Syntax and Semantics

Defining Programming Languages

CSCI 305
Prof. Matt Revelle

Levels of Description

Inspired by Linguistics

Syntax: describes correct phrases

Semantics: describes meaning of correct phrases

Pragmatics: describes how an actor uses a meaningful phrase

Implementation: describes how to execute correct, meaningful phrases such that
the meaning is preserved

Programming languages are languages.
In Linguistics, three areas were identified of how a language can be identified: syntax (or grammar), semantics, and pragmatics.

For programming languages, we might also consider the implementation of the language. Does the implementation preserve the semantics?

Grammar and Syntax

o A grammar provides the alphabet
and rules and phrases that are
correct for a language

» Given an alphabet of symbols and
tokens, syntax describes which
sequences are valid phrases

Language syntax is defined by a grammar

An alphabet consists of a set of symbols.

Describe Syntax

Palindromes

Define the language of palindromic strings

Start with an alphabet, A = {a, b}

Select all palindromic strings over A

If P is a palindrome, then so are aPa and bPb

How can we formalize this idea?

a
aba
bb
abbbaaabbba

Production Rules

If P is a palindrome, then so are aPa and
bPb

P stands for “any palindrome”

The arrow is read as “can be"

Using these rules, we can only construct
palindromes

P —
P — a
P—Db
P — aPa
P — bPDb

On the left-hand side we have a single non-terminal symbol

On the right-hand side we can have a combination of non-terminal and terminal symbols.

We can take a moment to convince ourselves that these production rules allow us to only construct palindromes.

Inductively, if P is a palindrome, then surrounding P with a pair of a’s or b’s will also produce a palindrome.

When we finally stop growing our palindrome, we choose P to be either the empty string, “a”, or “b”.

Context-Free Grammars qﬂ ? ?

G={F,I1},{a,b,+,%x,— (,)}, R, F)

Defined as a quadruple:

- WI.T.R.S) W E-1
o NT s afinite set of non-terminal o F s E+F 7] = a
symbols

sE—E+E ¢ b
4+ F—-F—F 9o [- Ja

s F — —F 0] = Tb
s £ — (F)

T'is a set of terminal symbols

R is a set of production rules

S is a start symbol selected from NT

Context-free grammars are commonly used to define the syntax of programming languages.

Note that the syntax of many programming languages cannot be fully represented by a context-free grammar. More on this later.

Backus-Naur Form
(BNF)

programming language syntax

« Many variations and extensions ‘ <E> B <E | _<E> | (<E>)

- EBNF, ABNF, and others

« Standard notation used to describe (E) := (I) | (E) + (E) | (E) * (E)
)

BNF is a more compact way to represent production rules.

BNF was introduced to define the syntax of the Algol60 programming language. Backus and Naur were two members of the Algol committee.
All expansions from the same head (nhon-terminal) are grouped together and separate by a vertical bar.

Non-terminal symbols are surrounded by angle brackets and terminal symbols may be bolded or surrounded in quotation marks.

It’'s not uncommon to see variations of this form.

Syntax Diagrams

object —~ -
) \{/ l whitespace
- O whitespace string
L whitespace —@— value

Syntax diagrams are a more-visual alternative to BNF.

This is a syntax diagram for JSON objects. E.g., {“foo”: 42, “bar”: “a string value”}

Deri _ F =3 ExFE
erivations —s Ex(E)
Example
—, Ex(E+E)
« = indicates applying a single rule =1 F % (E —+ [)
. v =* wmeans w can be derived =g FEx(E+Db)
gg:ir:/:t;gggaﬂnlte sequence of =, E % ([4 b)
=7 Ex(a+Db)
=1 I*x(a+b)
=10 Ib (a + b)
*
ab (a—l_b) =, abx(a+b)

Here is a sequence of rules that can be used to produce the string shown here by started at the start symbol E.

Languages

« A*isthe set of all finite strings over alphabet A, including the empty string €.
- Kleene's star denoted by *
« Aformal language over alphabet A is a subset of A*

- The language generated by agrammar G = {NT, T, R, S} is the set
ZG)={weT*|S =>%w}

We can then define a language for a grammar as being a subset of all finite sequences .

E
Parse Trees A
aka Derivation Trees
E * E
« Each branch is the application of a ‘ / \
« Leaves correspond to the terminal A
symbols
I E E
« For this string, applying the rules in b T
different orders results in the same ‘
tree
a I I
ab x (a+ b)
a b

+ A tree consists of nodes and arcs.

+ The number of arcs is one less than the number of nodes.

« A tree T is connected, that is there is a path through the tree connecting every pair of nodes
+ The root node is the node at the top of the tree.

+ Tree has levels which are defined based on distance from root, starting at level 0.

* Nodes below another node are called children and the node above is their parent

* Nodes with the same parent are called siblings

* Nodes without children are called leaves

Parsing Ambiguity axb-+a

« The same string can result in
different parse trees /\ /\
o _ o E + FE E *
- Our grammar is ambiguous /y\ ‘ ‘
« Itis possible to to disambiguate a * I I
grammar ‘ ‘
« Check out CSCI 468: Compilers to a a

learn more

v —~— 1

v —~— I

The ambiguity in this grammar is caused by not capturing the precedence of the multiplication and addition operators.

In the left tree, “a * b” is evaluated first, and then added to “a”
In the right tree, “b + a” are added first and then multiplied by “a”

Context in Syntax

« Are context-free grammars
sufficient to represent programming
language syntax?

o Static semantics constraints are
contextual constraints on the
syntax of a language

o See contextual grammar for
additional information

Consider a language
that requires variables
to be declared before use

Assignment before
declaration
foo (= x + 1

Missing declaration
var foo

+ The syntax of this language requires that a variable is declared before being assigned.

+ An assignment without declaration is then syntactically-invalid for this language

+ The grammar alone is not enough to describe the language...but it gets close!

* Not unlike ChatGPT and other LLM-based approaches which learn a sort of probabilistic grammar of a language

Abstract Syntax Trees
(ASTS) StmtIf

/\

. . IfCond IfTrue
« Parse trees that satisfy the static ‘ ‘

semantic analysis are abstract
syntax trees Expr Stmts

« ASTs may be simplified/optimized ‘ /\

and then later compiled, interpreted, ExprBin0p StmtDef StmtCall

or evaluated T T~ A ‘

> ExprVar ExprConst y ExprCall ExprCall

« We can apply the language
semantics to ASTs in order to ‘ ‘ A A
interpret them a 0 foo x print y

What might the concrete syntax for the code snippet shown here as an AST look like in a Python-like language be given this AST?

Abstract Syntax Trees

(ASTSs)
StmtIf
IfCond TfTrue if (a > 0):
| | y = foo(x)
Expr Stmts
| Py print(y)
ExprBinOp StmtDef StmtCall

AN |

> ExprVar ExprConst y ExprCall ExprCall

| | AN

a 0 foo x print y

Note that there are many different concrete syntaxes that could result in the same abstract syntax tree.
E.g., code written in Python, C, Rust, and many others could be parsed into an AST that looks like this.

The full grammar is a bit more involved.

Grammar for Lox Expressions

expression - literal
| unary
| binary
| grouping ;
literal - NUMBER | STRING | "true" | "false"
grouping - "(" expression ")" ;
unary - ("=" | "I'") expression ;
binary - expression operator expression ;
operator = B E I Sl I S e
N N e

| Ilni'Lll ;

>=

But this is the grammar which corresponds to the data types you all are implementing.

You are defining the data types which are used to build ASTs for Lox expressions

We will later be adding support for statements, functions, and classes.

Semantics

- Describe what happens at runtime count = @

for every syntactically-correct

for x in xs:
construct

« Defined in a manner independent of if is_match(x):
implementation count += 1

 "What happens when code runs?” print(x)

In the example code we have an integer variable (count) that is conditionally incremented.
The for loop iterates over a collection of items (xs)
There are two function calls, what happens when a function is called?

The print call is outside of the loop, does x have a valid binding?

Semantics in the Wild
JavaScript

« Language semantics can be
surprising

« Putting thought into the semantics
when designing can produce a
friendlier language

« Understanding language semantics
can help prevent errors when
writing code

L

true Y

then surely slhatimakes senseitome.

For 0 == “0”, JS coerces the string “0” to number 0
For 0 ==[], JS converts an empty array to 0 when comparing to a number

For “0” ==[], JS treats the “0” as true and the empty array as false when using the ‘==* operator

Operational Semantics

« Specifies behavior of the language’s abstract machine

« Structured Operational Semantics (SOS)
- Technique based on transition systems

« Several other categories of formal programming language semantics
- Denotational, axiomatic, algebraic

- We will not cover these in the course

Operational semantics is one way to formalize programming language semantics

Denotational semantics is the other major approach to semantics, but we will not cover it in this course.

Example Language

Operational Semantics

Num —1|2|3]| ...
Var —X|Y|Z] ...

AExp — Num | Var | (AExzp + AExp) | (AExp — AEzp)
BExzp — tt | ff | (AExp == AFExp) | ~BEzp | (BExp N BExp)

Com — skip | Var := AExzp | Com;Com |
if BExp then Com else Com | while BExp do Com

The language supports arithmetic and Boolean expressions (AExp, BEXp).
The terminal symbols tt and ff denote Boolean true and false.

Commands can be sequenced (Com; Com) and include support for variable assignment, conditional execution (if-statement) and looping (while-statement).

State

Operational Semantics . We denote state with &

. Provides a simple memory model « We write o (X) to retrieve the value in
state ¢ associated with some variable
- Finite sequence of (X, n) pairs X
« For example: [(X, 2), (Y, 9)] « We write 6 [X — V] to denote a new
state where variable X is assigned
- “In the current state, variable X has value v

value 2 and variable Y has val " .
alue 2 and variable Y has value 9 - The rest of the state is unchanged

Given initial state 0 = [(X, 2), (Y, 6)], then o [X — 9] = [(X,9), (Y, 6)].
c(Y)=6 X~ 9]X)=9 o (W) is undefined

We can model memory using a finite sequence of variable and number pairs

State is denoted by sigma

The arrow which indicates the value associated with a variable can be read as “maps to” or “has value”.

In the case of variables,

Num —112|3] ...

Var —X|Y|Z] ...
-
N Otatl o n AExp — Num | Var | (AEzp + AExp) | (AExzp — AExp)
BExp — tt | ff | (AExp == AEuxp) | ~BExp | (BExp A BExp)

Operational Semantics Com > skip | Var = AEzp | ComsCo|

if BExp then Com else Com | while BExp do Com

« We need notation to denote arbitrary values of a certain category
- n (Num)
- X (Var)
- a (AExp)
- b (BExp)
- ¢ (Comm)
« Subscripts are used to distinguish objects in the same category

- E.g. ¢; and ¢, refer to two different commands

Transitions
Operational Semantics

« Simplest form of transition, with
command ¢, starting state ¢, and
terminal state t

-{c,0) >
« Often a program consists of multiple
commands and is executed in

smaller steps that progress to a
terminal situation

- (¢,0) = (¢, ')

No subcommand to advance,
just produce a new state

The skip command

(skip, o) - ¢

Advances a subcommand

The if command

(if tt then c, else c¢,,0) — (c;,0)

(if ff then c, else c¢,,0) — (c,, 0)

We use ¢’ and sigma’ to denote possibly different commands and state after executing the command c.

Command Semantics

] . Variable assignment
Operational Semantics

(X :=n,0) » o[X — n]

#t Define variables

iX 1= 0 Conditional command

y =0 (if tt then c, else c,,) — {(c|,0)

Conditional branch é (if ff then ¢, else ¢;,0) — (¢, 0)
if y 1= 1:

P x 1=x -1 Skip command

Eelse: (skip, o) = o

..

Commands allow us to modify machine state by either advancing to the next command or altering the machine state (sigma)

Expression Semantics
Operational Semantics Variable lookup
(X, 0) = (o(X), 0)

i# Variable x added to state
ix 1= 10

Evaluate sub-expression

Need to lookup x and add 1 {(a,,0) = (a’,0)
= x + 1 : . .

(a1 + @y), 0) = ((d'+ ap), 0)

#
y
After lookup, equivalent to:
#y =10 + 1

Add operation
After add, equivalent to:
oy 1= 11 ((n+m),0) — (p,0)
: wherep = n+m

For our example language, we have semantics for both arithmetic expressions and for boolean expressions.
Variable assignment is a command and those semantics will be reviewed shortly.

The three inference rules shown here are just a few of the rules defined for the language. There are more inference rules for arithmetic expressions as well as Boolean
expressions.

Expressions do not modify state.

Example program, ¢

Computations

Operational Semantics X:=0; if~(X=0)then Y :=Oelse Y := 1

Computation for ¢

« A computation is a sequence of
transitions that cannot be extended (¢, o)

« A computation can be terminating | = ase (if(X = 0) then Y := 0 else Y := 1, ¢[X — 0])

(aka finite) or divergent (aka .
infinite) > Var <lf—l(0 = 0) thenY :=0elseY :=1,0[X — 0])

. The computation of this program | —8&g SIE 7t then ¥:= O else ¥ := 1, o[X = 0])

terminates — neg (if ff then Y := 0 else Y := 1, o[X — 0])

= e (Y i= 1, o[X = 0])

=450 01X = 0, Y > 1]

Semantics
Rules

(skip, o) > o (cl)

(a,0) — (d',0)

(X:=n,0) > 0o[X «<n] (c2)

{c1,0) > o’ {c1,0) = {c},0")

(X:=a,0)—> (X:=d,o0)

(c4)

(c15€2,0) = (c2,07) (c15c2,0) = (c]; ¢2,07)

(if tt then ¢ else ¢, 0) — (c1,0)
(if ff then c; else ¢3, 0) — (2, 0)

(c6)
(7

(b,a) = (V',0)
(if b then c; else ¢z, o) — (if b’ then c; else 2, o)

(while b do ¢, o) — (if b then c; while b do c else skip, o)

(c3)

(c5)

(c8)

(c9)

(X,0) > (0(X),0) (@)

@2 ((n+m),0)— (p,o)
where p=n-+m

((n—m),o) — (p,o)
where p=n—men=>m

(a3)

(a1,0) = (d,0) (az,0) = (",)

@) @ +a).0) > (@ +a).0) (@ +a).0) = (@ +a).0)

(as)

(a6) (a1,0) = (d,0) (az,0) = (", 0)

(a7)
((a1 —a2),0) > ((@’ —az),0) ((a1 —a2),0) — ((a1 —a"),0) :
1) (n==m),0) — (tt, o) (n==m),0) —> (ff,0) (b2
ifn=m ifn#m
((bvy Abv2),0) — (bv, o) (b3)
where bv is the and of bv; and bv;
(b4) (—tt, o) — (ff, o) (—ff, o) > (tt,o) (b5)
(©6) (a),0) > (d,0) (a2, 0) > (d",0) ®7)
(a1 ==ap),0) = ((@' == a2),0) (a1 == ap),) = ((a1 ==a"), o)
(b8) (b1,0) = (V',0) (by,0) — (b",0) (b9)

(b1 Ab2),0) = ((b' Ab2),0) (b1 Ab2),0) = ((b1 AD"),0)

(b,o) — (b',0)

9,077 W.97 (p10)
(—b,0) = (—b',0)

Computations

Example

Computations

Example

Computations

Example

