Abstract Machines

Programming Language Habitats

Prof. Matt Revelle
CSCI 305

What is an Abstract Machine?

« An abstract machine is the abstraction
of a physical computing machine

. A programming language £ provides
instructions used to construct programs

. A program written in & is described in
terms of those instructions

. Alanguage Z recognized by A o is
called the machine language of ./

Abstract Machine

Given a programming language £, an
abstract machine for &£ is denoted by

M.

Any set of data structures and
algorithms which can perform the
storage and execution of written

programs in the language £ is an

M.

What is an Abstract Machine?

Interpreter

. A generic abstract machine A o, is Data control
composed of a store and an
interpreter
Memory Data Operations
» [he store contains programs and data control

 The interpreter executes the Program
instructions contained in programs Memory

management

 Standard operations common to all

Interpreters

Basic arithmetic for
integers and floating

Operations

point numbers.

Keep track of the next
Instruction to execute.

Boolean logic.

» Four categories of operations:

1. Processing primitive data -/
2. Control flow
Move data between

3. Data transter —————— |memory and registers.

4. Memory management

Store programs and
associated data in memory.

Support for conditional

What data should be

available for instructions.

Support dynamic allocation
of memory.

Interpreter

Execution Cycle

« Fetch next instruction
from memory

« Fetch operands
o Execute the instruction

o Store the result

Fetch
next instruction

v

Decode

!

Fetch
operands

!

Choose

v

Execute O P

!

Execute O P

v

Execute OF,,

v

!

Store the
result

Execute HALT

Hardware Machine

» Implemented using logic circuits
and electronic components

« [ypically supports simple
operations

— ADD reql, reg?2

« CPU executing instructions can be
viewed as an interpreter

Implementation of an Abstract Machine

Pros
« Fast
« [hree options:
Cons
- Implementation in hardware « Complicated
« EXxpensive
» Build custom hardware for a language « Cannot be modified
- Simulation using software Pros
| | Pros « Reasonably Fast
» Write an interpreter . Flexible Reasonably Flexible

- Emulation using firmware Cons

» Use a general-purpose CPU » Slow

Programs

. A program written in &£ can be seen as a partial function for generic data :
- PL D> D
- ie, 2?7 (Input) = Output

. The superscript < indicates that a program (e.g., 2*%) is written in language &

- The subscript indicates a construct (e.g., /A <) IS used for a language A

Implementation
The Ideal Case

v"~,.Can execute
» Consider a generic programming /V
: Interpreter ’0,.
language £ we want to implement Writtor, In o) ‘
. We don't have an abstract machine /# ., [A /A
E— 030
. If we have a host machine, 4 o0, we —

4
*
0

‘ Can execute

can run programs written in £ o

. There are two general approaches we I
could take to execute programs written in @c o k
F —

- Purely interpreted implementation

Compiler
(Written in any language
we can execute)

- Purely compiled implementation

Purely Interpreted

The Ideal Form

Program in L

+ Interpreter for ./ - is a program
implemented in the language £ o

« [he interpreter that can execute a f
orogram P~ (written in &)

 In apurely interpreted impl., programs
in £ are not explicitly translated

» Execution happens by using
instructions in £ o that correspond
to an instruction in &

Input data

' : — e
nterpreter for |
—p Output dat: .
written in LO | Hiptt datd |
: ________________ ,/' ________________ |
: lExecution on MQO

such that, fﬁ"(@g , Input) = 27 (Input)

I (PTXD) > D

Input data

Purely Compiled e <

The Ideal Form . -
gram Compiler Program % Output data |
written in L from L to LO written in LO |
. lExecution on M A lExecution MO
. Translate programs in £ to be
programs in 30 Abstract macchine M /
« A program called a compiler
G o o, accepts source language
programs (in &£’) and translates C oyt PL — PLo
them to object language programs | o
(in ZLo) such that, given a program &P~ , if

%g 30(@3) — @CQO,
. The compiled program ZPc~° can |
be run directly on the host machine then, for every Input € &:

%030 @3(Input) = @C"%(Input)

Comparison

Interpreted vs Compiled

« Purely interpreted « Purely compiled
- Inefficient - Efficient (at runtime)
» E.g., parsing must happen during » Compiled program executes natively on
interpretation \W > Mo,

- Flexibility - Information loss
» Can easily change the semantics of the
language or modify implementation to

better support tools/debugging

» Details of the source program are lost

» E.g., identity of variables in a function
- Simpler - More complex

» Often, but not always, an interpreter is » Often, but not always, a compiler is more
simpler to build complex to build

Intermediate Machine
The Real Case

« Purely compiled and purely e .

implemented are the extreme € | - Inpudata
cases L LI R N
j g O
 Allreal interpreters operate P,rt?grémL . Conzpilez L, l?trtogrflmb 2
. o Wr1tien 1n rom O L1 Wwriten 1n L2
on an intermediate A TeRRREEEEEEETEEE ;
representation (IR) L paitien n Owemdm o
. Rrogrgm ‘Compiler | I.’rogrflm |
o A” real Complled programs written in L from L to L written in L1 Execution on MO
use some simulated lCompﬂation on M A

constructs

o« Liand M i;arethe

iIntermediate language and
machine

Intermediate Machine
The Real Case

|
|
|
: Input data !
L, L1
. ji” 0
P.rogrz?m \ Compiler | I.)rogrfim | Py
written in L from L to Lz written in Lz
TN Interpreter for L1 :— ——————————————— :
written —P Output data |
_w in Lo or RTS L
P.rogrz}m Compiler | I.’rogrflm |
written 1n L from L to L2 written 1n Lz ,
Execution on MO
lCompilation on M A

MA

Hierarchies of Abstract Machines

. 4 N
 Each level implements an E-Business machine (on-line commerce applications)
abstract machine with its own - \
Web Service machine (languages for web services)
language
r N
. . Web machine (browser etc.)
« We are constantly implementing _ .
abstract machines HL machine (Java)
e N
- A new orogram can he viewed Intermediate machine (Java Bytecode)
. 4 ~
as an abstract machine Operating System machine
r p
 Software all the way down...until Firmware machine
we hit hardware [Hardware machine j
& 2,)

