
CSCI 232:
Data Structures and Algorithms

Divide and Conquer

Reese Pearsall
Spring 2025
https://www.cs.montana.edu/pearsall/classes/spring2025/232/main.html 1

https://www.cs.montana.edu/pearsall/classes/spring2025/232/main.html

22

33

Would you rather fight 1000 rats all at once, or 1000
rats one after another?

44

Divide and Conquer is an algorithm technique that involves breaking
down the problem into smaller subproblems (divide), which are
solved independently, and then combined to solve the original
problem (conquer)

In some cases, it easier to solve several smaller
subproblems, and combine their results instead of
solving one big problem

55

Merge sort is a prime example of divide and conquer

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

1. Divide: Split problems into
two (roughly) equal parts

2. Conquer: sort the parts

66

Merge sort is a prime example of divide and conquer

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

1. Divide: Split problems into
two (roughly) equal parts

2. Conquer: sort the parts

3. Combine: merge the sorted
parts

24 85 45 63 17 31 50 96

24 45 63 85 17 31 50 96

17 24 31 45 50 63 85 96

77

n

n/2 n/2

n/4 n/4n/4n/4

Recursion tree

Work done at each level → O(n)

Height of tree → log(n)

Total running time: O(nlogn)

88

Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n) → total running time of divide and conquer
algorithm

99

Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n) → total running time of divide and conquer
algorithm

Running time T(n) references another instance of T(n) → Recurrence relation

1010

Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n) → total running time of divide and conquer
algorithm
a – number of subproblems relative to previous
n/b – size of subproblem relative to previous
D(n) – running time to divide problems
C(n) – running time to combine problems

1111

Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n) → total running time of divide and conquer
algorithm
a – number of subproblems relative to previous
n/b – size of subproblem relative to previous
D(n) – running time to divide problems
C(n) – running time to combine problems

Master theorem: If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d) for constants 𝑎 ≥ 1, 𝑏 > 1, 𝑑 ≥ 0, then:

1212

Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n) → total running time of divide and conquer
algorithm
a – number of subproblems relative to previous
n/b – size of subproblem relative to previous
D(n) – running time to divide problems
C(n) – running time to combine problems

Master theorem: If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d) for constants 𝑎 ≥ 1, 𝑏 > 1, 𝑑 ≥ 0, then:

“If the time used outside of recursion is greater than the
work done recursively at each level, the running time is
dominated by the work for splitting/merging/combining”

1313

Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

1414

Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

1515

Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

1616

Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

1717

Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

1818

Merge Sort Running Time

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

Master theorem:
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1919

Merge Sort Running Time

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

Master theorem:
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba

2020

Merge Sort Running Time

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

Master theorem:
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

“Rate of growth”

How deep and bushy
the recursion gets

2121

Merge Sort Running Time

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

Master theorem:
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)

2222

Merge Sort Running Time

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

Master theorem:
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)
𝑂(𝑛) + 𝑂(𝑛) ∈ 𝑂(𝑛1)

d = 1

2323

Merge Sort Running Time

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

Master theorem:
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)
𝑂(𝑛) + 𝑂(𝑛) ∈ 𝑂(𝑛1)

d = 1

2424

Merge Sort Running Time

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

Master theorem:
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)
𝑂(𝑛) + 𝑂(𝑛) ∈ 𝑂(𝑛1)

2525

Merge Sort Running Time

a – number of
subproblems relative to
previous

n/b – size of subproblem
relative to previous

D(n) – running time to
divide problems

C(n) – running time to
combine problems

*

Master theorem:
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)
𝑂(𝑛) + 𝑂(𝑛) ∈ 𝑂(𝑛1)

𝑇(𝑛) ∈ 𝑂(𝑛d log 𝑛)

“Running time
of merge sort”

𝑇(𝑛) ∈ 𝑂(𝑛 log 𝑛)

2626

Divide and Conquer examples

Binary Search Convex Hull Matrix Multiplication

Closest Pair Problem

Given 𝑛 points, find a pair of points with the
smallest distance between them.
(Assume no points have the same 𝑥 or 𝑦 values).

(𝑥, 𝑦)

Closest Pair Problem

Given 𝑛 points, find a pair of points with the
smallest distance between them.
(Assume no points have the same 𝑥 or 𝑦 values).

(𝑥, 𝑦)

Algorithm?

Closest Pair Problem

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time = ?

(𝑥, 𝑦) P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... …
Pn dn,1 dn,2 ... /

Closest Pair Problem

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time = 𝑂 𝑛!

(𝑥, 𝑦) P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... …
Pn dn,1 dn,2 ... /

Closest Pair Problem

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time = 𝑂 𝑛!

(𝑥, 𝑦) P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... …
Pn dn,1 dn,2 ... /

Can we do better?

Divide and Conquer Battle Plan

1. Divide problem into subproblems that are
smaller instances of the same problem.

2. Conquer the subproblems by solving them
recursively.

3. Combine the solutions to the subproblems into
the solution for the original problem.

Divide and Conquer – Merge Sort

85 24 63 45 17 31 96 50

17 31 96 5085 24 63 45

96 5085 24 17 3163 45

5024 3145 9685 1763

1. Divide array in half.

2. Sort sub arrays.

3. Merge into sorted array.

50 9624 85 17 3145 63

5024 3145 9685 1763

Divide and Conquer – Merge Sort
1. Divide array in half.

2. Sort sub arrays.

3. Merge into sorted array.

17 31 50 9624 45 63 85

50 9624 85 17 3145 63

Divide and Conquer – Merge Sort
1. Divide array in half.

2. Sort sub arrays.

3. Merge into sorted array.

17 24 31 45 50 63 85 96

17 31 50 9624 45 63 85

Divide and Conquer – Merge Sort
1. Divide array in half.

2. Sort sub arrays.

3. Merge into sorted array.

Closest Pair Problem – Divide and Conquer

How can we make the problem
smaller and easier?

Closest Pair Problem – Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

Closest Pair Problem – Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?
1. Sort by 𝑥-coordinate.
2. Put line at median value.

Closest Pair Problem – Divide and Conquer

Conquer: Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Combine: If we had closest left and
closest right, how do we determine
closest?

Closest Pair Problem – Divide and Conquer

Combine: If we had closest left and
closest right, how do we determine
closest?
1. Return minimum of: 𝑑leM, 𝑑right.

Closest Pair Problem – Divide and Conquer

Combine: If we had closest left and
closest right, how do we determine
closest?
1. Return minimum of: 𝑑leM, 𝑑right.

Closest Pair Problem – Divide and Conquer

Combine: If we had closest left and
closest right, how do we determine
closest?
1. Return minimum of: 𝑑leM, 𝑑right,
𝑑min_straddle.

17 24 31 45 50 63 85 96

17 31 50 9624 45 63 85

Merge Sort – Combine

i j

Closest Pair Problem – Divide and Conquer

How should we search for “straddle
points”?

Suppose 𝛿 = min(𝑑leM, 𝑑right).

Closest Pair Problem – Divide and Conquer

How should we search for “straddle
points”?

Suppose 𝛿 = min(𝑑leM, 𝑑right).

Do we need to consider this point
when looking for straddle points?

Closest Pair Problem – Divide and Conquer

Rule: We only need to hunt for
straddle points at most 𝛿 away
from L.

Reason: Points outside cannot
reach the other side in less than 𝛿.

L-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

Rule: We only need to hunt for
straddle points at most 𝛿 away
from L.

Reason: Points outside cannot
reach the other side in less than 𝛿.

Let S be the set of straddle points.L-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

L-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

Yes, but running time could still be
𝑂 𝑛! .

L-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

Yes, but running time could still be
𝑂 𝑛! .

We need to reduce the number of
straddle point comparisons we
consider.L-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿 -𝛿 +𝛿L

Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

L-𝛿 +𝛿𝛿
2

Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain
boxes?

L-𝛿 +𝛿𝛿
2

Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain
boxes?

Yes – we only care about
points on other side within 𝛿.

L-𝛿 +𝛿𝛿
2

Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain
boxes?

Yes – we only care about
points on other side within 𝛿.

L-𝛿 +𝛿𝛿
2

Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain
boxes?

Yes – we only care about
points on other side within 𝛿.

What if all of the points are in this
region?
This still gives us possibly lots of
points to look at.

L-𝛿 +𝛿𝛿
2

Closest Pair Problem – Divide and Conquer

Can we have multiple points in
one box?

L-𝛿 +𝛿𝛿
2

Closest Pair Problem – Divide and Conquer

Can we have multiple points in
one box?

No. 𝛿 is the smallest distance
on either side of L.

⇒ at most one point per box.

L-𝛿 +𝛿𝛿
2

Closest Pair Problem – Divide and Conquer

Only care about 11 boxes

L-𝛿 +𝛿𝛿
2

At most one point per box+
At most 11 points to check

Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿𝛿
2

1. Sort straddle points by 𝑦
coordinate.

Only care about 11 boxes
At most one point per box+
At most 11 points to check

Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿𝛿
2

1. Sort straddle points by 𝑦
coordinate.

2. For each point, check next 11
points to see if distance is less
than 𝛿.

Only care about 11 boxes
At most one point per box+
At most 11 points to check

Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿𝛿
2

1. Sort straddle points by 𝑦
coordinate.

2. For each point, check next 11
points to see if distance is less
than 𝛿.

Only care about 11 boxes
At most one point per box+
At most 11 points to check

> 𝜹 < 𝜹

Smaller 𝒚

Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿𝛿
2

Straddle point hunting:
𝑂(𝑛!) ⟶ 𝑂(𝑛 log 𝑛)

Only care about 11 boxes
At most one point per box+
At most 11 points to check

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.

2. Recursively determine 𝑑leM and 𝑑right.

Closest Pair Problem – Divide and Conquer

Closest Pair Problem – Divide and Conquer

Closest Pair Problem – Divide and Conquer

Closest Pair Problem – Divide and Conquer

Closest Pair Problem – Divide and Conquer

When is finding 𝑑leB and 𝑑right trivial?

Closest Pair Problem – Divide and Conquer

When is finding 𝑑leB and 𝑑right trivial?

When there are one or two points
on the left and right sides.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.

2. Recursively determine 𝑑leM and 𝑑right.

3. Let 𝛿 = min(𝑑leM, 𝑑right).

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.

2. Recursively determine 𝑑leM and 𝑑right.

3. Let 𝛿 = min(𝑑leM, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.

2. Recursively determine 𝑑leM and 𝑑right.

3. Let 𝛿 = min(𝑑leM, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coordinate.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.

2. Recursively determine 𝑑leM and 𝑑right.

3. Let 𝛿 = min(𝑑leM, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coordinate.
6. Compare points in 𝑆 to next 11 points and update 𝛿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.

2. Recursively determine 𝑑leM and 𝑑right.

3. Let 𝛿 = min(𝑑leM, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coordinate.
6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.

2. Recursively determine 𝑑leM and 𝑑right.

3. Let 𝛿 = min(𝑑leM, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coordinate.
6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Running Time?

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right.

3. Let 𝛿 = min(𝑑leM, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coordinate.
6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coordinate.
6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coordinate.
6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.
6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

How much work is done
at each layer of recursion?

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

n log n How much work is done
at each layer of recursion?

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

n log n

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 2 (n log n) / 2

n log n

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = ?

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = ?

Binary tree, divide by 2
each time?

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total
Running = ?
Time

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log" 𝑛
Time

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log" 𝑛
Time

Can we do better?

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log! 𝑛
Time

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log! 𝑛
Time

What is driving our complexity?

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate. 𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑂 𝑛
7. Return 𝛿. 𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log! 𝑛
Time

What is driving our complexity?
The work being done in each recursive call.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

What is driving our complexity in each recursive call?

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

What is driving our complexity in each recursive call?
Sorting 𝑆 by 𝑦-coordinate.

How can we reduce our complexity?

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

What is driving our complexity in each recursive call?
Sorting 𝑆 by 𝑦-coordinate.

How can we reduce our complexity?
Sort once, before the recursive calls.

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝒙-coordinate (𝑿) and 𝒚-coordinate (𝒀).

Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝒙-coordinate (𝑿) and 𝒚-coordinate (𝒀). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝑳 and split 𝑿 and 𝒀.

2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝑳 and split 𝑿 and 𝒀.

2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

L = X[ceiling(X.length / 2 - 1)].x

for each (x,y) in X:
if (x <= L):

X_left.add((x,y))
else:

X_right.add((x,y))

for each (x,y) in Y:
if (x <= L):

Y_left.add((x,y))
else:

Y_right.add((x,y))

Closest Pair Problem – Algorithm

1. Make 𝑳 and split 𝑿 and 𝒀. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

L = X[ceiling(X.length / 2 - 1)].x

for each (x,y) in X:
if (x <= L):

X_left.add((x,y))
else:

X_right.add((x,y))

for each (x,y) in Y:
if (x <= L):

Y_left.add((x,y))
else:

Y_right.add((x,y))

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝒅leH and 𝒅right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝜹 = min(𝒅leH, 𝒅right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑺 be straddle points within 𝜹 of 𝑳. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑺 be straddle points within 𝜹 of 𝑳. 𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

for each (x,y) in Y:
if (x >= L - 𝛿 && x <= L + 𝛿):

S.add((x,y))

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑺 by 𝒚-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Sort 𝑺 by 𝒚-coordinate. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
7. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Compare points in 𝑺 to next 11 points and update 𝜹. 𝑶 𝒏
6. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
6. Return 𝜹. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
6. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
6. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

? / 4 ? / 4 ? / 4 ? / 4

? / 2 ? / 2

?

Height = 𝑂 log 𝑛

Total
Running = 𝑂 ? ? ?
Time

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
6. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
6. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

? / 4 ? / 4 ? / 4 ? / 4

? / 2 ? / 2

?

Height = 𝑂 log 𝑛

Total
Running = 𝑂 ? ? ?
Time

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
6. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

n / 4 n / 4 n / 4 n / 4

n / 2 n / 2

n

Height = 𝑂 log 𝑛

Total
Running = 𝑂 ? ? ?
Time

Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌. 𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right). 𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶 𝒏
5. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶 𝒏
6. Return 𝛿. 𝑶 𝟏

0. Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

n / 4 n / 4 n / 4 n / 4

n / 2 n / 2

n

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log 𝑛
Time

