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Would you rather fight 1000 rats all at once, or 1000 
rats one after another?
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Divide and Conquer is an algorithm technique that involves breaking 
down the problem into smaller subproblems  (divide), which are 
solved independently, and then combined to solve the original 
problem (conquer)

In some cases, it easier to solve several smaller 
subproblems, and combine their results instead of 
solving one big problem
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Merge sort is a prime example of divide and conquer

85 24 63 45 17 31 96 50
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85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

1. Divide: Split problems into 
two (roughly) equal parts

2. Conquer: sort the parts
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Merge sort is a prime example of divide and conquer

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

1. Divide: Split problems into 
two (roughly) equal parts

2. Conquer: sort the parts

3. Combine: merge the sorted 
parts

24 85 45 63 17 31 50 96

24 45 63 85 17 31 50 96

17 24 31 45 50 63 85 96
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n

n/2 n/2

n/4 n/4n/4n/4

Recursion tree

Work done at each level → O(n)

Height of tree → log(n)

Total running time: O(nlogn)
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n)  → total running time of divide and conquer 
algorithm
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n)  → total running time of divide and conquer 
algorithm

Running time T(n) references another instance of T(n) → Recurrence relation
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n)  → total running time of divide and conquer 
algorithm
a – number of subproblems relative to previous
n/b – size of subproblem relative to previous
D(n) – running time to divide problems
C(n) – running time to combine problems
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n)  → total running time of divide and conquer 
algorithm
a – number of subproblems relative to previous
n/b – size of subproblem relative to previous
D(n) – running time to divide problems
C(n) – running time to combine problems

Master theorem: If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d) for constants 𝑎 ≥ 1, 𝑏 > 1, 𝑑 ≥ 0, then:
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Divide and Conquer Running time

Recursive divide and conquer running time can be characterized as:

T(n) = aT(n/b) + D(n) + C(n)

T(n)  → total running time of divide and conquer 
algorithm
a – number of subproblems relative to previous
n/b – size of subproblem relative to previous
D(n) – running time to divide problems
C(n) – running time to combine problems

Master theorem: If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d) for constants 𝑎 ≥ 1, 𝑏 > 1, 𝑑 ≥ 0, then:

“If the time used outside of recursion is greater than the 
work done recursively at each level, the running time is 
dominated by the work for splitting/merging/combining”
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Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems
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Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems
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Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems
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Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*
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Merge Sort Running Time

n

n/2 n/2

n/4 n/4n/4n/4

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*
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Merge Sort Running Time

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*

Master theorem: 
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:
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Merge Sort Running Time

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*

Master theorem: 
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
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Merge Sort Running Time

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*

Master theorem: 
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

“Rate of growth”

How deep and bushy 
the recursion gets
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Merge Sort Running Time

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*

Master theorem: 
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)
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Merge Sort Running Time

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*

Master theorem: 
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)
𝑂(𝑛) + 𝑂(𝑛) ∈ 𝑂(𝑛1) 

d = 1
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Merge Sort Running Time

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*

Master theorem: 
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)
𝑂(𝑛) + 𝑂(𝑛) ∈ 𝑂(𝑛1) 

d = 1
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Merge Sort Running Time

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*

Master theorem: 
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)
𝑂(𝑛) + 𝑂(𝑛) ∈ 𝑂(𝑛1) 
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Merge Sort Running Time

a – number of 
subproblems relative to 
previous

n/b – size of subproblem 
relative to previous

D(n) – running time to 
divide problems

C(n) – running time to 
combine problems

*

Master theorem: 
If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛d), then:

1. Calculate logba
logba = log22 = 1

2. Determine 𝑂(𝑛d)
𝑂(𝑛) + 𝑂(𝑛) ∈ 𝑂(𝑛1) 

𝑇(𝑛) ∈ 𝑂(𝑛d log 𝑛) 

“Running time 
of merge sort”

𝑇(𝑛) ∈ 𝑂(𝑛 log 𝑛)
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Divide and Conquer examples

Binary Search Convex Hull Matrix Multiplication



Closest Pair Problem

Given 𝑛 points, find a pair of points with the 
smallest distance between them. 
(Assume no points have the same 𝑥 or 𝑦 values).

(𝑥, 𝑦)



Closest Pair Problem

Given 𝑛 points, find a pair of points with the 
smallest distance between them. 
(Assume no points have the same 𝑥 or 𝑦 values).

(𝑥, 𝑦)

Algorithm?



Closest Pair Problem

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time = ?

(𝑥, 𝑦) P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... … ... ...
Pn dn,1 dn,2 ... /



Closest Pair Problem

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time = 𝑂 𝑛!

(𝑥, 𝑦) P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... … ... ...
Pn dn,1 dn,2 ... /



Closest Pair Problem

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time = 𝑂 𝑛!

(𝑥, 𝑦) P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... … ... ...
Pn dn,1 dn,2 ... /

Can we do better?



Divide and Conquer Battle Plan

1. Divide problem into subproblems that are 
smaller instances of the same problem.

2. Conquer the subproblems by solving them 
recursively.

3. Combine the solutions to the subproblems into 
the solution for the original problem.



Divide and Conquer – Merge Sort

85 24 63 45 17 31 96 50

17 31 96 5085 24 63 45

96 5085 24 17 3163 45

5024 3145 9685 1763

1. Divide array in half.

2. Sort sub arrays.

3. Merge into sorted array.



50 9624 85 17 3145 63

5024 3145 9685 1763

Divide and Conquer – Merge Sort
1. Divide array in half.

2. Sort sub arrays.

3. Merge into sorted array.



17 31 50 9624 45 63 85

50 9624 85 17 3145 63

Divide and Conquer – Merge Sort
1. Divide array in half.

2. Sort sub arrays.

3. Merge into sorted array.
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17 31 50 9624 45 63 85

Divide and Conquer – Merge Sort
1. Divide array in half.

2. Sort sub arrays.

3. Merge into sorted array.



Closest Pair Problem – Divide and Conquer

How can we make the problem 
smaller and easier?



Closest Pair Problem – Divide and Conquer

Divide: How can we draw line so that 
half of the points are on each side?



Closest Pair Problem – Divide and Conquer

Divide: How can we draw line so that 
half of the points are on each side?
1. Sort by 𝑥-coordinate.
2. Put line at median value.



Closest Pair Problem – Divide and Conquer

Conquer: Recursively find closest 
pairs on each side.



Closest Pair Problem – Divide and Conquer

Combine: If we had closest left and 
closest right, how do we determine 
closest?



Closest Pair Problem – Divide and Conquer

Combine: If we had closest left and 
closest right, how do we determine 
closest?
1. Return minimum of: 𝑑leM, 𝑑right.



Closest Pair Problem – Divide and Conquer

Combine: If we had closest left and 
closest right, how do we determine 
closest?
1. Return minimum of: 𝑑leM, 𝑑right.



Closest Pair Problem – Divide and Conquer

Combine: If we had closest left and 
closest right, how do we determine 
closest?
1. Return minimum of: 𝑑leM, 𝑑right, 
𝑑min_straddle.



17 24 31 45 50 63 85 96

17 31 50 9624 45 63 85

Merge Sort – Combine 

i j



Closest Pair Problem – Divide and Conquer

How should we search for “straddle 
points”?

Suppose 𝛿 = min(𝑑leM, 𝑑right).



Closest Pair Problem – Divide and Conquer

How should we search for “straddle 
points”?

Suppose 𝛿 = min(𝑑leM, 𝑑right).

Do we need to consider this point 
when looking for straddle points?



Closest Pair Problem – Divide and Conquer

Rule: We only need to hunt for 
straddle points at most 𝛿 away 
from L.

Reason: Points outside cannot 
reach the other side in less than 𝛿.

L-𝛿 +𝛿



Closest Pair Problem – Divide and Conquer

Rule: We only need to hunt for 
straddle points at most 𝛿 away 
from L.

Reason: Points outside cannot 
reach the other side in less than 𝛿.

Let S be the set of straddle points.L-𝛿 +𝛿



Closest Pair Problem – Divide and Conquer

Can we just compare all left 
straddle points to all right straddle 
points?

L-𝛿 +𝛿



Closest Pair Problem – Divide and Conquer

Can we just compare all left 
straddle points to all right straddle 
points?

Yes, but running time could still be 
𝑂 𝑛! .

L-𝛿 +𝛿



Closest Pair Problem – Divide and Conquer

Can we just compare all left 
straddle points to all right straddle 
points?

Yes, but running time could still be 
𝑂 𝑛! .

We need to reduce the number of 
straddle point comparisons we 
consider.L-𝛿 +𝛿



Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿 -𝛿 +𝛿L



Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

L-𝛿 +𝛿𝛿
2



Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain 
boxes?

L-𝛿 +𝛿𝛿
2



Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain 
boxes?

Yes – we only care about 
points on other side within 𝛿.

L-𝛿 +𝛿𝛿
2



Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain 
boxes?

Yes – we only care about 
points on other side within 𝛿.

L-𝛿 +𝛿𝛿
2



Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain 
boxes?

Yes – we only care about 
points on other side within 𝛿.

What if all of the points are in this 
region?
This still gives us possibly lots of 
points to look at.

L-𝛿 +𝛿𝛿
2



Closest Pair Problem – Divide and Conquer

Can we have multiple points in 
one box?

L-𝛿 +𝛿𝛿
2



Closest Pair Problem – Divide and Conquer

Can we have multiple points in 
one box?

No. 𝛿 is the smallest distance 
on either side of L.

⇒ at most one point per box.

L-𝛿 +𝛿𝛿
2



Closest Pair Problem – Divide and Conquer

Only care about 11 boxes

L-𝛿 +𝛿𝛿
2

At most one point per box+
At most 11 points to check



Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿𝛿
2

1. Sort straddle points by 𝑦
coordinate. 

Only care about 11 boxes
At most one point per box+
At most 11 points to check



Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿𝛿
2

1. Sort straddle points by 𝑦
coordinate. 

2. For each point, check next 11 
points to see if distance is less 
than 𝛿. 

Only care about 11 boxes
At most one point per box+
At most 11 points to check



Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿𝛿
2

1. Sort straddle points by 𝑦
coordinate. 

2. For each point, check next 11 
points to see if distance is less 
than 𝛿. 

Only care about 11 boxes
At most one point per box+
At most 11 points to check

> 𝜹 < 𝜹

Smaller 𝒚



Closest Pair Problem – Divide and Conquer

L-𝛿 +𝛿𝛿
2

Straddle point hunting:
𝑂(𝑛!) ⟶ 𝑂(𝑛 log 𝑛)

Only care about 11 boxes
At most one point per box+
At most 11 points to check



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  

2. Recursively determine 𝑑leM and 𝑑right.  



Closest Pair Problem – Divide and Conquer



Closest Pair Problem – Divide and Conquer



Closest Pair Problem – Divide and Conquer



Closest Pair Problem – Divide and Conquer



Closest Pair Problem – Divide and Conquer

When is finding 𝑑leB and 𝑑right trivial?



Closest Pair Problem – Divide and Conquer

When is finding 𝑑leB and 𝑑right trivial?

When there are one or two points 
on the left and right sides. 



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  

2. Recursively determine 𝑑leM and 𝑑right.  

3. Let 𝛿 = min(𝑑leM, 𝑑right).  



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  

2. Recursively determine 𝑑leM and 𝑑right.  

3. Let 𝛿 = min(𝑑leM, 𝑑right).  

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  
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3. Let 𝛿 = min(𝑑leM, 𝑑right).  

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  

5. Sort 𝑆 by 𝑦-coordinate.  



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  

2. Recursively determine 𝑑leM and 𝑑right.  

3. Let 𝛿 = min(𝑑leM, 𝑑right).  

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  

5. Sort 𝑆 by 𝑦-coordinate.  
6. Compare points in 𝑆 to next 11 points and update 𝛿.  
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2. Recursively determine 𝑑leM and 𝑑right.  

3. Let 𝛿 = min(𝑑leM, 𝑑right).  

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  

5. Sort 𝑆 by 𝑦-coordinate.  
6. Compare points in 𝑆 to next 11 points and update 𝛿.  

7. Return 𝛿.  



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  

2. Recursively determine 𝑑leM and 𝑑right.  

3. Let 𝛿 = min(𝑑leM, 𝑑right).  

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  

5. Sort 𝑆 by 𝑦-coordinate.  
6. Compare points in 𝑆 to next 11 points and update 𝛿.  

7. Return 𝛿.  

Running Time?



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right.  

3. Let 𝛿 = min(𝑑leM, 𝑑right).  

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  

5. Sort 𝑆 by 𝑦-coordinate.  
6. Compare points in 𝑆 to next 11 points and update 𝛿.  

7. Return 𝛿.  
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5. Sort 𝑆 by 𝑦-coordinate.  
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4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  

5. Sort 𝑆 by 𝑦-coordinate.  
6. Compare points in 𝑆 to next 11 points and update 𝛿.  

7. Return 𝛿.  



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  
6. Compare points in 𝑆 to next 11 points and update 𝛿.  

7. Return 𝛿.  



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  

7. Return 𝛿.  



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

How much work is done 
at each layer of recursion?



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

n log n How much work is done 
at each layer of recursion?



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

n log n



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 2 (n log n) / 2

n log n



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = ?



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = ?

Binary tree, divide by 2 
each time?



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total 
Running = ?
Time



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total 
Running = 𝑂 𝑛 log" 𝑛
Time



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leM and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leM, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total 
Running = 𝑂 𝑛 log" 𝑛
Time

Can we do better?



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total 
Running = 𝑂 𝑛 log! 𝑛
Time



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total 
Running = 𝑂 𝑛 log! 𝑛
Time

What is driving our complexity?



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑂 𝑛 log 𝑛
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑂 1

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑂 𝑛
5. Sort 𝑆 by 𝑦-coordinate.  𝑂 𝑛 log 𝑛
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑂 𝑛
7. Return 𝛿.  𝑂 1

(n log n) / 4 (n log n) / 4 (n log n) / 4 (n log n) / 4

(n log n) / 2 (n log n) / 2

n log n

Height = 𝑂 log 𝑛

Total 
Running = 𝑂 𝑛 log! 𝑛
Time

What is driving our complexity?
The work being done in each recursive call.



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏

What is driving our complexity in each recursive call?



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏

What is driving our complexity in each recursive call?
Sorting 𝑆 by 𝑦-coordinate.

How can we reduce our complexity?



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏

What is driving our complexity in each recursive call?
Sorting 𝑆 by 𝑦-coordinate.

How can we reduce our complexity?
Sort once, before the recursive calls.



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏

0.  Sort by 𝒙-coordinate (𝑿) and 𝒚-coordinate (𝒀). 



Closest Pair Problem – Algorithm

1. Sort points by 𝑥-coordinate and make 𝐿.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏

0.  Sort by 𝒙-coordinate (𝑿) and 𝒚-coordinate (𝒀). 𝑶 𝒏 𝐥𝐨𝐠𝒏



Closest Pair Problem – Algorithm

1. Make 𝑳 and split 𝑿 and 𝒀.  

2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏

0.  Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏



Closest Pair Problem – Algorithm

1. Make 𝑳 and split 𝑿 and 𝒀.  

2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏

0.  Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

L = X[ceiling(X.length / 2 - 1)].x

for each (x,y) in X:
if (x <= L):

X_left.add((x,y))
else:

X_right.add((x,y))

for each (x,y) in Y:
if (x <= L):

Y_left.add((x,y))
else:

Y_right.add((x,y))



Closest Pair Problem – Algorithm

1. Make 𝑳 and split 𝑿 and 𝒀.  𝑶 𝒏
2. Recursively determine 𝑑leG and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏

0.  Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏

L = X[ceiling(X.length / 2 - 1)].x

for each (x,y) in X:
if (x <= L):

X_left.add((x,y))
else:

X_right.add((x,y))

for each (x,y) in Y:
if (x <= L):

Y_left.add((x,y))
else:

Y_right.add((x,y))



Closest Pair Problem – Algorithm

1. Make 𝐿 and split 𝑋 and 𝑌.  𝑶 𝒏
2. Recursively determine 𝒅leH and 𝒅right.  TBD

3. Let 𝛿 = min(𝑑leG, 𝑑right).  𝑶 𝟏

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  𝑶 𝒏
5. Sort 𝑆 by 𝑦-coordinate.  𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.  𝑶 𝒏
7. Return 𝛿.  𝑶 𝟏

0.  Sort by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝐥𝐨𝐠𝒏
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for each (x,y) in Y:
if (x >= L - 𝛿 && x <= L + 𝛿):

S.add((x,y))
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