
CSCI 232:
Data Structures and Algorithms

Graphs (Representation)

Reese Pearsall
Spring 2025
https://www.cs.montana.edu/pearsall/classes/spring2025/232/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2025/232/main.html

2

Announcements

Lab 7 due on Friday

→ Really easy

3

Registration

4

Next Classes (You can register for these anytime in the next couple years):

CSCI 366- Computer Systems

ESOF 322 – Software Engineering

CSCI 305 – Concepts of Programming Languages

CSCI 338 – Computer Science Theory

Other Classes that may be of interest

CSCI 252- Intro to Data Science

CSCI 331- Web Development

CSCI 351 – System Administration

CSCI 440 – Database Systems

CSCI 443 – User Interface Design

CSCI 451 – Computational Biology

CSCI 446 – Artificial Intelligence*

CSCI 460 – Operating Systems

CSCI 466 – Networks

CSCI 476 – Computer Security

If you have not already:

CSCI 246 – Discrete Structures

CSCI 112- Programming in C

MART 145- Web Design

How could we visualize: The US Road Network?

5

How could we visualize: The US Road Network?

Bozeman

Pittsburgh

St. Louis

Dallas

San

Francisco

How to represent

cities?
6

How could we visualize: The US Road Network?

Bozeman

Pittsburgh

St. Louis

Dallas

San

Francisco

How to represent

cities?
7

How could we visualize: The US Road Network?

Bozeman

Pittsburgh

St. Louis

Dallas

San

Francisco

How to represent

roads?
8

How could we visualize: The US Road Network?

Bozeman

Pittsburgh

St. Louis

Dallas

San

Francisco

How to represent

roads?

How could we visualize: The US Road Network?

Bozeman

Pittsburgh

St. Louis

Dallas

San

Francisco

How to represent

roads?
10

How could we visualize: Connections in a Social Media Network?

11

How could we visualize: Connections in a Social Media Network?

12

How could we visualize: Connections in a Social Media Network?

13

Red Lines = “Friends with”

14

How could we visualize: Restaurants and Potential Customers?

15

How could we visualize: Restaurants and Potential Customers?

16

How could we visualize: Restaurants and Potential Customers?

Red Lines = “Would dine at”

17

Graphs

Vertices (or Nodes)

18

Graphs

Vertices (or Nodes)

Edges

19

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

20

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}

21

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

22

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

a

bd

f Same graph? ✓
ce

23

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

a

bd

f Same graph? ✓
ce

24

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

a

b

c

d

e

f Same graph?

25

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

a

b

c

d

e

f Same graph? ✓

26

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

a

ce

f Same graph?

b d

27

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)a

b

c

d

e

f

𝑽 = {a, b, c, d, e, f}

𝑬 = {(a,b), (a,c), (b,c), (b,d), (c,e), (d,e), (d,f), (e,f)}
𝑮𝟏 = 𝑮𝟐

If and only if 𝑉1 =
𝑉2 and 𝐸1 = 𝐸2.

a

ce

f Same graph?

b d

✗

28

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed…

29

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

30

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

10

5

7

3 8

14

1

6

31

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

10

5

7

3 8

14

1

6

32

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

10

5

7

3 8

14

1

6

X

33

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

10

5

7

3 8

14

1

6

X

34

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

10

5

7

3 8

14

1

6

a

b

c

d

e

f

35

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

10

5

7

3 8

14

1

6

a

b

c

d

e

f

a,c,e,f ✓
“cost” of path = 17

36

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

10

5

7

3 8

14

1

6

a

b

c

d

e

f

b,d ✓

37

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

10

5

7

3 8

14

1

6

a

b

c

d

e

f

a,c,d,f

38

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

10

5

7

3 8

14

1

6

a

b

c

d

e

f

a,c,d,f

39

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

10

5

7

3 8

14

1

6

a

b

c

d

e

f

c,e,d,f,e

40

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

10

5

7

3 8

14

1

6

a

b

c

d

e

f

c,e,d,f,e

41

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

• Cycle = Sequence of vertices connected by edge with loop(s).

10

5

7

3 8

14

1

6

a

b

c

d

e

f

42

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

• Cycle = Sequence of vertices connected by edge with loop(s).

• Connected Graph = Graph that has a path between every vertex pair.

10

5

7

3 8

14

1

6

a

b

c

d

e

f

43

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

• Cycle = Sequence of vertices connected by edge with loop(s).

• Connected Graph = Graph that has a path between every vertex pair.

Two Connected

Components

44

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

• Edges can be directed or undirected.

• Edges can have weights

• Simple graph = At most one edge between pair of vertices and no edges that start

and end at same vertex.

• Path = Sequence of vertices connected by edges without loops.

• Cycle = Sequence of vertices connected by edge with loop(s).

• Connected Graph = Graph that has a path between every vertex pair.

• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).

45

Graphs

Vertices (or Nodes)

Edges
𝑮 = (𝑽, 𝑬)

What are some operations we may want to perform on a graph?

• Add vertices/edges.

• Find path between vertex pair.

• Is graph connected?

• Find degree of vertex.

• Is the graph simple?

• Get number of vertices/edges.

• Get neighbors of vertex.

• Is there a cycle?

• Find max degree of graph.

46

How can we represent

a graph in a computer?
0

1

2

3

4

5

47

How can we represent

a graph in a computer?
0

1

2

3

4

5

1. Adjacency List

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

48

How can we represent

a graph in a computer?
0

1

2

3

4

5

1. Adjacency List

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

0 1 2 3 4 5

0 F T T F F F

1 T F T T F F

2 T T F F T F

3 F T F F T T

4 F F T T F T

5 F F F T T F

2. Adjacency Matrix

49

How can we represent

a graph in a computer?
0

1

2

3

4

5

1. Adjacency List

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

0 1 2 3 4 5

0 F T T F F F

1 T F T T F F

2 T T F F T F

3 F T F F T T

4 F F T T F T

5 F F F T T F

2. Adjacency Matrix
3. Objects

public class Node {
private Set<Node> neighbors;

…
}

50

How can we represent

a graph in a computer?
0

1

2

3

4

5

1. Adjacency List

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

0 1 2 3 4 5

0 F T T F F F

1 T F T T F F

2 T T F F T F

3 F T F F T T

4 F F T T F T

5 F F F T T F

2. Adjacency Matrix
3. Objects

public class Node {
private Set<Node> neighbors;

…
}

51

0

1

2

3

4

5

1. Adjacency Lists

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

Montana

Idaho

Wyoming

North
Dakota

South
Dakota

Montana: [North Dakota, South Dakota, Wyoming, Idaho]

Idaho: [Montana, Wyoming]

Wyoming: [Idaho, Montana, South Dakota]

North Dakota: [Montana, South Dakota]

South Dakota: [Wyoming, Montana, North Dakota]

?

52

0

1

2

3

4

5

1. Adjacency Lists

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

Montana

Idaho

Wyoming

North
Dakota

South
Dakota

Montana: [North Dakota, South Dakota, Wyoming, Idaho]

Idaho: [Montana, Wyoming]

Wyoming: [Idaho, Montana, South Dakota]

North Dakota: [Montana, South Dakota]

South Dakota: [Wyoming, Montana, North Dakota]

HashMap<String, LinkedList<String>>

HashMap<String, LinkedList<Edge>>

53

0

1

2

3

4

5

1. Adjacency Lists

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

Montana

Idaho

Wyoming

North
Dakota

South
Dakota

Montana: [North Dakota, South Dakota, Wyoming, Idaho]

Idaho: [Montana, Wyoming]

Wyoming: [Idaho, Montana, South Dakota]

North Dakota: [Montana, South Dakota]

South Dakota: [Wyoming, Montana, North Dakota]

HashMap<String, LinkedList<String>>

HashMap<String, LinkedList<Edge>>

?

54

0

1

2

3

4

5

1. Adjacency Lists

0

1

2

3

4

5

{1,2}

{0,2,3}

{0,1,4}

{1,4,5}

{2,3,5}

{3,4}

Montana

Idaho

Wyoming

North
Dakota

South
Dakota

Montana: [North Dakota, South Dakota, Wyoming, Idaho]

Idaho: [Montana, Wyoming]

Wyoming: [Idaho, Montana, South Dakota]

North Dakota: [Montana, South Dakota]

South Dakota: [Wyoming, Montana, North Dakota]

HashMap<String, LinkedList<String>>

HashMap<String, LinkedList<Edge>>

Array

of

Linked

Lists

	Slide 1: CSCI 232: Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

