spring 2025

‘A MONTANA
STATE UN RST

TE UNIVERSITY

https://www.cs.montana.edu/pearsall/classes/spring2025/232/main.html

Announcements

-
Lab 6 due Friday at 11:59 PM ‘ 5
J smallliels't
node ot hielr
nodess

Program 2 due Sunday at 11:59 PM

1}
oitieir

MONTANA
STATE UNIVERSITY

Strings are encoded using a specific format

CConvert characters to zeros and ones (binary)

Example: UTF
Character | UTF Encoding Strl ng . uhel Iou
a 01100001
b 01100010
UTF Encoding:
C 01100011 01101000 01100101 01101100 01101100 01101111
d 01100100
e 01100101

Each character has an 8-bit binary representation
‘A MONTANA
STATE UNIVERSITY

Strings are encoded using a specific format

CConvert characters to zeros and ones (binary)

Example: UTF
Character | UTF Encoding Strlng . uh ”Ou
2 01100001
b 01100010
UTF Encoding:
C 01100011 01101000 01101100 01101100 01101111
d 01100100
e 01100101

Each character has an 8-bit binary representation
‘A MONTANA
STATE UNIVERSITY

Huffman Coding is a way to encode a string using a binary tree

36

Internal Nodes are the sum
16 20 of the chl_ldren S
frequencies

Leaf nodes are characters
with their frequency

e'ld (@) (a4 (4 4 4 5) ['']7)

- — — When the Huffman tree is
2 @ (v (w2 (77 @) (w2 [s12 @) (f3 built, we can extract a

binary encoding for each
o'1] [uf1] (1 [pTY 1) (1[4 character

‘A MONTANA
STATE UNIVERSITY

Huffman Coding

Step 1: Generate the frequencies of each
character, and sort them from least to greatest

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding

Step 1: Generate the frequencies of each
character, and sort them from least to greatest

“hello world!” _
Step 2: Insert them into a
char freg PriorityQueue

1
! 1
d 1
e 1
h 1
r 1
" 1
o) 2
| 3

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

Repeat until all nodes are inserted!

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

These nodes have frequencies of two, but | am adding a way to
distinguish them in the queue (.1, .2, .3)

—~

PriorityQueue<HuffmanNode> ! B

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

Because it is a priority queue, it is not necessary FIFO...

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

6o

Ho%

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,

Place new internal node in queue
PriorityQueue<HuffmanNode>

The frequencies of the internal
node is the sum of the
frequencies of its children

6o

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding

X

PriorityQueue<HuffmanNode>

Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

6o

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA

STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

Create an internal node with the two nodes at front of queue,
Place new internal node in queue

PriorityQueue<HuffmanNode>

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

PriorityQueue<HuffmanNode>

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding Step 3. Build subtrees, and merge trees into Huffman Tree

PriorityQueue<HuffmanNode>

‘A MONTANA
STATE UNIVERSITY

Huffman Coding

12 is still added to
the queue, but
when there is only
one node left, we
know there is no
more merging to
be done!

PriorityQueue<HuffmanNode>

‘A MONTANA
STATE UNIVERSITY

Huffman Coding

‘A MONTANA

STATE UNIVERSITY

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code

d 000

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000
e 001

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000
e 001
W 010

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000

e 001

W 010

h 0110

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000

e 001

W 010

h 0110

r 0111

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000

e 001

W 010

h 0110

r 0111

| 10

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000

e 001

W 010

h 0110

r 0111

| 10

(space character) | 1100

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code
d 000

e 001

W 010

h 0110

r 0111

| 10

(space character) | 1100

! 1101

Huffman Coding

Final Step: Generate codes

Visit all leaf nodes and keep track of path
- If we ever go left, add O to the code
- If we ever go right, add 1 to the code g

Character Code

d 000

e 001

W 010

h 0110

r 0111

| 10

(space character) | 1100

! 1101

o 111 /I MONTANA

Huffman Coding

We now have encodings for each character!

Character Code
d 000

e 001

W 010

h 0110

r 0111

| 10

(space character) | 1100

! 1101

0 111

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding

We now have encodings for each character!

Character Code
d 000

e 001

W 010

h 0110

r 0111

| 10

(space character) | 1100

! 1101

0 111

‘ry MONTANA
STATE UNIVERSITY

Huffman Coding

We now have encodings for each character!

Character Code

d 000 String: “hello world!”

e 001

vy, 010 Encoding w/ Huffman codes:

h 0110 0110001 1010 111 1100010111 0111 10000 1101
r 0111

I 10

(space character) |] 100

| 1101

0] 111

‘A MONTANA
STATE UNIVERSITY

Huffman Coding

We now have encodings for each character!

Character Code

0 000 String: “hello world!”

e 001

vy, 010 Encoding w/ Huffman codes:

h 0110 0110 001 1100 010 0111 10 000 1101
r 0111

I 10

(space character) | 1100

| 1101

0] 111

‘A MONTANA
STATE UNIVERSITY

Huffman Coding

We now have encodings for each character!

Character Code

0 000 String: “hello world!”

e 001

vy, 010 Encoding w/ Huffman codes:

h 0110 0110 001 1100 010 0111 10 000 1101
r 0111

I 10

et | 1100 Let’s code !!

| 1101

0] 111

‘A MONTANA
STATE UNIVERSITY

Huffman Coding

We now have encodings for each character!

Character Code

d 000 String: “hello world!”

e 001

vy, 010 Encoding w/ Huffman codes:

h 0110 0110001 1010 111 1100010111 011110000 1101
r 0111 Message size: 37 bits

I 10

(space character) |] 100

| 1101

0] 111

‘A MONTANA
STATE UNIVERSITY

Huffman Coding

We now have encodings for each character!

Character Code
d 000 String: “hello world!”
e 001
W 010 Encoding w/ Huffman codes:
H 0110 0110001 1010111 1100010111 011110000 1101
} 0111 Message size: 37 bits
| 10 Encoding w/ UTF:
01101000 01100101 01101100 01101100 01101111 00100000
space character) | 1100 01110111 01101111 01110010 01101100 01100100
| . .
' 1101 Message size: 88 bits
o) 111

‘A MONTANA
STATE UNIVERSITY

Huffman Coding

We now have encodings for each character! . ‘\(\('(\
ot

Character Code Q(esé\o _
d 000 | o™ 10!
e .

man codes:

(\’\3‘\ 901 1010111 1100 010111 0111 10000 1101
Message size: 37 bits

h \,\\)’V‘

r
Encoding w/ UTF:

I
01101000 01100101 01101100 01101100 01101111 00100000
(space character) | 1100 01110111 01101111 01110010 01101100 01100100

! 1101
0 111

‘ry MONTANA
STATE UNIVERSITY

Message size: 88 bits

Huffman Coding is a way to encode a string using a binary tree

It also acts as a lossless compression algorithm
for data, by creating smaller encodings for
36 frequently used characters

16 20 When we compress files with formats such
as .zip, .7z, .rar , Huffman Coding is

used to compress the data!

J It is also used for image, video, audio file
5 (7 compression, and even fax machines !

m—
L)
S
v
=~
N
S
S

2) (2 @) (r[2) [s]2) @) (3]

22 @ [t{2) [m

Huffman Coding Algorithm

[G"ﬂ u'[1] E‘ﬂ p'[1] 1] (11 1. Putnodesin PQ O(n)

2. Extract two smallest nodes and merge
(repeated n times)

3. Iterate through to all leaf nodes and get encoding O(n)

Total Running time: O(nlogn) where n = # of characters

‘A MONTANA
STATE UNIVERSITY

O(nlogn)

Huffman Coding Visualization

eople.ok.ubc.ca Huffman.html

/

M

MONTANA

STATE UNIVERSITY

https://cmps-people.ok.ubc.ca/ylucet/DS/Huffman.html

	Slide 1: CSCI 232: Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

