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Announcements

Lab 7 due on Friday

→ Really easy
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Registration
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Next Classes (You can register for these anytime in the next couple years):

CSCI 366- Computer Systems

ESOF 322 – Software Engineering

CSCI 305 – Concepts of Programming Languages

CSCI 338 – Computer Science Theory

Other Classes that may be of interest

CSCI 252- Intro to Data Science

CSCI 331- Web Development

CSCI 351 – System Administration

CSCI 440 – Database Systems

CSCI 443 – User Interface Design

CSCI 451 – Computational Biology

CSCI 446 – Artificial Intelligence*

CSCI 460 – Operating Systems

CSCI 466 – Networks

CSCI 476 – Computer Security

If you have not already:

CSCI 246 – Discrete Structures

CSCI 112- Programming in C

MART 145- Web Design
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How could we visualize: Connections in a Social Media Network?
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Red Lines = “Friends with”
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How could we visualize: Restaurants and Potential Customers?
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How could we visualize: Restaurants and Potential Customers?



16

How could we visualize: Restaurants and Potential Customers?

Red Lines = “Would dine at”
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Graphs

Vertices (or Nodes)
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Graphs

Vertices (or Nodes)

Edges
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

a

bd

f Same graph?  ✓
ce
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
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If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

a
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

a

ce

f Same graph?  

b d

✗
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed…
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.
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Graphs
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.
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f

a,c,e,f ✓
“cost” of path = 17
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Graphs
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Graphs
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

• Cycle = Sequence of vertices connected by edge with loop(s).
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

• Cycle = Sequence of vertices connected by edge with loop(s).

• Connected Graph = Graph that has a path between every vertex pair.
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

• Cycle = Sequence of vertices connected by edge with loop(s).

• Connected Graph = Graph that has a path between every vertex pair.

Two Connected 

Components
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no edges that start 

and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

• Cycle = Sequence of vertices connected by edge with loop(s).

• Connected Graph = Graph that has a path between every vertex pair.

• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).
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Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

What are some operations we may want to perform on a graph?

• Add vertices/edges.

• Find path between vertex pair.

• Is graph connected?

• Find degree of vertex.

• Is the graph simple?

• Get number of vertices/edges.

• Get neighbors of vertex.

• Is there a cycle?

• Find max degree of graph.
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How can we represent 

a graph in a computer?
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How can we represent 

a graph in a computer?
0

1

2

3

4

5

1. Adjacency List

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}
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How can we represent 

a graph in a computer?
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1. Adjacency List
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5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

0 1 2 3 4 5

0 F T T F F F

1 T F T T F F

2 T T F F T F

3 F T F F T T

4 F F T T F T

5 F F F T T F

2. Adjacency Matrix



49

How can we represent 

a graph in a computer?
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1
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3

4
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0

1

2
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4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

0 1 2 3 4 5

0 F T T F F F

1 T F T T F F

2 T T F F T F

3 F T F F T T

4 F F T T F T

5 F F F T T F

2. Adjacency Matrix
3. Objects

public class Node {
private Set<Node> neighbors;

…
}
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0

1

2

3

4

5

1. Adjacency Lists

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

Montana

Idaho

Wyoming

North 
Dakota

South 
Dakota

Montana: [ North Dakota, South Dakota, Wyoming, Idaho ]

Idaho: [ Montana, Wyoming]

Wyoming: [ Idaho, Montana, South Dakota ]

North Dakota: [ Montana, South Dakota ]

South Dakota: [ Wyoming, Montana, North Dakota ]

?
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Montana: [ North Dakota, South Dakota, Wyoming, Idaho ]

Idaho: [ Montana, Wyoming]

Wyoming: [ Idaho, Montana, South Dakota ]

North Dakota: [ Montana, South Dakota ]

South Dakota: [ Wyoming, Montana, North Dakota ]

HashMap<String, LinkedList<String>>

HashMap<String, LinkedList<Edge>>
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1. Adjacency Lists
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{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

Montana

Idaho

Wyoming

North 
Dakota

South 
Dakota

Montana: [ North Dakota, South Dakota, Wyoming, Idaho ]

Idaho: [ Montana, Wyoming]

Wyoming: [ Idaho, Montana, South Dakota ]

North Dakota: [ Montana, South Dakota ]

South Dakota: [ Wyoming, Montana, North Dakota ]

HashMap<String, LinkedList<String>>

HashMap<String, LinkedList<Edge>>

Array 

of 

Linked 

Lists
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