CSCI 232: Data Structures and Algorithms

Dynamic Programming (Part 2)

Reese Pearsall Spring 2025

Given two strings, how many edits are needed to turn one string into the other?

String 1: **SNOWY**

String 2: **SUNNY**

Given two strings, how many edits are needed to turn one string into the other?

String 1: SNOWY

String 2: **SUNNY**

Another way to state this problem:

What is the minimum cost of aligning these two strings?

SNOWY

SUNNY

Given two strings, how many edits are needed to turn one string into the other?

String 1: SNOWY

String 2: **SUNNY**

Another way to state this problem:

What is the minimum cost of aligning these two strings?

Given two strings, how many edits are needed to turn one string into the other?

String 1: SNOWY

String 2: **SUNNY**

(It's possible these strings could be different lengths)

Another way to state this problem:

What is the minimum cost of aligning these two strings?

We are allowed to insert "spaces" into the strings

S N O W Y
S U N N Y

× × × ×

S - NOWY

SUNN-Y

Given two strings, how many edits are needed to turn one string into the other?

String 1: **SNOWY**

String 2: **SUNNY**

(It's possible these strings could be different lengths)

Another way to state this problem:

What is the minimum cost of aligning these two strings?

We are allowed to insert "spaces" into the strings

Cost to align these strings: 3

Given two strings, how many edits are needed to turn one string into the other?

String 1: SNOWY

String 2: **SUNNY**

(It's possible these strings could be different lengths)

Another way to state this problem:

What is the minimum cost of aligning these two strings?

We are allowed to insert "spaces" into the strings

Cost to align these strings: 3

Cost to align these strings: 3

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

 $E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_i].$

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

$$E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_j].$$

Suppose this is the optimal way to align X and Y

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

$$E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_i].$$

Suppose this is the optimal way to align X and Y

Cost to align these strings: 3

then there is not a more optimal way to align NOWY and UNNY in less than 3 edits (otherwise we would have a more optimal way to align SNOWY and SUNNY

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

 $E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_j].$

Cost:

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

 $E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_j].$

Optimal alignments end in one of three ways:

We align a character i from X with a space from Y

SUNNY
SNOWY-

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

$$E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_j].$$

Optimal alignments end in one of three ways:

$$X_i$$
 -

We align a character j from Y with a space from X

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

$$E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_j].$$

Optimal alignments end in one of three ways:

We align a character i from X with character j from Y

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

 $E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_j].$

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

 $E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_j].$

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

 $E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_j].$

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

 $E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_j].$

We want to align two strings $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

 $E(i, j) = optimal cost of aligning [x_1, ..., x_i] and [y_1, ..., y_i].$

$$E(i,j) = \min \begin{cases} x_i & -x_i \\ -y_j & y_j \\ \hline \\ E(i-1,j)+1 \\ \hline \\ E(i,j-1)+1 \end{cases}$$

$$= \begin{cases} E(i,j-1)+1 \\ \hline \\ E(i-1,j-1)+1 \end{cases}$$

$$= \begin{cases} 0, & x_i = y_j \\ 1, & x_i \neq y_j \end{cases}$$

$$= \begin{cases} 0, & x_i = y_j \\ 1, & x_i \neq y_j \end{cases}$$

$$= \begin{cases} 0, & x_i = y_j \\ 1, & x_i \neq y_j \end{cases}$$

where diff
$$(i,j) = \begin{cases} 0, & x_i = y_j \\ 1, & x_i \neq y_j \end{cases}$$

Finding E(n,m) requires finding all other E's

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Finding E(n,m) requires finding all other E's

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Finding E(n,m) requires finding all other E's

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

We compute the same subproblem in different branches → overlapping subproblems

Finding E(n,m) requires finding all other E's

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

We compute the same subproblem in different branches → overlapping subproblems

$$E(i,j) = \min \begin{cases} E(i-1,j)+1 \\ E(i,j-1)+1 \\ E(i-1,j-1)+\text{diff}(i,j) \end{cases}$$

$$\text{where diff}(i,j) = \begin{cases} 0, & x_i = y_j \\ 1, & x_i \neq y_j \end{cases}$$

Finding E(n, m) requires finding all the other E's, which can be represented in a 2d table with the strings along the axes.

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(0,1) = \min \begin{cases} E(-1,1) + 1 \\ E(0,0) + 1 = ? \\ E(-1,0) + 1 \end{cases}$$

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(0,1) = \min \begin{cases} \frac{E(-1,1)+1}{E(0,0)+1} \\ \frac{E(-1,0)+1}{E(-1,0)+1} \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1				
1	S						
2	N						
3	O						
4	W						
5	Υ						

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(0,1) = \min \begin{cases} \frac{E(-1,1)+1}{E(0,0)+1} \\ \frac{E(-1,0)+1}{E(-1,0)+1} \end{cases}$$

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(1,1) = \min \begin{cases} E(0,1) + 1 \\ E(1,0) + 1 = ? \\ E(0,0) + 0 \end{cases}$$

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(1,1) = \min \begin{cases} E(0,1) + 1 \\ E(1,0) + 1 = ? \\ E(0,0) + 0 \end{cases}$$

Not calculated yet!

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

Need upper left hand corner filled out before we can progress.

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2			
1	S						
2	N						
3	O						
4	W						
5	Υ						

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(0,2) = \min \begin{cases} E(-1,2) + 1 \\ E(0,1) + 1 = 2 \\ E(-1,1) + 1 \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2			
1	S	1					
2	N						
3	O						
4	W						
5	Υ						

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(1,0) = \min \begin{cases} E(0,0) + 1 \\ E(1,-1) + 1 = 1 \\ E(0,-1) + 1 \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2			
1	S	1	0				
2	N						
3	O						
4	W						
5	Υ						

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(1,1) = \min \begin{cases} E(0,1) + 1 \\ E(1,0) + 1 = 0 \\ E(0,0) + 0 \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	N	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3	2	2	2	2	3
4	W	4	3	ന	ന	3	3
5	Υ	5	4	4	4	4	3

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

Running Time?

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1		1	2	3
3	O	3	2	2	2	2	3
4	W	4	3	3	3	3	3
5	Υ	5	4	4	4	4	3

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

Running Time?

Fill out $n \times m$ table with constant operations: O(nm)

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Y
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3	2	2	2	2	3
4	W	4	3	3	ന	თ	3
5	Υ	5	4	4	4	4	3

Edit distance = 3.

How can we recreate the actual alignments?

Backtracking.

Ask the question: "How did we get here?"

	j	0	1	2	3	4	5
i			S	U	N	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	O	3	2	2	2	2	3
4	W	4	3	3	3	3	3
5	Υ	5	4	4	4	4	3

How did we get to E(5,5)?

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	ന
3	Ο	3	2	2	2	2	ന
4	W	4	3	3	3	3	3
5	Υ	5	4	4	4	4	-3

How did we get to E(5,5)? From E(5,4)?

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Y
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	ന
3	O	3	2	2	2	2	ന
4	W	4	3	3	3	3	ന
5	Υ	5	4	4	4	4	-3

How did we get to E(5,5)? From E(5,4)? – No. Can never go down in cost.

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3		2	2	2	3
4	W	4	3	3	ന	თ	%
5	Υ	5	4	4	4	4	十3

How did we get to E(5,5)? From E(5,4)? – No. Can never go down in cost.

From E(4,5)?

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3		2	2	2	3
4	W	4	3	3	ന	თ	%
5	Υ	5	4	4	4	4	十3

How did we get to E(5,5)? From E(5,4)? – No. Can never go down in cost.

From E(4,5)? – No. Need +1 to move that direction.

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3	2	2	2	2	3
4	W	4	3	3	3	3	3
5	Υ	5	4	4	4	4	3

How did we get to E(5,5)? From E(5,4)? – No. Can never go down in cost.

From E(4,5)? – No. Need +1 to move that direction.

From E(4,4)?

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3	2	2	2	2	3
4	W	4	3	3	3	3	ധ
5	Υ	5	4	4	4	4	3

How did we get to E(5,5)? From E(5,4)? – No. Can never

From E(5,4)? – No. Can never go down in cost.

From E(4,5)? – No. Need +1 to move that direction.

From E(4,4)? – Yes. Match Y's.

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Continuing the process yields all of the optimal solutions.

Diagonal move indicates ?

Vertical move indicates ?

Horizontal move indicates ?

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	N	N	Υ
0		0	1	2	ന	4	5
1	S	1	0<	-1	2	3	4
2	N	2	1	1	1	2	3
3	O	3	2	2	2	2	3
4	W	4	ന	ന	ന	3	3
5	Υ	5	4	4	4	4	3

Continuing the process yields all of the optimal solutions.

Diagonal move indicates match.

Vertical move indicates ?

Horizontal move indicates ?

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Continuing the process yields all of the optimal solutions.

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates ?

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Continuing the process yields all of the optimal solutions.

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates space inserted in i.

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates space inserted in i.

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates space inserted in i.

Alignment?

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates space inserted in i.

Diagonal move indicates match.

Vertical move indicates space inserted in j.

Horizontal move indicates space inserted in i.

S N O W Y S U N N Y

Applications of Edit Distance

GGAACAGATTGGTCTAATTAGCTTAAGAGAGTAAATTCTGGGATCATTCA GTAGTAATCACAAATTTACGGTGGGGCTTTTTTTGGCGGATCTTTACAGAT

Edit Distance (Levenshtein Distance): 29

Edit Distance is used in computational biology to find how similar two sequences of DNA are

Applications of Edit Distance

We can could use edit distance to correct misspelled words!

mawntain

Did you mean maintain (1)?

Did you mean mountain (2)?

Did you mean captain (3)?

Did you mean mantis (3)?