
Prof. Matt Revelle 
CSCI 305

Abstract Machines
Programming Language Habitats



What is an Abstract Machine?

• An abstract machine is the abstraction 
of a physical computing machine 

• A programming language  provides 
instructions used to construct programs 

• A program written in  is described in 
terms of those instructions 

• A language  recognized by  is 
called the machine language of 

ℒ

ℒ

ℒ ℳℒ
ℳℒ

Abstract Machine 

Given a programming language , an 
abstract machine for  is denoted by 

.  

Any set of data structures and 
algorithms which can perform the 
storage and execution of written 
programs in the language  is an 

.

ℒ
ℒ

ℳℒ

ℒ
ℳℒ



What is an Abstract Machine?

• A generic abstract machine  is 
composed of a store and an 
interpreter 

• The store contains programs and data 

• The interpreter executes the 
instructions contained in programs 

• Standard operations common to all 
interpreters

ℳℒ



• Four categories of operations: 

1. Processing primitive data 

2. Control flow 

3. Data transfer 

4. Memory management

Operations Basic arithmetic for 
integers and floating 
point numbers. 

Boolean logic.

Store programs and 
associated data in memory. 

Support dynamic allocation 
of memory.

Keep track of the next 
instruction to execute. 

Support for conditional 
execution.

Move data between 
memory and registers. 

What data should be 
available for instructions.



Execution Cycle

• Fetch next instruction 
from memory 

• Fetch operands 

• Execute the instruction 

• Store the result

Interpreter



• Implemented using logic circuits 
and electronic components 

• Typically supports simple 
operations 

- ADD reg1, reg2 

• CPU executing instructions can be 
viewed as an interpreter

Hardware Machine



Implementation of an Abstract Machine

• Three options: 

- Implementation in hardware 

‣ Build custom hardware for a language 

- Simulation using software 

‣ Write an interpreter 

- Emulation using firmware 

‣ Use a general-purpose CPU

Pros 
• Fast 

Cons 
• Complicated 
• Expensive 
• Cannot be modified

Pros 
• Flexible 

Cons 
• Slow

Pros 
• Reasonably Fast 
• Reasonably Flexible 

Cons 
• Not as fast or as 

flexible as other 
options



Programs

• A program written in  can be seen as a partial function for generic data : 

-  

- i.e.,  

• The superscript  indicates that a program (e.g., ) is written in language  

• The subscript  indicates a construct (e.g., ) is used for a language 

ℒ 𝒟

𝒫ℒ : 𝒟 → 𝒟

𝒫ℒ(𝙸𝚗𝚙𝚞𝚝) = 𝙾𝚞𝚝𝚙𝚞𝚝
ℒ 𝒫ℒ ℒ

ℒ ℳℒ ℒ



The Ideal Case

• Consider a generic programming 
language  we want to implement 

• We don’t have an abstract machine  

• If we have a host machine, , we 
can run programs written in  

• There are two general approaches we 
could take to execute programs written in 

 

- Purely interpreted implementation 

- Purely compiled implementation

ℒ

ℳℒ

ℳoℒo
ℒo

ℒ

Implementation

𝒫ℒ

𝒫cℒo

Interpreter

(Written in )ℒo

Compiler

(Written in any language 


we can execute)

ℳoℒo

Can execute

Can execute



The Ideal Form

• Interpreter for  is a program 
implemented in the language  

• The interpreter that can execute a 
program  (written in ) 

• In a purely interpreted impl., programs 
in  are not explicitly translated 

• Execution happens by using 
instructions in  that correspond 
to an instruction in 

ℳℒ
ℒo

𝒫ℒ ℒ

ℒ

ℒo
ℒ

Purely Interpreted




such that, 

ℐℒo
ℒ : (𝒫ℒ × 𝒟) → 𝒟

ℐℒo
ℒ (𝒫ℒ, 𝙸𝚗𝚙𝚞𝚝) = 𝒫ℒ(𝙸𝚗𝚙𝚞𝚝)



The Ideal Form

• Translate programs in  to be 
programs in  

• A program called a compiler 
 accepts source language 

programs (in ) and translates 
them to object language programs 
(in ) 

• The compiled program  can 
be run directly on the host machine 

ℒ
ℒo

𝒞ℒ,ℒo
ℒ

ℒo

𝒫cℒo

ℳoℒo

Purely Compiled




such that, given a program , if 


,


then, for every :


 

𝒞ℒ,ℒo : 𝒫ℒ → 𝒫ℒo

𝒫ℒ

𝒞ℒ,ℒo(𝒫ℒ) = 𝒫cℒo

𝙸𝚗𝚙𝚞𝚝 ∈ 𝒟
𝒫ℒ(𝙸𝚗𝚙𝚞𝚝) = 𝒫cℒo(𝙸𝚗𝚙𝚞𝚝)



Interpreted vs Compiled

• Purely interpreted 

- Inefficient 

‣ E.g., parsing must happen during 
interpretation 

- Flexibility 

‣ Can easily change the semantics of the 
language or modify implementation to 
better support tools/debugging 

- Simpler 

‣ Often, but not always, an interpreter is 
simpler to build

Comparison

• Purely compiled 

- Efficient (at runtime) 

‣ Compiled program executes natively on 
 

- Information loss 

‣ Details of the source program are lost 

‣ E.g., identity of variables in a function 

- More complex 

‣ Often, but not always, a compiler is more 
complex to build 

ℳoℒo



The Real Case

• Purely compiled and purely 
implemented are the extreme 
cases 

• All real interpreters operate 
on an intermediate 
representation (IR) 

• All real compiled programs 
use some simulated 
constructs 

•  and  are the 
intermediate language and 
machine

ℒi ℳiℒi

Intermediate Machine

𝒞ℒ,ℒi
ℐℒo

ℒi



The Real Case
Intermediate Machine

𝒞ℒ,ℒi

ℐℒo
ℒi



• Each level implements an 
abstract machine with its own 
language 

• We are constantly implementing 
abstract machines 

- A new program can be viewed 
as an abstract machine 

• Software all the way down…until 
we hit hardware

Hierarchies of Abstract Machines


