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Would you rather fight 1000 rats all at once, or 1000
rats one after another?
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Divide and Conquer is an algorithm technique that involves breaking
down the problem into smaller subproblems (divide), which are
solved independently, and then combined to solve the original
problem (conquer)

In some cases, it easier to solve several smaller
subproblems, and combine their results instead of
solving one big problem
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Merge sort is a prime example of divide and conquer

85 | 24 | 63 | 45 | 17 | 31 | 9 | 50
85 | 24 | 63 | 45 17 | 31 | 9 | 50
85 | 24 63 | 45 17 | 31 96 | 50
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85 24 63 45 17 31 96 50
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1. Divide: Split problems into
two (roughly) equal parts

2. Conquer: sort the parts



Merge sort is a prime example of divide and conquer

85 24 63 45 17 31 96 50
1. Divide: Split problems into

/ \\ two (roughly) equal parts

85 24 | 63 45 17 31 96 50
85 24 63 45 17 31 96 50
3t 24 63 17 31 50 2. Conquer: sort the parts

\/ \/ \./ \/
\Il/ \./

24 85 17 96 3. Combine: merge the sorted

\) parts

17 24 31 45 50 63 85 96
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Recursion tree

Work done at each level 2 O(n)

n/2 n/2 Height of tree = log(n)

n/a n/4 n/4 n/4 Total running time: O(nlogn)
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) =aT(n/b) + D(n) + C(n)

T(n) - total running time of divide and conquer
algorithm
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) =aT(n/b) + D(n) + C(n)

T(n) - total running time of divide and conquer
algorithm

Running time T(n) references another instance of T(n) = Recurrence relation
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) =aT(n/b) + D(n) + C(n)

T(n) -> total running time of divide and conquer

algorithm

a— number of subproblems relative to previous

n/b —size of subproblem relative to previous

D(n) - running time to divide problems

C(n) - running time to combine problems
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) =aT(n/b) + D(n) + C(n)

T(n) -> total running time of divide and conquer

algorithm

a— number of subproblems relative to previous

n/b —size of subproblem relative to previous

D(n) - running time to divide problems

C(n) = running time to combine problems

Master theorem: If T(n) = aT(n/b) + 0(n?) for constantsa=>1,b>1,d = 0, then:

[ 0(n9), 4> log,a
T(n) € { 0(n%logn), d =log,a
O(nl“gb“), d <log,a
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) =aT(n/b) + D(n) + C(n)

T(n) -> total running time of divide and conquer

algorithm

a— number of subproblems relative to previous

n/b —size of subproblem relative to previous

D(n) - running time to divide problems

C(n) = running time to combine problems

Master theorem: If T(n) = aT(n/b) + 0(n?) for constantsa=>1,b>1,d = 0, then:

( d -
0 (” )r d >10g,a | “fthe time used outside of recursion is greater than the

T(n) € < O(nd log ?’1); d = log,a work done recursively at each level, the running time is

dominated by the work for splitting/merging/combining”
O(nl“gb“), d <log,a
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Merge Sort Running Time

a — number of
subproblems relative to
previous

n

n/2 n/2 n/b —size of su.bproblem
relative to previous

D(n) — running time to

n/4 n/4 n/4 n/4 divide problems

C(n) = running time to
combine problems
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Merge Sort Running Time

a — number of
subproblems relative to

previous

n

n/2 n/2 n/b —size of su.bproblem
relative to previous

D(n) — running time to

n/4 n/4 n/4 n/4 divide problems

C(n) = running time to
combine problems

‘ry MONTANA

STATE UNIVERSITY




Merge Sort Running Time

a — number of
subproblems relative to

previous

n

n/2 n/2 n/b — size of subproblem r'\/a

relative to previous

D(n) — running time to

n/4 n/4 n/4 n/4 divide problems

C(n) = running time to
combine problems
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Merge Sort Running Time

n

n/2

n/4

n/4

n/2

n/4

n/4

a — number of
subproblems relative to
previous

Al

n/b — size of subproblem n/g\

relative to previous

D(n) — running time to
divide problems

C(n) = running time to
combine problems

O(n)
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Merge Sort Running Time

a — number of
n subproblems relative to
previous
n/2 n/2 n/b —size of su.bproblem n/g\
relative to previous

D(n) - running time to "
n/4 n/4 n/4 n/4 divide problems O(n)

C(n) — running time to
combine problems O f\
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Merge Sort Running Time

Master th

eorem.

If T(n) =

aT(n/b) + Q(ﬁd), then:

T(n) € A

( o(n9), d > log,a
0(n%logn), d=log,a

\ O(nl”gb“), d <logya

a — humber of

subproblems relative to 9\

previous

n/b — size of subproblem n/g\

relative to previous

D(n) — running time to
divide problems

C(n) = running time to
combine problems
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Merge Sort Running Time

a — number of
Master theorem: subproblems relative to
If T(n) =aT(n/b) + 0(nY), then: previous
( o(n9), d > log,a
T(n) € {0(nlogn), d =logya n/b - size of subproblem n/g\
k 0(n'°8r?), d < logya relative to previous
1. Calculate log,a D(n) - running time to O '
divide problems ﬂ

C(n) — running time to
combine problems O n
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Merge Sort Running Time

a— number of

Master theorem: subproblems relative to

If T(n) =aT(n/b) + 0(nY), then: previous
( o(n9), d > log,a

T(n) € {0(nlogn), d =logya n/b - size of subproblem n/g\
k 0(n'°8r?), d < logya relative to previous
1. Calculate log,a “Rate of growth” D(n) - running time to '
How deep and bushy . . O n
log,a=log,2=1 the recursion gets divide problems (

C(n) — running time to
combine problems O n

‘A MONTANA

STATE UNIVERSITY




Merge Sort Running Time

a— number of
Master theorem: subproblems relative to
If T(n) = aT(n/b) + 0(n?), then: previous
[ 0o(n?),  d>logya
T(n) €{0(n%logn), d =logya n/b —size of subproblem n/g\
0(n'°8r?), d < logya relative to previous
k. ’

log,a =log,2 =1 divide problems

C(n) — running time to
combine problems O n
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1. Calculate log,a 2. Determine O(Tld) D(n) — running time to :-: (n)*




Merge Sort Running Time

a— number of
Master theorem: subproblems relative to
If T(n) = aT(n/b) + 0(n?), then: previous
[ 0o(n?),  d>logya
T(n) €{0(n%logn), d =logya n/b —size of subproblem n/g\
0(n'°8r?), d < logya relative to previous
k. ’

log,a =log,2 =1 O(n) + O0(n) e 0O(n) divide problems
d=1
C(n) = running time to
combine problems O n
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1. Calculate logp,a 2. Determine O(Tld) D(n) — running time to :-: (n)*




Merge Sort Running Time

a— number of
Master theorem: subproblems relative to
If T(n) = aT(n/b) + 0(n?), then: previous
[ 0o(n?),  d>logya
T(n) € {0(ntlogn), d =log,a n/b —size of subproblem n/g\
0(n'°8r?), d < log,a relative to previous
k. ’

log,a =log,2 = 1 O(n) + O0(n) e 0O(n) divide problems
d=1
C(n) = running time to
combine problems O n

‘A MONTANA

STATE UNIVERSITY

1. Calculate logp,a 2. Determine O(Tld) D(n) — running time to :-: (n)*




Merge Sort Running Time

a— number of
Master theorem: subproblems relative to
If T(n) = aT(n/b) + 0(n?), then: previous
[ 0o(n?),  d>logya
T(n) € {0(ntlogn), d =log,a n/b —size of subproblem n/g\
0(n'°er?), d < log,a relative to previous
k. ’

log,a =log,2 =1 0(n) + 0(n) € 0(nY) divide problems

C(n) — running time to
combine problems O n
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1. Calculate logp,a 2. Determine O(Tld) D(n) — running time to :-: (n)*




Merge Sort Running Time

a— number of
Master theorem: subproblems relative to a
If T(n) = aT(n/b) + 0(n9), then: previous
[ 0o(n?),  d>logya
T(n) € { 0(n%logn), d =log,a n/b —size of subproblem n/g\
L o(n#%),  d <log,a relative to previous

1. Calculate logp,a 2. Determine O(Tld) D(n) — running time to )
log,a=log,2=1 O(n) + 0(n) e 0(n) divide problems O (n

“Running time
of merge sort” C(n) = running time to
d
T'(n) € O(n®logn) combine problems O(ﬂ)
T(n) € O(nlogn) v’
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Divide and Conquer examples

Binary Search Convex Hull

Matrix Multiplication

gl 7|6|a|a|z]1 f s 10 11
1231, 120 21
456" 130 31
.v ' " . o
g | 7 s.a 2 | 1 4<G —
= [1x10 + 2x20 + 3x30 1x11 + 2x21 + 3x31
4x10 + 5x20 + 6x30 4x11 + 5x21 + 6x31
Y ) Y . P *SNopk |
g . & 4 3 ? 1 T=0 ’ o
— »p ® el _ |10+40490 11442493 | _ |140 146
¥ # 40+100+180 44+105+186 320 335
T T---] EB . -

/

rubber band
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Closest Pair Problem

Ly,

Given n points, find a pair of points with the
smallest distance between them.

(Assume no points have the same x or y values).



Closest Pair Problem

Ly,

Given n points, find a pair of points with the
smallest distance between them.

(Assume no points have the same x or y values).

Algorithm?



Xy,

Closest Pair Problem

Pi | P, P,
P1 / d1 2 . d~|’n
P2 d2’1 / . d2’n
I:>n dn,1 dn 2 /

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time =7




Xy,

Closest Pair Problem

Pi | P, P,
P1 / d1 2 . d~|’n
P2 d2’1 / . d2’n
I:>n dn,1 dn 2 /

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time = 0(n?)




Closest Pair Problem

2. Select smallest.

Running Time = 0(n?)



Divide and Conqguer Battle Plan

1. Divide problem into subproblems that are
smaller instances of the same problem.

2. Conquer the subproblems by solving them
recursively.

3. Combine the solutions to the subproblems into
the solution for the original problem.



Divide and Conquer — Merge Sort

85 |24 |63 |45 |17 | 31|96 | 50
85 | 24 | 63 | 45 17 | 31 | 96 | 50
85 | 24 63 | 45 17 | 31 96 | 50
I I
8,5 24 6,3 45 17 || 31 9,6 50

1. Divide array in half.
2. Sort sub arrays.

3. Merge into sorted array.



Divide and Conquer — Merge Sort

1. Divide array in half.

2. Sort sub arrays.

3. Merge into sorted array.




Divide and Conquer — Merge Sort

24

45

63

85

24

85

17

31

50

96

45

63

17

31

50

96

1. Divide array in half.
2. Sort sub arrays.

3. Merge into sorted array.



Divide and Conquer — Merge Sort

17

24

31

45

50

63

85

96

I

24

45

63

85

17

31

50

96

1. Divide array in half.
2. Sort sub arrays.

3. Merge into sorted array.



Closest Pair Problem — Divide and Conquer

How can we make the problem
smaller and easier?




Closest Pair Problem — Divide and Conquer

Divide: How can we draw line so that
half of the points are on each sidel




Closest Pair Problem — Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

1. Sort by x-coordinate.
2. Put line at median value.




Closest Pair Problem — Divide and Conquer

Conquer: Recursively find closest
pairs on each side.




Closest Pair Problem — Divide and Conquer

Combine: If we had closest left and
closest right, how do we determine
closest?




Closest Pair Problem — Divide and Conquer

Combine: If we had closest left and
closest right, how do we determine
closest?

1. Return minimum of: d|ft, dright-




Closest Pair Problem — Divide and Conquer

Combine: If we had closest left and
closest right, how do we determine
closest?

1. Return minimum of: d|ft, dright-




Closest Pair Problem — Divide and Conquer

Combine: If we had closest left and
closest right, how do we determine
closest?

1. Return minimum of: d|ft, dright'

dmin_straddle°




Merge Sort — Combine

17

24

31

45

50

63

85

96

45

63

85

—. = 3

31

50

96

UI_}:




Closest Pair Problem — Divide and Conquer

How should we search for “straddle
points”?

Suppose 0 = min(d|eft, dright)-




Closest Pair Problem — Divide and Conquer

How should we search for “straddle
points”?

Suppose 0 = min(d|eft, dright)-

Do we need to consider this point
when looking for straddle pointsl



Closest Pair Problem — Divide and Conquer

Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside cannot
reach the other side in less than 6.



Closest Pair Problem — Divide and Conquer

Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside cannot
reach the other side in less than 6.

Let S be the set of straddle points.



Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?




Closest Pair Problem — Divide and Conquer

Can we just compare all left

straddle points to all right straddle
points?

Yes, but running time could still be
0(n?).




Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

Yes, but running time could still be
0(n?).

We need to reduce the number of
straddle point comparisons we
consider.



Closest Pair Problem — Divide and Conquer

5 | +6



Closest Pair Problem — Divide and Conquer

.. . O O
Divide S into > X P boxes.

N[ S
— .
+
%)



Closest Pair Problem — Divide and Conquer

.. . O O
Divide S into > X P boxes.

Can we focus our search to certain
boxesl

N[ S
— .
+
%)



Closest Pair Problem — Divide and Conquer

. . )
Divide S into > X P boxes.
Can we focus our search to certain
boxes?

Yes — we only care about
points on other side within §.

S
N[ S
— .
+
%)



Closest Pair Problem — Divide and Conquer

.. . O O
Divide S into > X P boxes.

Can we focus our search to certain
boxes?

Yes — we only care about
points on other side within §.




Closest Pair Problem — Divide and Conquer

+6

.. . 6 O
Divide S into > X P boxes.

Can we focus our search to certain
boxes?

Yes — we only care about
points on other side within §.

What if all of the points are in this
region?

This still gives us possibly lots of
points to look at.



Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one boxl

N[ S
— .
-+
Sy



Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one box?

No. O is the smallest distance
on either side of L.

= at most one point per box.

S
N[ S
— .
+
%)



Closest Pair Problem — Divide and Conquer

Only care about 11 boxes
+ At most one point per box

At most 11 points to check




Closest Pair Problem — Divide and Conquer

Only care about 11 boxes
+ At most one point per box

At most 11 points to check

1. Sort straddle points by y
coordinate.




Closest Pair Problem — Divide and Conquer

Only care about 11 boxes
+ At most one point per box

At most 11 points to check

1. Sort straddle points by y
coordinate.

2. For each point, check next 11
points to see if distance is less

than §.




Closest Pair Problem — Divide and Conquer

Only care about 11 boxes
+ At most one point per box

At most 11 points to check

1. Sort straddle points by y
coordinate.

2. For each point, check next 11
points to see if distance is less

than §.




Closest Pair Problem — Divide and Conquer

Only care about 11 boxes
+ At most one point per box

At most 11 points to check

Straddle point hunting:
0(n%) — O0(nlogn)




Closest Pair Problem — Algorithm

1. Sort points by x-coordinate and make L.



Closest Pair Problem — Algorithm

1. Sort points by x-coordinate and make L.

2. Recursively determine d|of and dright-



Closest Pair Problem — Divide and Conquer




Closest Pair Problem — Divide and Conquer




Closest Pair Problem — Divide and Conquer




Closest Pair Problem — Divide and Conquer




Closest Pair Problem — Divide and Conquer

When is finding d|of and dright trivial?




Closest Pair Problem — Divide and Conquer

When is finding d|of and dright trivial?

When there are one or two points
on the left and right sides.




Closest Pair Problem — Algorithm

1. Sort points by x-coordinate and make L.

2. Recursively determine d|of and dright-

3. Let 6 = min(d|eft, dright)°



Closest Pair Problem — Algorithm

1. Sort points by x-coordinate and make L.

2. Recursively determine d|of and dright-
3. Let 6 = min(d|eft, dright)°
4. Let S be straddle points within 6 of L.



Closest Pair Problem — Algorithm

. Sort points by x-coordinate and make L.

Recursively determine djof and dright-
Let 6 = min(d|eft, dright)°
Let S be straddle points within 6 of L.

R W N e

. Sort § by y-coordinate.



Closest Pair Problem — Algorithm

Sort points by x-coordinate and make L.

Recursively determine djof and dright-
Let 6 = min(d|eft, dright)°

Let S be straddle points within 6 of L.
Sort S by y-coordinate.

L S o e

Compare points in S to next 11 points and update 6.



Closest Pair Problem — Algorithm

. Sort points by x-coordinate and make L.

Recursively determine djof and dright-
Let 6 = min(d|eft, dright)°

Let S be straddle points within 6 of L.
Sort S by y-coordinate.

Compare points in S to next 11 points and update 6.

Return 0.

N ou R W N



Closest Pair Problem — Algorithm

. Sort points by x-coordinate and make L.
Recursively determine djof and dright-
Let 8 = min(djet, dright): Running Time}?
Let S be straddle points within 6 of L.

Sort S by y-coordinate.

Compare points in S to next 11 points and update 6.

Return 0.

N ou R W N



Closest Pair Problem — Algorithm

Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright-
Let 6 = min(d|eft, dright)°

Let S be straddle points within 6 of L.
Sort S by y-coordinate.

Compare points in S to next 11 points and update 6.

Return 0.

N o U A W bhe



Closest Pair Problem — Algorithm

Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright- TBD
Let 6 = min(d|eft, dright)°

Let S be straddle points within 6 of L.

Sort S by y-coordinate.

Compare points in S to next 11 points and update 6.

Return 0.

N o U A W bhe



Closest Pair Problem — Algorithm

. Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright- TBD
Let 6 = min(d|eft, dright)- 0(1)

Let S be straddle points within 6 of L.

Sort S by y-coordinate.

Compare points in S to next 11 points and update 6.

N ov R W N e

. Return §.



Closest Pair Problem — Algorithm

N ov R W N e

. Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright- TBD
Let 6 = min(d|eft, dright)- 0(1)

Let S be straddle points within § of L. O(n)
Sort S by y-coordinate.

Compare points in S to next 11 points and update 6.

. Return §.



Closest Pair Problem — Algorithm

N ov R W N e

. Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright- TBD
Let 6 = min(d|eft, dright)- 0(1)

Let S be straddle points within § of L. O(n)
Sort S by y-coordinate. O(nlogn)

Compare points in S to next 11 points and update 6.

. Return §.



Closest Pair Problem — Algorithm

. Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright- TBD
Let 6 = min(d|eft, dright)- 0(1)
Let S be straddle points within § of L. O(n)

Sort S by y-coordinate. O(nlogn)
Compare points in S to next 11 points and update §. O(n)

N ov R W N e

. Return §.



Closest Pair Problem — Algorithm

. Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright- TBD
Let 6 = min(d|eft, dright)- 0(1)
Let S be straddle points within § of L. O(n)

Sort S by y-coordinate. O(nlogn)
Compare points in S to next 11 points and update §. O(n)

. Return §. 0(1)

N ov R W N e



Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD



Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD

—____ How much work is done

at each layer of recursion?




Closest Pair Problem — Algorithm

. Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright- TBD
Let 6 = min(d|eft, dright)° 0(1)
Let S be straddle points within § of L. O(n)

Sort S by y-coordinate. O(nlogn)
Compare points in S to next 11 points and update §. O(n)

. Return §. 0(1)

N v R W N e



Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD

nlogn | *«——____ How much work is done
at each layer of recursion?




Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD

nlogn

T~




Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD

nlogn

T~

(nlogn)/2 (nlogn)/2




Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD

nlogn

T~

(nlogn)/2 (nlogn)/2

N N

(nlogn)/4 || (nlogn)/4 (nlogn)/4 || (nlogn)/4

NN\




Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD

nlogn

T~

(nlogn)/2 (nlogn)/2

N N

1 Height =7

(nlogn)/4

(nlogn)/4 (nlogn)/4 || (nlogn)/4

N\

N\




Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD

nlogn

(nlogn)/2 (nlogn)/2

T~

N N

1 Height =7

Binary tree, divide by 2

(nlogn)/4

(nlogn)/4 (nlogn)/4 || (nlogn)/4

N\

N\

each time?




Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD

nlogn

/\ 1 Height = O(logn)

(nlogn)/2 (nlogn)/2

N N Total

(nlogn)/4 || (nlogn)/4 (nlogn)/4 || (nlogn)/4 Running=?

/\ /\ /Y?Y_ Time




Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD

nlogn 1
/\ Height = O(logn)
(nlogn)/2 (nlogn)/2
/\ /\ Total

| / 4 | / 4 | /4 | /4 -
(n log n) (n'log n) (nlogn) (n log n) Runmng = O(Tl lOg2 n)

/\ /\ /Y?Y_ Time




Closest Pair Problem — Algorithm

Height = O(logn)

Total
/4 || (niogn)/a logn)/4 || (nlogn)/4 :
(fTog n) (n log n) (n log n) (nlog n) Runnlng — O(n lOgZ Tl)

NN NN e




Closest Pair Problem — Algorithm

2. Recursively determine d|of and dright- TBD
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What is driving our complexity?
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What is driving our complexity?
The work being done in each recursive call.

2. levuly UCT CCTIIImrIcC wle i (CRQAY | u,rlgnt. TOo0

nlogn

/\ 1 Height = O(logn)
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N . Total
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Closest Pair Problem — Algorithm

. Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright- TBD
Let 6 = min(d|eft, dright)° 0(1)
Let S be straddle points within § of L. O(n)

Sort S by y-coordinate. O(nlogn)
Compare points in S to next 11 points and update §. O(n)

. Return §. 0(1)
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What is driving our complexity in each recursive call?
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Let 6 = min(d|eft, dright)- 0(1)
Let S be straddle points within § of L. O(n)

Sort S by y-coordinate. O(nlogn)
Compare points in S to next 11 points and update §. O(n)

. Return §. 0(1)
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What is driving our complexity in each recursive call?
Sorting S by y-coordinate.

. mlvuly OC CCTITIrrmmrc wle (CERAY u,rlgnt. T O

Let 6 = min(d|eft, dright)- 0(1)
Let S be straddle points within § of L. O(n)

Sort S by y-coordinate. O(nlogn)
Compare points in S to next 11 points and update §. O(n)
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Return §. 0(1) |How can we reduce our complexityg




Closest Pair Problem — Algorithm

What is driving our complexity in each recursive call?

N oouor W e

Sorting S by y-coordinate.

. mlvuly OC CCTITIrrmmrc u,le (CERAY u,rlgnt. T O

Let 6 = min(d|eft, dright)- 0(1)

Let S be straddle points within § of L. O(n)

Sort S by y-coordinate. O(nlogn)

Compare points in S to next 11 points and update §. O(n)

Return §. 0(1)

How can we reduce our complexity?
Sort once, before the recursive calls.
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. Sort points by x-coordinate and make L. O(nlogn)

Recursively determine djof and dright- TBD
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Sort S by y-coordinate. O(nlogn)
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. Sort by x-coordinate (X) and y-coordinate (Y).
. Sort points by x-coordinate and make L. O(nlogn)

. Recursively determine d|o and dright- TBD
. Let 0 = min(d|gft, dright)- 0(1)
Let S be straddle points within § of L. O(n)

. Sort S by y-coordinate. O(nlogn)
. Compare points in S to next 11 points and update §. O(n)

. Return §. 0(1)
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. Sort by x-coordinate (X)

and y-coordinate (Y).

. Make L and split X and Y.

O(nlogn)

. Let 0 = min(d|gft, drighu
Let S be straddle points
. Sort § by y-coordinate.

. Compare pointsin S to |

. Return §. 0(1)

. Recursively determine dL = X[ceiling(x.Tength / 2 - 1)].x

for each (x,y) in X:

if (x <= L):
X_left.add((x,y))
else:

X_right.add((x,y))

for each (x,y) in Y:

if (x <= L):
Y_left.add((x,y))
else:

Y_right.add((x,y))
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and y-coordinate (Y).

. Make L andsplitXandY. O(n)
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. Sort § by y-coordinate.

. Compare pointsin S to |

. Return §. 0(1)

. Recursively determine dL = X[ceiling(x.Tength / 2 - 1)].x

for each (x,y) in X:

if (x <= L):
X_left.add((x,y))
else:
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for each (x,y) in Y:
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Y_left.add((x,y))
else:

Y_right.add((x,y))
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. Recursively determine d|f and dright- TBD

Let 6 = min(d|eft, dright)- 0(1)
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. Make L and split

Let S be straddle

. Sort by x-coordinate (X) and y-coordinate (Y). O(nlogn)

XandY. O(n)

. Recursively determine d|o and dright- TBD
. Let 0 = min(d|gft, dright)- 0(1)

points within 6 of L. O(n)

P

. Sort § by y-coor

. Compare points |

.fof each kx,y) 1n Y:
1f (X >= L - § && X <= L + 6):
S.add((x,y))

. Return §. 0(1)
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0. Sort by x-coordinate (X) and y-coordinate (Y). O(nlogn)

. Make L and split X andY. O(n)
. Recursively determine d|o and dright- TBD
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3. Let § = min(d)eft, dright)- 0(1)

4. Let S be straddle points within 6 of L. O(n)

6. Compare points in S to next 11 points and update 6. O(n)
7. Return 6. 0(1)
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2. Recursively determine d|of and dright- TBD
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