
DISSERTATION

ARTIFICIAL INTELLIGENCE BASED DECISION SUPPORT FOR
TRUMPETER SWAN MANAGEMENT

Submitted by

Richard S. Sojda

Department of Forest Sciences

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2002

COLORADO STATE UNIVERSITY

December 13, 2001

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER

OUR SUPERVISION BY RICHARD S. SOJDA ENTITLED ARTIFICIAL INTELLIGENCE

BASED DECISION SUPPORT FOR TRUMPETER SWAN MANAGEMENT BE

ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

ii

COLORADO STATE UNIV.LIBRARIES

ABSTRACT OF DISSERTATION

ARTIFICIAL INTELLIGENCE BASED DECISION SUPPORT FOR TRUMPETER SWAN

MANAGEMENT

The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where

Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs.

However, these birds are part of the Rocky Mountain Population which additionally has over

3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory.

To a large degree, these birds seem to have abandoned traditional migratory pathways in the

flyway. Waterfowl managers have been interested in decision support tools that would help

them explore simulated management scenarios in their quest towards reaching population

recovery and the reestablishment of traditional migratory pathways. I have developed a decision

support system to assist biologists with such management, especially related to wetland ecology.

Decision support systems use a combination ofmodels, analytical techniques, and information

retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain

that is ecologically complex, and this complexity is compounded by spatial and temporal issues.

As such, swan management is an inherently distributed problem. Therefore, the ecological

context for modeling swan movements in response to management actions was built as a

multi agent system of interacting intelligent agents that implements a queuing model representing

swan migration. These agents accessed ecological knowledge about swans, their habitats, and

flyway management principles from three independent expert systems. The agents were

autonomous, had some sensory capability, and could respond to changing conditions. A key

problem when developing ecological decision support systems is empirically determining that

the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been

111

surveyed for a long period of time, I was able to compare simulated distributions provided by the

system with actual field observations across 20 areas for the period 1988-2000. Applying the

Matched Pairs Multivariate Permutation Test as a statistical tool was a new approach for

comparing flyway distributions of waterfowl over time that seemed to work well. Based on this

approach, the empirical evidence that I gathered led me to conclude that the base queuing model

does accurately simulate swan distributions in the flyway. The system was insensitive to almost

all model parameters tested. That remains perplexing, but might result from the base queuing

model, itself, being particularly effective at representing the actual ecological diversity in the

world of Rocky Mountain trumpeter swans, both spatial and temporally.

The Distributed Environment Centered Agent Framework (DECAF) was successful at

integrating communications among agents, integrating ecological knowledge, and simulating

swan distributions through implementation of a queuing system. The work I have conducted

indicates a need for determining what other factors might allow a deeper understanding of the

effects of management actions on the flyway distribution ofwaterfowl. Knowing those would

allow the more refined development of algorithms for effective decision support systems via

collaboration by intelligent agents. Additional, specific conclusions and ideas for future research

related both to waterfowl ecology and to the use ofmultiagent systems have been triggered by

the validation work.

Richard S. Sodja
Forest Sciences Department
Colorado State University
Fort Collins, CO 80523
Spring 2002

IV

ACKNOWLEDGEMENTS

Research that spans nearly ten years is bound to need the cooperation of many good­

hearted souls; it is hard to count and name them all. My dear family, Mary Ann, Kate,

and Neal, have had to contribute the most. To say I am grateful is the truth, but seems

trivial.

My Graduate Committee...

I have been blessed with an outstanding committee. Denis Dean had the fortitude to

take on a student who had been deemed "too old" by others, who was working full-time,

and who wanted to do interdisciplinary research. I will always appreciate his insights,

and thank him for recommending "Flatland." The counsel of Adele Howe saved me from

burnout. Her willingness to share her expertise and insights with a novice has been

phenomenal. The direction she provided in helping me comprehend the artificial

intelligence literature and apply algorithms to real problems is truly the foundation of this

dissertation. The initial ecological ideas for my work were launched during discussions

with Leigh Fredrickson in the early 1990s. I am so very thankful for all his time, and all

he has tried to teach me about wetlands and waterbirds. There is nothing like seeing a

marsh through his eyes. Along with Leigh, John Cornely helped form the initial concept

of all that is involved in "thinking like a flyway." He was willing to take a risk on what

looked like weird research to many refuge managers; still, he found funding for the

project throughout its duration. John Loomis' perspectives on public lands management

helped me realize that there is a socioeconomic and political basis for my interest in

v

connecting science and management, as well as an ecological one. Although Susan

Stafford is not an official member, she gets the credit for ending the stagnation and

insisting that there was light at the end of the dissertation tunnel.

Additional Friends and Colleagues...

D. Hamilton first introduced me to expert systems on some now ancient computer

equipment at Blackwater National Wildlife Refuge. He was the ideal partner in

conducting the knowledge engineering sessions. This brings me to thanking all the

experts who participated in those sessions: J.B. Bortner, S. Bouffard, T. Grant, J.

Kadlec, M. Laubhan, D. Sharp, R. Trost, and G. Will. The experimental testing of the

system would not have been possible without direct involvement of the following

individuals in running all three expert systems for 13 years for their respective areas: V.

Hirschboeck (Bear River Migratory Bird Refuge); K. Hobbs (Harrimann State Park); C.

Mitchell (Grays Lake National Wildlife Refuge); R. Munoz (Southeast Idaho National

Wildlife Refuge Complex); D. Olson (Red Rock Lakes National Wildlife Refuge); and S.

Patla (Wyoming Department of Fish and Game).

There are programmers who humored my algorithms and system administrators who

managed to remain good friends: L. Bogar, K. Bowers, S. Lee-Chadde, and C. Wright.

But, most of all, multiple "thank you's" to D. "T.Y." Zarzhitsky who inherited all the loose

ends. He not only made sense where others left off, but was responsible for

documenting almost all the code. Many thanks to K. Decker and J. Barbour for their

assistance in learning DECAF, sharing many key papers, and understanding some of its

theoretical underpinnings. L. Lucke provided superb library services. L. Landenburger

prepared Figure 3-4. J. Cherry was responsible for final word processing of the

dissertation.

vi

I have had the pleasure of being taught by many outstanding professors over the years,

nearly all retired now, whose ideas found their way into this dissertation; D.F. Cox (Iowa

State University) helped de-mystifying statistics by always having me look at data plots

and think about experimental units; E. Klaas (Iowa State University and U.S. Fish and

Wildlife Service) taught me about conceptualizing research projects, start to finish; P.

Mielke (Colorado State University) helped my feeble brain try to understand permutation

methods and then apply them to multivariate analyses; R. Oglesby (Cornell University) is

remembered for insisting to include "time" as a parameter in ecological processes; and

B. Wilkins (Cornell University) has been a mentor and friend in so many ways. Other

colleagues who provided expertise and moral support over the years include: D.H.

Cross, F. D'Erchia, A. Gallant, D. Goodman, L. Hanson, D. Jennings, W. Ladd, D.

Curen, J. Ringleman, R.C. Solomon, T. Stohlgren, and W. King.

R. Stendell was always a strong supporter and backed his own professional support with

that of our mother agency and her funds. He turned an ugly duckling of a bureaucratic

situation into a beautiful swan! And, thanks to R. Jachowski for picking up where Rey

left off.

Funding Credits...

This project was funded jointly by units of the Department of Interior: the Geological

Survey, Biological Resources Division - Midcontinent Ecological Science Center and

Northern Rocky Mountain Science Center; and the Fish and Wildlife Service, Region 6­

Division of Migratory Birds, and (earlier) Region 8 - Research. It was administered as

Geological Survey, Biological Resources Division Project Number 915. I acknowledge

the technical support of the Pacific Flyway Council, Subcommittee on the Rocky

Mountain Population of Trumpeter Swans of the Pacific Flyway Study Committee.

vii

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 The Ecological Context: Flyway Management of Trumpeter Swans 1
1.2 The Decision Support Context: Distributed Problems and Multiagent

Systems 3
1.3 Organization of the Dissertation 6

2. APPLYING COOPERATIVE DISTRIBUTED PROBLEM SOLVING METHODS
TO TRUMPETER SWAN MANAGEMENT 7

2.1 Note: Prior Publication 7
2.2 Abstract. 7
2.3 The Inherently Distributed Nature of Trumpeter Swan Management 8
2.4 Requirements Analysis and Cooperative Distributed Problem Solving 11
2.5 Status of System Implementation 15

3. IMPLEMENTATION OF A MULTIAGENT SYSTEM TO DECISION SUPPORT
FOR TRUMPETER SWAN MANAGEMENT 18

3.1 Introduction: Issue Definition, Decisions Supported, and Conceptual
Background 18

3.1.1 Overall Purpose: Temporal and Spatial Distributed Problem
Solving 19

3.1.2 A System of Intelligent Agents: the Underlying Concepts 22
3.1.3 Expert Systems for Representing and Using Natural Resource

Knowledge 23
3.1.4 Queuing Systems and Ecological Applications 24

3.2 Multiagent System Architecture 26
3.2.1 Basic Structure for a System of Cooperating Intelligent Agents ..26
3.2.2 Queuing System Configuration 29

3.2.2.1 Knowledge Engineering for the Movement
Probabilities 31

3.2.2.2 Queuing Model Output. 35
3.2.3 Service Mechanism: Connecting Agents and Expert Systems 35
3.2.4 System Output 39
3.2.5 Hardware, OS, Software, and Compilers Used 40

3.3 Agent Specifics 41
3.3.1 The Facilitator (fac) Agent. 41

3.3.1.1 dss_UserAction 44
3.3.1.2 dss_AskUser 44
3.3.1.3 dss_ProcessUserRequest 44
3.3.1.4 dss_DisplayESStatus 44

viii

3.3.1.5 dss_RunMove 45
3.3.1.6 dss_Cleanup 45

3.3.2 The Refuge Agent 45
3.3.2.1 dss_Breeding, dss_Habitat dss_Flyway 47

3.3.3 The Move Agent 48
3.3.3.1 dss_DataTracker 50
3.3.3.2 dss_Assemble 50
3.3.3.3 dss_SimDispatcher 50
3.3.3.4 dss_Sim 50

3.4 The Expert Systems 51
3.4.1 Breeding Habitat Needs for Trumpeter Swans 53
3.4.2 Management of Palustrine Wetlands in the Northern Rocky

Mountains 55
3.4.3 Principles of Flyway Management 57

3.5 Conclusions 60
3.5.1 Evidence for a System of Cooperating Intelligent Agents 60

3.5.1.1 Autonomy 61
3.5.1.2 Sensory Capability: Listening 61
3.5.1.3 Response Capability 62
3.5.1.4 Relationship to BDI Architectures 63

3.5.2 Queuing Systems and Waterfowl Migration 63
3.5.3 Future Directions 63

3.5.3.1 System Implementation Improvements 64
3.5.3.2 System Theory Development. 65

4. EMPIRICAL EVALUATION OF A MULTIAGENT SYSTEM FOR TRUMPETER
SWAN MANAGEMENT 67

4.1 Introduction 67
4.1.1 Verification and Validation Defined 67
4.1.2 An Overview of Potential Methods for Verification and

Validation 69
4.2 A Modelling Perspective 71

4.2.1 Purpose of the Multiagent System 71
4.2.2 Why Empirical Evaluation Is Important in the Trumpeter Swan

Domain 72
4.2.3 Why Expert System Validation Was Not Attempted 72

4.3 Methods 73
4.3.1 Verification 74
4.3.2 Soft Validation of the Expert Systems 75
4.3.3 Empirical Testing of the Multiagent System 75

4.3.3.1 Data Analysis 76
4.3.3.2 Description of the Experimental Runs 77
4.3.3.3 Sensitivity Testing 79

4.4 Results 80
4.5 Discussion 97
4.6 Conclusions 100

4.6.1 In Terms of Waterfowl Ecology and Management. 100
4.6.2 In Terms of Multiagent Systems 101
4.6.3 Future Directions 101

ix

5. ARTIFICIAL SWANS, ARTIFICIAL MARSHES, AND ARTIFICIAL INTELLIGENCE:
SUMMARY, CONCLUSIONS, AND RELECTIONS 103

5.1 What Was Accomplished 103
5.2 What the Future Offers 105

5.2.1 The Flyway Distribution of Waterfowl Via Multiagent
Systems ~ 106

6. LITERATURE CiTED 108

APPENDIX 1. THE DEFAULT CONFIGURATION FILE FOR THE DECISION
SUPPORT SYSTEM FOR TRUMPETER SWAN
MANAGEMENT 115

APPENDIX 2. THE OBSERVED NUMBERS OF SWANS AS USED IN THE QUEUING
SySTEM 116

APPENDIX 3. THE RAW VALUES FOR LIKELIHOOD OF MOVEMENT
BETWEEN SEASONS 118

APPENDIX 4. STRAIGHTLINE DISTANCES BETWEEN AREAS AND GROUPINGS
OF AREAS 123

APPENDIX 5. DOCUMENTATION FOR THE AGENTS, TASKS, AND ACTIONS 125
Facilitator Agent 125
Move Agent 128
Refuge Agent 134

APPENDIX 6. EACH AGENT'S .Isp FILE AS REQUIRED BY DECAF 139
fac.lsp 139
refuge.lsp 153
move.lsp 168

x

CHAPTER 1

INTRODUCTION

1.1 The Ecological Context: Flyway Management of Trumpeter Swans

Trumpeter swans were once thought to be extinct, but the discovery of breeding birds in

the Centennial Valley of Montana and in Yellowstone National Park led to the

establishment of Red Rock Lakes National Wildlife Refuge where swan management

became an important function. Additional national wildlife refuges and other national,

state, and provincial lands often have capabilities for managing wetlands as trumpeter

swan habitats. The system of refuges and other wildlife management areas has

purposefully been dispersed along migratory pathways at areas important to pre­

breeding, breeding, post-breeding, and wintering migratory birds, especially those

dependent on wetland habitats. Most migratory birds travel such corridors linking

northern breeding areas with more southern wintering grounds.

During the mid-twentieth century, a system of four Flyway Councils for collaboratively

managing such waterfowl populations and their habitats in North America was

established between the U.S. Fish and Wildlife Service, Canadian Wildlife Service, and

the provincial and state wildlife agencies. This system has been quite successful and

has made significant contributions towards ensuring that waterfowl management in

North America is based on empirical research. I was approached by swan managers

from the U.S. Fish and Wildlife Service (on behalf of the Subcommittee on the Rocky

Mountain Population of Trumpeter Swans of the Pacific Flyway Study Committee) who

expressed an interest in having a decision support tool that would simulate and test

1

management options for trumpeter swans throughout migration corridors. The ultimate

objective of using such a tool is to progress towards both population recovery and

migration path development.

The number of trumpeter swans breeding in the Tri-state Region, where Montana, Idaho,

and Wyoming adjoin, has always been limited, but has declined approximately 30

percent since the peak numbers of the 1960s, and now there are fewer than 400 total

birds. Apparently they also have abandoned, to a large degree, what were thought to be

traditional migratory pathways. National wildlife refuges such as Grays Lake, Red Rock

Lakes, National Elk Refuge, and Bear River Migratory Bird Refuge; national parks such

as Yellowstone and Grand Teton; and other areas such as Harrimann State Park (10)

share swans at different times of the year. However, these birds are part of the Rocky

Mountain Population which additionally has over 3,500 birds breeding in Alberta, British

Columbia, Northwest Territories, and Yukon (Subcommittee on Rocky Mountain

Trumpeter Swans 1998; Reed 2000.) The northerly breeding birds have tended to share

wintering habitats, and to a lesser degree postbreeding and prebreeding habitats, with

their Tri-state Region counterparts, increasing management complexity. At its most

fundamental level, this complexity stems from a lack of published ecological knowledge

and the inability to integrate knowledge across temporal and geographical scales. Such

understanding and integration should involve management of wetlands at a site specific

level while incorporating flyway management principles. This is compounded by the

need for mechanisms and tools by which the many agencies involved can collectively

develop, simulate, and empirically evaluate management options and activities.

Managers recognize that decision making is cyclic, and they wish to iteratively plan,

implement, evaluate, and improve their management strategies. Unfortunately,

optimizing management of migratory birds throughout a flyway with cyclic planning is so

2

complex that it is often all but impossible to implement without computerized decision

support (Sojda, Dean, and Howe 1994). Also, past conditions and future needs are

ecological constraints to current decisions. Swan management is complex, requiring

reasoning through time and space among geographically dispersed areas. Spatial

interactions are inevitably intertwined with temporal components as swans migrate. This

is further compounded by ecological issues that exist at specific wetlands in each

location. Another component of complexity arises from local decisions having

ramifications not only at other sites but also at a population level within the migration

corridor.

1.2 The Decision Support Context: Distributed Problems and Multiagent Systems

Decision support systems use a combination of models, analytical techniques, and

information retrieval to help develop and evaluate appropriate alternatives (Adelman

1992; Sprague and Carlson 1982); and such systems focus on strategic decisions and

not operational ones. More specifically, decision support systems should contribute to

reducing the uncertainty faced by managers when they need to make decisions

regarding future options (Graham and Jones 1988). Distributed decision making suits

problems where the complexity prevents an individual decision maker from

conceptualizing, or otherwise dealing with the entire problem (Boland et al. 1992;

Brehmer 1991). It is in this light that I chose to develop a decision support system to

assist biologists with swan management, especially related to wetland ecology. At this

time, there are no such systems available for swan managers, nor any common

databases for them to access. Furthermore, many managers are either located in

relatively remote locations or simply distant from each other, making it difficult to meet

frequently. On national wildlife refuges and some other areas, annual water

management plans are prepared for individual wetlands. These typically are prepared

3

manually and often do not take into account conditions in other areas of the flyway

except in a general sense. Plans are not usually updated during the course of the year.

In light of all this, population goals have not yet been achieved from both the past and

current situations for managing trumpeter swans, of which planning is only a part.

Management of migratory birds is inherently distributed in time and space. Many

artificial intelligence-based methodologies, particularly those related to cooperative

distributed problem solving (Carver, Cvetanovic, and Lesser 1991; Durfee, Lesser, and

Corkill 1989) and multiagent systems (Weiss 1999) also are designed to address

distributed problems and therefore were deemed appropriate for adapting to the swan

management domain. I chose to use intelligent agents linked in a multiagent system as

the overall building blocks. Agents should have three characteristics: (1.) some degree

of autonomy, (2.) the ability to collect information about their environment, and (3.) the

capability to independently take action, or at least respond to their perceptions. I

attempted to ensure that these criteria were incorporated in the agents I developed.

The belief-desires-intentions (BDI) agent architecture summarized by Wooldridge (1999)

and Rao and Georgeff (1995) is the foundation upon which intelligent agents often are

conceptualized. It is such an architecture upon which the Distributed Environment

Centered Agent Framework (DECAF) (Graham and Decker 2000; Graham 2001) was

developed. DECAF was used to build the overall decision support system for trumpeter

swan management, handling agent operation and management as well as requests to

the user for information. The ecological context for modelling swan movements in

response to management actions was conceptualized as a queuing model (Dshalalow

1995; Hillier and Lieberman 1995). Interacting agents, provided through DECAF,

provide the knowledge and problem solving capabilities of the multiple entities needed to

implement the ecological model.

4

The queuing model, itself, represents the spatial and temporal distributions of swans. It

uses as one primary input the number of swans in year, t , observed in 27 areas and the

probability of movement from season to season among those areas as another input.

The model then projects the number of swans at time, t+ 1, across those same areas.

Key ecological knowledge is used to adjust the inputs to the queuing model, resulting in

adjustments to the predicted numbers of swan across the 27 areas. To provide this

knowledge, fundamental elements of the 1998 Management Plan for the Rocky

Mountain Population of Trumpeter Swans (Subcommittee on Rocky Mountain Trumpeter

Swans 1998), plus vital ecological knowledge about swans, their habitats, and flyway

management principles were developed as expert systems. These latter components

assist the user in providing information to the overall system.

A key problem when developing ecological decision support systems is empirically

determining that the recommendations provided are valid. However, because trumpeter

swans have been routinely surveyed in the Tri-state Region since the early 1970s, the

opportunity existed to compare predicted numbers and distributions of swans over a long

period of time. The use of historic data allowed me to look back in time and address

questions such as: "Had swans been managed in the manner suggested in the plan,

would the distribution of swans been different than actually observed?" This of course,

is based on the observation that time and both administrative and management changes

did not allow unimpaired implementation of the 1998 Plan. The system is now available

to swan managers so that they can examine the effect of potential management actions

on the distribution of swans.

5

1.3 Organization of the Dissertation

The broad question I have tried to answer is: Are multiagent systems an effective

platform for integrating flyway management into site-specific decision support for

trumpeter swan management? In this context, I also was interested in determining the

effect that encoded ecological knowledge could have on simulated distribution of swans

as represented by a queuing system. This required choosing an appropriate, artificial

intelligence methodology for the ecological issues; implementing the system in a manner

amenable to verification and validation; and, then empirically evaluating that system.

This dissertation is therefore organized accordingly. Section III, "Applying Cooperative

Distributed Problem Solving Methods to Trumpeter Swan Management", discusses the

inherent distributed nature of trumpeter swan management and what artificial

intelligence methodologies are appropriate for distributed problems. Section IV,

"Implementation of a Multiagent Model to Decision Support for Trumpeter Swan

Management", describes intelligent agents, queuing systems. and the framework

developed for constructing the decision support system. Section V, "Empirical

Evaluation of a Multiagent System for Trumpeter Swan Management", explains the

verification and validation deployed. It also presents the conclusions reached regarding

decision support system development and the use of multiagent systems for trumpeter

swan management.

6

CHAPTER 2

APPLYING COOPERATIVE DISTRIBUTED PROBLEM SOLVING METHODS
TO TRUMPETER SWAN MANAGEMENT

2.1 NOTE: Prior Publication

This chapter has been published as the following paper:

Sojda, R. S., and A. E. Howe. 1999. Applying cooperative distributed problem
solving methods to trumpeter swan management. Pages 63-67 in U. Cortes and
M. Sanchez-Marre, eds. Environmental Decision Support Systems and Artificial
Intelligence. American Association for Artificial Intelligence Technical Report
WS-99-07. AAAI Press. Menlo Park, CA.

Chapter III was written approximately two years prior to actually building the system,

itself. During that time, certain commercial expert system software options ceased to

exist, forcing my re-examination of using them as an implementation of blackboards and

cooperative distributed problem solving methods. During that same time, multiagent

system software options in the public domain increased and were then adopted as an

alternative methodology. Therefore, some of the implementation details mentioned in

Chapter III were supplanted by those described in Chapter IV. However, basic concepts

related to distributed problem solving remained the same.

2.2 Abstract

We are developing a decision support system in an effort to assist biologists who are

managing habitats for the Rocky Mountain population of trumpeter swans. Swan

management is a domain that is ecologically complex, and this complexity is

compounded by spatial and temporal issues. We are focused on providing decision

support that allows managers to develop habitat management plans for local sites while

7

recognizing that such decisions have ramifications not only at other sites but in the

flyway as a whole. Because swan management is an inherently distributed problem, our

system utilizes artificial intelligence methods including cooperative distributed problem

solving, blackboards, and expert systems. The system will be made available to swan

managers through the World Wide Web, using commercially available software that

provides a common gateway interface between the web server software and an

inference engine.

2.3 The Inherently Distributed Nature of Trumpeter Swan Management

We are developing a decision support system to assist biologists with the management

of the Rocky Mountain population of trumpeter swans (Cygnus buccinator). The number

of swans breeding in the Tri-State area where Montana, Idaho, and Wyoming come

together has declined to just a few hundred pairs. They have abandoned, to large

degree, what were thought to be traditional migratory pathways. Swans, like most

migratory birds in North America, travel along migration corridors that link northern

breeding areas with more southern wintering grounds. National wildlife refuges such as

Grays Lake, Red Rock Lakes, National Elk Refuge, and Bear River Migratory Bird

Refuge, share swans at different times of the year with national parks such as

Yellowstone and Grand Teton, and other areas such as Harrimann State Park. Swan

management is a complex domain requiring reasoning across time and space among

geographically dispersed managers (Figure 2-1.) Spatial interactions are inevitably

intertwined with a temporal component as swans migrate. This complexity is further

compounded by ecological issues that exist at specific wetlands in each location.

8

Another component of complexity arises from local decisions having ramifications not

only at other sites but in the flyway as a whole.

Figure 2-1. Spatial complexity shown as hypothetical migration paths among national
wildlife refuges (NWR), national parks (NP), and other sites combined with
recommendations needed for management of local wetlands.

Swan managers have requested a decision support tool that will simulate and test

management options for trumpeter swans throughout such corridors. The ultimate

objective is to contribute to both population recovery and migration path development.

They recognize that their decision making is cyclic, and they wish to iteratively plan,

implement, evaluate, and improve their management strategies. Biologists also are

concerned by their lack of ability to objectively assess critical information gaps,

identifying those that contribute the most uncertainty to the selection of management

options.

9

Unfortunately, optimizing any management of migratory birds throughout a flyway with

cyclic planning is so complex that it is often all but impossible to implement without

computerized decision support (Sojda, Dean, and Howe 1994). And, past conditions and

future needs are ecological constraints to current decisions. Distributed decision

making approaches suit problems where the complexity prevents an individual decision

maker from conceptualizing, or otherwise dealing with the entire problem (Boland et al.

1992; Brehmer 1991). Our system is focused, then, on providing support for realistic

and ecologically-based management of migratory birds at multiple geographic and

temporal scales.

At this time, there are no such decision support systems available for swan managers,

nor any common databases for them to access. Furthermore, many managers are

physically either located in relatively remote locations or simply distant from each other,

making it difficult to meet frequently. They currently get together once or twice a year to

discuss and select broad management options for the flyway and specific

recommendations for specific sites as deemed necessary. Additionally, on national

wildlife refuges and some other areas, annual water management plans are prepared for

individual wetlands. These are prepared manually, and often can not take into account

conditions in other areas of the flyway except in a general sense. Plans are not usually

updated during the course of the year. The past and current holistic situation for

management of trumpeter swans, of which planning is only a part, has not yet resulted in

population recovery for Tri-State swans. New planning approaches are welcome, and

an approximately 80 percent increase in breeding pairs is still desired.

10

2.4 Requirements Analysis and Cooperative Distributed Problem Solving

Our research is pursuing three objectives. (1.) We intend to provide a decision support

system that allows swan managers to examine management actions addressing

population and migration objectives at a flyway scale, and allows them to evaluate

management actions at a site specific scale. (2.) We will test the hypothesis that

decision support technology which allows planning in multiple geographic and temporal

scales results in an increased ability for managers to identify and capitalize on trumpeter

swan management potentials. For our technology to give managers this capability, we

must verify that the decision support system simulates future swan distributions that

meet flyway goals; that habitat recommendations are satisfactory for supporting

increasing populations; and, all recommendations remain reliable over a specified time

period. Management potentials are those ecological conditions that can be exploited in

pursuing trumpeter swan objectives. Included are habitat quality, quantity, distribution,

and availability, as well as freedom from disturbance. (3.) We will test the hypothesis

that our implementation of cooperative distributed problem solving among refuges,

parks, other management areas, and the internal knowledge bases effectively integrates

local management actions with small-scale landscapes. This integration will occur if

information is shared among human and electronic nodes, if individual knowledge bases

contribute to recommendations, and if principles of adaptive management (Holling 1978;

Walters 1986) are incorporated.

Based on input from swan managers, we have identified four management questions to

be addressed through decision support system simulations. Each of these is a relatively

course-grained approach to extrapolate possible future scenarios, while retaining the

need to address the practicality of the fine-grained needs of individual managers. This is

being tackled by paying close attention to knowledge engineering efforts and the use of

11

expert systems to connect the relatively qualitative knowledge of the domain experts

with the heuristic guidance needed by managers.

Simulation #1. If a particular management action is implemented

at a particular site and particular time, what are the

consequences for that site and for other sites in the flyway?

Simulation #2. Given an objective for spatial and temporal

distribution of swans, what is the best set of management actions

across all sites to achieve this? The decision support system also

will have the capability for the manager to provide an alternative

objective.

Simulation #3. Given some subset of management action(s)

across all sites, and given an objective for spatial and temporal

distributions of swans, what is the best complementary subset of

management actions at other sites to achieve this?

Simulation #4. Given a satisfactory set of management actions

across all sites to achieve an objective for swan distribution, if an

alternative management action were to be implemented at a

particular site, what are the consequences for that site and for

other sites in the flyway in terms of reaching their respective

objectives?

To address Simulation #1, a blackboard approach will be taken. When a particular

management action is proposed for a particular site, that information will be posted to

the blackboard. Daemons residing there will fire as necessary to activate the use of

appropriate rules and expert systems to simulate the effects of the proposed action for

the current time at that site, as well as at other sites in the flyway. New and impending

12

constraints that the proposed action will impose on future management also will be

generated and presented.

To address Simulations #2-4, a more complex search of the solution space will be

required, and cooperative distributed problem solving will be used. Each geographic

node in the system will need to function both independently and collaboratively with

themselves and with the knowledge bases, exchanging tentative and partial results in

order to converge on a solution (Carver, Cvetanovic, and Lesser 1991). These more

complex simulations will require the concurrent development and posting of partially

completed plans and potential management options from all geographic sites. The goal

is to find a satisfactory set of solutions for management at all sites. This will be done by

sharing information among geographic nodes and with the knowledge bases and

databases. Then, a recursive search will be made for a set of management options that

satisfices the population level and distribution objectives, and that addresses the

constraints in the system.

The swan decision support system will use a combination of artificial intelligence

methods including expert systems, blackboards (Corkill 1991; Nii 1986a, 1986b), and

cooperative distributed problem solving (Carver, Cvetanovic, and Lesser 1991; Durfee,

Lesser, and Corkill 1989). Four basic modules form the system's framework (Figure

2-2): cooperative distributed problem solving, knowledge bases (expert systems),

databases, and web interface. The decision space consists of knowledge and

constraints, including population objectives, on-the-ground management capabilities,

ecological principles, and implementations of adaptive management. In addition, an

area's past management history, as well as its future needs, represent further temporal

constraints to forming recommendations in the present, particularly related to wetland

manipulations.

13

Figure 1-2. The framework for the swan management decision support system.

The essence of the distributed nature of swan ecology stems from birds moving among

areas as seasons and other ecological conditions change, especially habitat availability.

Migration stimuli also are related to annual life cycle events and physiological condition

in individual swans. Meta-rules for handling the integration of all such spatial and

temporal issues in the domain will be developed and integrated at a high level in the

system.

It is clear to us that wetland ecology is a domain where the complexity of relationships,

the interactions among ecological parameters, and the lack of empirical data makes the

programming of rule-bases and decision trees complicated. By the same token, we are

becoming increasingly convinced that the complexity of ecological systems is, in fact,

14

what makes the application of expert systems. cooperative distributed problem solving.

and other artificial intelligence methods so potentially useful. This domain has a nearly

infinite number of ecological conditions. but the number of potential recommendations is

more limited. Backward chaining approaches are allowing us to appropriately search the

decision space in a goal-directed manner. Artificial intelligence based multi-agent

methods are another approach that might be used for such a planning problem.

However, their contribution often lies in searching exceptionally large and dispersed

information sources, in providing real-time solutions. or utilizing the reasoning power of

individual agents. None of these attributes exists in our domain. On the other hand,

there are some similarities in our approach to the asynchronous backtracking algorithm

presented by Armstrong and Durfee (1997), except that we are not using a complex

agent implementation.

2.5 Status of System Implementation

We are developing the system on a personal computer using a commercially available

expert system development shell that has blackboard capabilities. The system is

deployed on a Unix workstation acting as a web server connected directly to the Internet

through Montana State University. This is accomplished using software affiliated with

the development shell that provides a common gateway interface between the web

server and the inference engine, developing HTML web pages on the fly.

Our primary goal is to explore whether cooperative distributed problem solving can solve

actual ecological problems characterized by geographically distributed issues that are

compounded by temporal scales. There were several. general institutional concerns

governing our selection of technologies. These included palatability to end users,

availability of off-the-shelf software, probability of long-term software support, and cost.

Following the scheme describing expert system use and research provided by Hollnagel

15

(1991). our project is using known methods and addressing unknown problems.

However. this categorization is not clear-cut because. to our knowledge. the application

of cooperative distributed problem solving has not been implemented using our current

software.

We have developed knowledge bases for swan habitat needs and management of

montane wetlands. Each of our knowledge engineering sessions was approximately

three days in length, and utilized one to two experts each. In some cases. one of the

experts has been involved in previous expert system development. making knowledge

acquisition efforts relatively easy. In particular. this individual was more apt to provide

us detailed chains of logic in his reasoning without us needing to continually prompt him

to do so. One technique that we used extensively was to provide the experts with

detailed slide shows of actual field situations depicting wetland condition and

management options. This seemed quite effective. It continues to be difficult to have

our experts delineate their level of confidence in pieces of knowledge so that we might

assign uncertainties within a knowledge base. Although our only evaluation to date has

been qualitative. we have been pleased with the acceptance of the knowledge bases

that we have demonstrated to swan managers.

Looking towards the future, there are some issues that we envision will be particularly

challenging. First, developing the rules to implement cooperative distributed problem

solving as a specific expert system. in essence a meta-system guiding the rest, has

never been tried in this type of ecological venue. We are examining a number of ways

to utilize blackboard algorithms (Carver and Lesser 1992) in domains such as ours. The

multi-agent system of Pinson. Louca, and Moraitis (1997) which includes artificial

agents. blackboards, and a constraint base may hold promise. Similar to their system.

ours will be able both to make satisfying recommendations and to present incompatible

16

management options through the use of subgoals. Our subgoals are represented by

output from the knowledge bases as well as partially completed habitat plans for

individual management areas (Figure 2-2.) Local control structures on the blackboard

will critique and assemble partial plans from individual users, using rules to determine

when knowledge base or database interaction is necessary. The scheduling of when

such knowledge base or database output is necessary will be handled at a meta-level

similar to that described by Maitre and Laasri (1990). Our constraint satisfaction

approach will be implemented as knowledge bases invoked as part of the meta-level

control structure.

Another challenge will be determining the best way to propagate uncertainties in the

system. In the development of the current prototype, we intend to accept uncertainties

provided as output from individual modules at face value. Then, the global propagation

issues will be tackled within the cooperative distributed problem solving algorithm,

allowing each knowledge base module to pass its own internal confidence assessment,

essentially unchallenged, to the broader system. Future system development may

address uncertainty issues within individual modules.

Finally, although empirical evaluation of the system is planned, we anticipate that it will

not be straightforward. Gold standards for validation of various ecological components

and models do not exist, plus the system will be predicting and guiding future scenarios

as they, in fact, unfold. And, from a holistic perspective, we are developing decision

support for issues that appear to beyond the capability of single persons to

conceptualize and solve.

17

CHAPTER 3

IMPLEMENTATION OF A MULTIAGENT SYSTEM TO DECISION SUPPORT
FOR TRUMPETER SWAN MANAGEMENT

3.1 Introduction: Issue Definition. Decisions Supported. and Conceptual
Background

Waterfowl biologists and managers charged with the conservation of the Rocky

Mountain Population of Trumpeter Swans have expressed an interest in having decision

support tools and systems that would assist in evaluating management alternatives.

Such alternatives are oriented towards expanding the breeding distribution in Idaho,

Montana, and Wyoming, as well as expanding the wintering distribution, and re-

establishing traditional migration paths to the greatest extent feasible. To this end, I

chose to develop a multiagent system (Weiss 1999) that has, as its core, a queuing

model (Dshalalow 1995; Hillier and Lieberman 1995) to simulate the distribution of

swans in a large portion of the Pacific Flyway. Moreover, the decision support system

incorporates aspects of ecological knowledge related to swan breeding habitat quality, to

the ecology of palustrine wetlands, and to principles of flyway management of migratory

birds. Because this domain represents a problem inherently distributed in time and

space, the very nature of multiagent systems methodology seemed appropriate to apply

to such a domain (Sojda and Howe 1999.) For the same reason, I also attempted to

draw on the concept of cooperative distributed problem solving (Carver. Cvetanovic, and

Lesser 1991; Durfee, Lesser, and Corkill 1989).

18

The completed product is a decision support system for the management of trumpeter

swans, and here I describe the development of the multiagent system, its architecture,

and the methodologies employed in its construction and deployment. The purpose of

the system is to simulate the migration of swans via the use of agents as a way of

implementing a queuing system.

3.1.1 Overall Purpose: Temporal and Spatial Distributed Problem Solving

Queuing systems (Dshalalow 1995; Hillier and Lieberman 1995), generally, represent

the inherent spatial and temporal attributes of interrelated entities moving and waiting in

lines (queues). In the swan decision support system, one class of such attributes are

habitats scattered throughout a migration corridor. The entities are the swans,

themselves. Throughout the scattered habitats, climatic, ecological, and management

changes are occurring at many temporal scales. And, swans are continually moving

among habitats and areas, particularly as they proceed through annual life cycle events.

The agents have been designed to perform tasks and actions to cooperatively reach a

solution to the problem of predicting swan distribution via the central queuing model.

They do this by listening for, requesting information about, and reacting to changing

ecological knowledge and conditions, as well as interacting directly with the user.

Cooperative distributed problem solving (Carver, Cvetanovic, and Lesser 1991; Durfee.

Lesser, and Corkill 1989) and a related methodology, partial global planning (Durfee and

Lesser 1991), are based on the concept of individual entities (in this case agents) being

able to only solve the portion of a problem visible to them, and, they collaboratively

converge on comprehensive solution as information is shared among the entities. From

a broad point of view, my intent was to incorporate aspects of temporal and spatial

distributed problem solving into the decision support system (Figure 3-1), and specific

19

agents were designed to do just that. There are refuge agents that only assess the

ecological knowledge at select geographic areas. There also is a move agent that only

encapsulates general knowledge about how swans move among a broader set of sites

during transitions from season to season. Yet, through sharing information, not only are

swan movements simulated among the broader set of sites, but conditions at the specific

areas actually affect swan distributions throughout the network of sites.

Figure 3-1. Aspects of Temporal and Spatial Distributed Problem Solving Within the
Move and Refuge Agents.

20

The more specific purpose of the decision support system is to provide a predicted

distribution of trumpeter swans of the Rocky Mountain Population in one year increments

following a specified time line representing the major events in the annual life cycle of

swans (Figure 3-2.) It uses as one primary input the number of swans actually observed

at 27 areas in year, t •and the probability of movement from season to season among

those areas as another input. The queuing system then projects the number of swans at

time, t+1. across those same areas. Key ecological knowledge is used to adjust the

second input to the queuing model, eventually resulting in adjustments to the predicted

numbers of swan across the 27 areas. Fundamental elements of the 1998 Management

Plan for the Rocky Mountain Population of Trumpeter Swans (Subcommittee on Rocky

Mountain Trumpeter Swans 1998), plus vital ecological knowledge about swans. their

habitats, and flyway management principles were incorporated as expert systems to

provide this ecological knowledge. These expert systems assist the user provide and

update ecological information to the overall system.

Figure 3-2. The time line of inputs and outputs for the swan decision support system,
focusing on the queuing model.

21

3.1.2 A SYstem of Intelligent Agents: the Underlying Concepts

Wooldridge (1999) states that no accepted definition of an agent exists, although his

writings have helped to overcome this. I will accept the definition of an intelligent agent

as a computer system based in artificial intelligence, that is autonomous, collects

information about its environment (either virtual or real environment), and is capable of

independently taking the initiative to react to that input as appropriate (Weiss 1999;

Wooldridge 1999; Wooldridge and Jennings 1995). The decision support system for

trumpeter swan management consists of a minimum of three such agents (facilitator,

movement simulator, and refuge agents), but can include up to six more refuge agents

depending on the geographical complexity of interest by the user. Additional agents also

are embedded, somewhat transparently, within the DECAF software (Graham 2001;

Graham and Decker 2000; Graham et al. 2001) that was used to implement the entire

multiagent system. The framework I have implemented is conceptually similar to that of

Decker et al. (1997) who describe interface agents, task agents, and information agents

in their financial portfolio management system.

Different theoretical concepts have been developed as foundations for building intelligent

agents, and the belief-desires-intentions (BDI) agent architecture described by Rao and

Georgeff (1991; 1995) is at the core of my agents. Graham (2001) describes DECAF as

conceptually based on a BDI architecture and his particular interest was relating

intentions to the planning and scheduling features of DECAF. So, my system inherits

those characteristics. The aspect of BDI theory that I actively brought into play when

building my system is the concept of updating beliefs. It is implemented in my agents as

they determine the need for, currency of, and communicate about, the ecological

knowledge needed during a consultation. This is the underlying notion of agents

understanding their own environment and updating that knowledge when necessary.

22

The term, multiagent system, implies more than one agent interacting with each other

within an underlying communication infrastructure and without a procedural control

mechanism; and, the individual agents often are distributed and autonomous (Huhns

and Stephens 1999.) My system seems to fit such a definition. However, Durfee and

Rosenschein (1994) consider the differences and similarities between distributed

problem solving and multiagent systems, concluding that there are different perspectives

from which to view the distinctions. It is clear that my research borrows from both fields

(their "View 3"), and that my system emanated from concurrent emphasis on individual

agents and system behavior. My system was designed as a multiagent system (focus

on autonomy) that addresses problem resolution, at least partially, from a distributed

problem solving approach (focus on shared goals).

3.1.3 Expert Systems for Representing and Using Natural Resource Knowledge

Ecological knowledge is embedded in many parts of the decision support system, e.g.,

as logic within DECAF agents and as problem solving methods within individual agents.

However, the most substantial ecological knowledge accessible to the system originates

in expert systems that provide information within the context of individual refuges

(geographic areas). Expert systems (Russell and Norvig 1995) have been used in a

variety of domains where knowledge about that domain can be symbolically represented

through knowledge engineering (Scott et al. 1991). Often, such domains are

characterized by a lack of quantitative information about cause-effect relationships and

their associated uncertainties. Therefore, one must develop models and symbolic

representations of knowledge using heuristics and the problem solving methods of

limited experts. This seems to be the case in the field of natural resource management

generally, and in the domain of trumpeter swan ecology and management specifically.

have, accordingly, developed three expert systems: (1.) Breeding Habitat Needs for

'23

Trumpeter Swans, (2.) Management of Palustrine Wetlands in the Northern Rockies,

and (3.) Assessing the Contribution an Area Can Make Towards the Flyway

Management Plan for the Rocky Mountain Population of Trumpeter Swans. The use of

this knowledge is explained later.

White et al. (1985) provided a critique of expert systems in wildlife management but

referred to no actual systems. Davis and Clark (1989) list 203 citations in their

bibliography of expert systems in natural resource management. Also in 1989, the

journal, Ecological Modelling, devoted an entire issue to the use of artificial intelligence.

Hushon (1990) tallied 68 environmental expert systems in their review. And, from 1987

to 1997, the journal, AI Applications, was devoted solely to the use of artificial

intelligence in natural resources with many papers about expert systems. Clearly, the

field has expanded, and expert system development in the general arena of natural

resources has become more common. However, application of expert system or other

artificial intelligence methodologies to provide ecological knowledge for flyway

management of waterfowl or other migratory birds is not known to have been attempted

before.

3.1.4 Queuing Systems and Ecological Applications

Queuing systems are part of a broader schema known as systems of flow (Kleinrock

1975), where some commodity (e.g., swans) move from one place to another (e.g.,

refuges, wildlife areas) but are constricted in that movement through channels (e.g., life

cycle events). Queuing theory originally developed as a way to optimize manual

switching of telephone lines at the turn of the Twentieth Century in Denmark. It has

developed immensely since then and theory and applications have been developed

within Mathematics, Statistics, Computer Science, Operations Research, Transportation

24

Engineering, Telephony, and others (Dshalalow 1995). In queuing systems, stochastic

processes typically are used to model some or all of the various events, especially the

arrival of customers and the servicing of customers by a server(s) as related to waiting

line states. The purpose usually is to estimate waiting times and provide algorithm(s) for

optimizing commodity or customer service. In the swan queuing system, events related

to arrival and service are deterministic, representing the simple class of queuing system

described by Gross and Harris (1974). The use of movement probabilities in the swan

queuing model, although treated like percentages and not as probability distributions,

does change its deterministic flavour somewhat and allows for future modification using

stochastic-based service functions.

Applications of queuing theory in ecological and natural resource models are not

extensive and none are known to have been made to waterfowl or other bird migration.

There are applications where only the modelling of waiting times via a queue are

discussed, such as territoriality in oystercatchers (Haematopus ostralegus) (Ens et al.

1995) and visitor crowding in Yangminshan National Park, China (Chang 1997). Kokko

et al. (1998) focused on the queuing discipline, alone, in a model of lekking behavior of

black grouse (Tetrao tetrix). Another conceptual application to the optimization of

reservoir releases has been reported by Maniak and Trau (1974). Other models are

more developed in terms of queuing theory, itself. These include applications to harvest

of white-tailed deer (Odocoileus virginianus) (Jacobs and Dixon 1982; Cohen 1984),

social behavior of ants and other organisms (Blanckenhorn and Caraco 1992; Burd

1996), and groundwater management (BatabyaI1996).

25

3.2 Multiagent System Architecture

3.2.1 Basic Structure for a System of Cooperating Intelligent Agents

The decision support system was designed as a network of cooperating intelligent

agents, and DECAF is software that provides a framework for building such multiagent

systems. DECAF agents are programmed at a high level using a graphical user

interface that depicts tasks and actions and the relationships and programming logic

among them. These DECAF programs are called "plan files", and each agent is

uniquely represented by one; although multiple instantiations of the same agent type are

instantiations of the same plan. Such agents and their plans represent hierarchical task

network planning methodology (Erol et al. 1994.) DECAF tasks are the roots of the task

networks, and DECAF actions are leaf nodes (Graham 2001.) It is DECAF that provides

the embedded capability of scheduling and coordinating the various actions to be

undertaken as represented in the plan files of instantiated agents; and, it is DECAF that

executes the best approach for logical completion of the task networks. Such planning

and scheduling activity, obviously, must be somewhat dynamic as the system

progresses through a consultation.

At a lower Jevel, each task and its actions symbolized in a DECAF plan file are

programmed as a JAVA class and its methods, respectively. The agents communicate

internally and among each other by passing messages that follow the KQML

(Knowledge Query and Management Language) specification (Labrou and Finin 1997)

and via DECAF's internal architecture. Agents in my system either request other agents

to accomplish tasks (achieve performatives) or notify other agents that some aspect of

the sending agent's belief system has changed (tell performative). The latter is used in

responding to an achieve performative. Advertise performatives also are used by start­

up tasks in each agent to allow the Matchmaker agent (part of DECAF's internal

26

software engine) know the capabilities of each agent. Because the version of DECAF

used has not yet implemented complex planning and scheduling algorithms, the

Matchmaker advertisements in my system have been implemented in anticipation of

future augmentation of the swan decision support system.

All agents are started manually by the user through standard DECAF interfaces. The

facilitator agent, called 'fac", handles interaction with the user and notifies the

distribution simulator agent, called "move", that the user wishes to proceed with a

simulation. The facilitator agent also actively listens for knowledge about specific

refuges that could be changing. The move agent requests refuge agents to provide

information, assembles all necessary system data, runs the queuing model, and writes

output files. From one to seven agents representing knowledge about specific areas

also are activated by the user. These latter agents are instantiations of a generic

"refuge lt agent and are given two letter names corresponding to real geographic

locations (br =Bear River, ca =Camas, cv =Centennial Valley, gl =Grays Lake, ip =
Island Park, jh = Jackson Hole, and um = Upper Madison; see Table 3.1.) Each refuge

agent is charged with determining the status of its own knowledge regarding water level

management, flyway management, and breeding habitat quality. If it is determined that

additional knowledge is necessary, the facilitator agent then handles interaction with the

user by requesting that specific expert systems be run.

A configuration file (Appendix 1) is manually edited by the user and used automatically

by the various agents to set system parameters regarding how the queuing system will

be run. This includes values, discussed later, for the "breeding_threshold_value" and

the "remain_in_queue_multiplier". Through the configuration file, one also can disable

the interaction of either one, two, or all ecological knowledge bases with all active refuge

27

agents. Because they can change from run to run, configuration parameters are

archived as part of automatically generated output files pertaining to each run.

Table 3-1. Names of servers in the queuing model and associated geographic locations.
Refuge, here, is used to denote servers for which their associated probabilities of movement can
be directly affected by the move agent.

1. locations are denoted in Figure 3-4.

Server Name Geographic Location Treated as
a Refuge

Canada everything in Canada except Okanogan
Okanoaan South Central BC
Freezeout Lake near Fairfield, MT
Flathead Valley in Northwest MT
Upper Madison River Quake Lake (MT) and all upstream areas T. X
Mid-Madison River Quake Lake through Ennis Lake (MT) T.

Lower Madison River below Ennis Lake (MT)

Centennial Valley
in Southwest Montana, includes Lima Reservoir.

XRed Rock Lakes NWR, Elk, Cliff, and Wade Lakes 1.

Teton Basin Victor to Teton, 10-"

Swan Valley vicinity of Swan Valley, 10 along South Fork of the
Snake River 1.

Island Park in Southeast 10 and Northwest WY 1. X
Lower Henry's Fork Ashton to Roberts, 10 1

.

Paradise Valley
Yellowstone River between Yankee Jim Canyon
and Livingston (MT) 1.

Yellowstone Lake/River Yellowstone NP (WY)

Jackson Hole
includes National Elk Refuge and Grand Teton NP

X(WY)
Green River in Southwest WY, includes Seedskadee NWR 1.

CamasNWR near Hamer, 10 1. X
American Falls Reservoir West of Pocatello, 10, includes t .

GrayS Lake NWR near Wayan, 10 1
. X

Salt River along 10IWY border above Palisades Reservoir I-

Bear Lake/Soda Springs
Southeast 10, includes Bear Lake NWR and areas
along the Bear River 1.

Bear River MBR near Brigham City, UT I. X

Lower Snake River
from Minidoka NWR (10) to the Oregon border,
includes Oeer Flat NWR

Rubv Lake NWR Northwest NV
MalheurNWR Southeast OR
Summer Lake WMA South Central OR
Central Valley, CA North Central California, includes several NWRs

28

3.2.2 Queuing System Configuration

Trumpeter swans of the Rocky Mountain Population have been surveyed routinely in

September across large regions of Western North America. and that information was

organized for 27 specific areas. This forms the structure of the 0/88/28 queuing system

(Oshalalow 1995; Kendall 1953) which I developed. It models the movement of birds

through a large portion of the Pacific Flyway. distributing them across time and space in

one year increments.

Hillier and Lieberman (1995) describe four key components to any queuing process from

an Operations Research perspective: the input source (customer arrival times and

patterns), the queue (number of customers awaiting service), the queue discipline.(order

of customer service), and the service mechanism (the process and associated time to

serve customers). Oshalalow (1995), considering a more theoretical Mathematics

perspective, also includes three additional components: the number ofservers, the

vacation or idle discipline (the process and time when a server has no customers to

serve), and the network configuration (direction of service among multiple servers and

steps). The configuration of the swan movement queuing system is depicted in Figure

3-3.

29

practical, computing purposes. Each server governs, through the movement probability

matrix, the number of birds allowed into itself. There are 28 servers in the system, 27

geographic areas and one unknown buffer. The latter handles imprecise situations

where the underlying movement likelihoods are undetermined. The network

configuration is provided by the algorithm that uses the movement probability matrix to

distribute swans among the 27 areas. The service mechanism is embedded within

additional problem solving algorithms of the move agent and iteratively steps through the

seasons to provide a predicted distribution of swans for the subsequent breeding

season. Additional complexity is modeled in the algorithm that is used to adjust the

matrix of movement probabilities (see section on the DECAF task, dss_Sim). The

amount of interchange among Canadian breeding and U.S. breeding trumpeter swans of

the Rocky Mountain Population is unknown, but generally thought to be small.

Therefore, the service mechanism tracks the broad breeding queue origin of birds.

When entering subsequent intermediate queues, birds are allowed to mix among

servers. However, via that tracking function, Canadian birds are not allowed to be

serviced by U.S. servers, and vice versa, when entering the subsequent breeding

queue. The only exception to this is minor in magnitude, affecting less than 0.5 percent

of the entire population. Based on expert opinion, birds are allowed to move from

Summer Lake, OR to Okanogan, BC during northward migration. This, along with the

movement probabilities, themselves, are primary components of the network

configuration.

3.2.2.1 Knowledge Engineering for the Movement Probabilities

No quantitative information exists about trumpeter swan movements among seasons.

Therefore, values for movement probabilities were gathered by conducting knowledge

engineering sessions utilizing three experts working together for two days to arrive at

31

consensus about those values. Two of the experts were waterfowl and refuge biologists

with the U.S. Fish and Wildlife Service and one was a waterfowl biologist with the Idaho

Department of Fish and Game. They were asked to provide their best estimates of

these values using their own knowledge, informally consulting a database of neck collar

resightings which one of them had designed, and using existing seasonal survey data.

Data from the neck collar database was not directly used to estimate probabilities

because it is thought to be biased, representing birds both marked opportunistically and

resighted opportunistically. This data can be used, nonetheless, to verify the existence

of certain migratory pathways. Ideally, movement information would have been

collected for all Canadian breeding and staging areas. Although a request was made for

such information from the Canadian Wildlife Service, the information was not received.

Because independently providing such information is not a trivial task for them and

expanding the personal level of knowledge engineering I could provide was not feasible,

I did not pursue this aspect. Therefore, I limited the movement information to that

provided by the U.S. experts.

The experts were unable to provide direct probabilities of movement from area to area;

but, they were willing to provide the likelihood that a bird in each of 27 areas would be

seen in each area (including the starting area) during the subsequent season. Due to

movement among areas within a season, however, the sum of these raw likelihoods for

a particular season can exceed one. To overcome this, each likelihood value was

weighted by dividing it by the sum of all likelihoods for the season. Such a weighted

32

value was named a probability of movement from Area x to Areay (although it is not

represented by an empirical probability distribution, per se) and is represented as:

L: y = raw likelihood value, representing expert opinion of the percentage of
birds from Area x likely to be seen during the subsequent season in
Areay

Ms., = probability of moving from Area x to Areay

LX.l'
MT.y = 28 .

LLx. y

y=1

This does assume that, during anyone season, swans will be found in the same

proportions among areas at the end of the season as represented by the likelihoods of

movement into that area at the beginning of the season. At this time, no data exists to

test this assumption. The raw likelihood values are found in Appendix 3.

Table 3-1 and Figure 3-4 lists the names of the servers and their corresponding

geographic locations. These were chosen by the experts during the knowledge

engineering session as logical groupings of either traditional survey units or areas of

management importance.

33

Figure 3-4. Geographic locations of areas (servers) in the Tri-state Region used
in the queuing system.

34

3.2.2.2 Queuing Model Output

The output from the queuing model is a predicted number of swans pertaining to 27

areas and the unknown queue for four seasons. Although designed to be transparent to

the user in future system augmentations, this information is written to the workstation

console window associated with the move agent in the current version of the system for

continuing verification and validation purposes. Queuing model output is central to the

overall decision support system. Output from the latter and its format is discussed later.

3.2.3 Service Mechanism: Connecting Agents and Expert SYstems

The queuing system's service mechanism is represented by an algorithm describing how

swans move through the flyway and is embedded within the tasks of the agents

themselves and their interaction within the multiagent system. Details of the work of the

DECAF tasks and actions as they implement the service mechanism are addressed

individually in subsequent sections and the Appendices. Here, I describe the high level

algorithm that constitutes the service mechanism.

For any transition stage, comprised of an input source and set of servers, swans

potentially move from each server to every other server, including possibly staying in

place (not moving). In the simplest of cases, i.e., the effect of using expert system input

is not utilized; only the matrix of base probabilities of movement ([Mx,y]) is used to

distribute birds to the next queue. The refuge agents parse expert system output to

determine whether a server (refuge) has conditions of acceptable or unacceptable

quality for swans. When a refuge agent determines that a server (refuge) has conditions

of acceptable quality for swans, that server accepts its base probability for that seasonal

transition. If that is not the case (and conditions are unacceptable), that server is

35

allowed to accept only 0.1 of the swans indicated by its base probability. This

redistribution value is arbitrary and is set by editing the configuration file. The default

value of 0.1 also is arbitrary, but represents the relatively strong philopatry that is

thought to exist in trumpeter swans.

Obviously, the birds not accepted by a server must be redistributed, and this is

implemented in the following way. The remaining 0.9 of the swans are sent to the server

that had the next highest base probability. For example, for server 1, this would be

where M 1, y is maximum; and the 0.9 of the swans would be sent to server y. Should

there be more than one such server y (Le., there is a tie) the 0.9 of the birds are sent to

the server closest in straight line distance to the server not accepting all its swans (in this

example, server 1). Because it was felt that there was no ecological, migratory

significance among movement between some areas, some areas were grouped. This

resulted in assigning the same distance from one area to more than one other area.

E.g., a distance of 468 km was assigned to the distance from Flathead Lake to Teton

Basin, Swan Valley, Island Park, Lower Henry's Fork, and Jackson Hole. Such grouping

results in potential ties in straight line distance at this stage of the algorithm. When this

occurs, the 0.9 of the birds are distributed equally among those areas. There has not

been any experimental work published that has quantified migration parameters for the

Rocky Mountain population of trumpeter swans, and the above algorithms are based on

information gleaned from the various knowledge engineering sessions. See Appendix 4

for the distance values and groupings.

How the recommendations from each expert system are used to affect the functioning of

servers varies among expert systems. The expert system that assesses breeding

36

quality provides a numeric rating from 0-100 and affects servers in the breeding queue

only. This rating is described within the expert system, itself, as:

...a somewhat arbitrary assessment of the degree to which this wetland

represents ideal habitat for breeding trumpeter swans, based on a synthesis of

all information. On a scale of 0-100, the higher the number, the more confident

one can be that satisfactory habitat exists. A zero indicates that at least one

habitat component is severely compromised.

The threshold of breeding habitat rating to be used by the decision support system to

determine acceptability in the distribution algorithm is arbitrary and can be set by editing

the configuration file. A rating of 50 indicates equal confidence in the breeding habitat

being either good or poor. A rating of 60 represents the conceptual value for minimally

satisfactory habitat and was therefore used as the default value in the distribution

algorithm.

Recommendations for water level management from the montane wetland expert

system are used to determine server acceptability in all four queues based on a partial

implementation of concepts generated during knowledge engineering sessions as

represented in Table 3-2. The system only considers the short term expected

consequence on swans when alternate habitat is not available. From the table, a "+"

and "0 " allow a server to accept swans. A "_" results in a server accepting only 0.1 of

, the swans and the remainder are redistributed.

37

The expert system for assessing the contribution an area can make towards the flyway

management plan for the Rocky Mountain population of trumpeter swans provides an

assessment of whether a server (refuge) can, or cannot, make such a contribution for

the wintering and breeding queues. Using this expert system output, the decision

support system allows a server to accept all its birds, or accept 0.1 of the birds and

redistribute the remainder.

It should be pointed out, here, that the expert systems only indirectly affect the

functioning of the server mechanism. From a software perspective, the expert systems

exist independently of the multiagent system. However, the facilitator agent can ask the

user to run an expert system if it is determined to be needed. And, the agents interact to

determine the existence of appropriate expert system output, and they parse information

in that output for eventual use in the queuing model. In any situation where an expert

system is unable to provide a recommendation for any reason, the default movement

probability values are accepted.

3.2.4 System Output

Final decision support system output consists of two similar ASCII text files, each with

the same name but one with a ".txt" extension (Figure 3-5) and the other a ".dat"

extension. The latter differs slightly in format so that it can be more easily imported as a

data file for the Matched Pairs Multivariate Permutation Test (MVPTMP) statistical

analysis program (Mielke and Berry 2001; Mielke et al. 1996). The basic output data are

the predicted numbers of swans at each area for the breeding season subsequent to

that of the starting year, as generated by the queuing model. These swan data are

combined with both system configuration and user preference information for archive

39

purposes. Output data and information are assembled cooperatively by the facilitator

and move agents, with files actually written by the latter.

File: Idata5/d ecafldsslout/rihard_sojda_1992_1992_br_te st_cvjh_ip. txt

BREEDING THRESHOLD VALUE: 60

REMAIN IN QUEUE MULTlA..IER:0.1

IGNORED EXPERT SYSTEMS: None

ACTIVE REFUGE AGENTS: cv jh ip

CANADIAN BIRDS INCLUDED: Yes

SIMULATED NUMBERS USED: No

Refuge Mask (available queue = 1, restricted queue =0):

Ref Year PO \Nt PR BR

br 1992-1993 1 1 1

ca 1992-1993 1 1 1

cv 1992-1993 0 0 0

gl 1992-1993 1 1 1

ip 1992-1993 0 1 0

jh 1992-1993 0 1 0

um 1992-1993 1 1 1

Simulated Numbers of Swans:

1660 0 0 01 00 15007 100250 4 5 55 4 45 0 5 0 1 133934056 2205

Figure 3-5. Example of final output file from the decision support system.

3.2.5 Hardware. OS. software. and compilers used

The decision support system has been implemented on a Sun Ultra 80, dual-processor,

400MHz workstation with Solaris 8, UNIX operating system. DECAF software was

version 2.10 and the related PlanEditor was version 3.0, both from the Computer and

Information Sciences Department at the University of Delaware. JAVA compilers used

were JDK 1.2.2 from Sun Microsystems. C compilers used were version 6 alsofrom

Sun Microsystems. Expert systems were developed using Exsys Developer (version

8.0) from Multilogic Inc. on a personal computer with Microsoft Windows 98 operating

system. They were then ported for implementation on the workstation using Exsys'

40

UNIX rulecompiler (version 8.0.) Exsys' Webruntime (version 8.0) and Apache

webserver (version 1.3) software were used on the workstation for final implementation

of the expert systems. All agents, expert systems, and necessary files and data for the

operational decision support system reside on the UNIX workstation; and, the system is

run there.

3.3 Agent Specifics

In this section, I describe the specifics of the agent tasks that are central to the

ecological aspects of distributed problem solving and the queuing system functions.

Emphasis is placed on functions central to implementing the concept of intelligent agents

and how they fit together as a multiagent system. I do not discuss those agent tasks

that are necessary within DECAF but are only system overhead or agent

communications and are not related to the specifics of ecological problem solving.

Examples are _Startup and _Shutdown tasks. Also, the nature of KQML message

protocol dictates that return-type messages be sent from receiving to sending agents in

certain cases. I generally do not delineate such details in this section. Such particulars,

as well as those of individual actions within tasks, can be found in Appendix 5; and, the

associated .Isp and .plan files necessary for the DECAF implementation can be found in

Appendix 6. All messages being sent within or between agents follow KQML

specifications.

3.3.1 The Facilitator (fac) Agent

The facilitator agent handles interaction with the user and notifies the move (distribution

simulator) agent that the user wishes to proceed with a simulation. The facilitator agent

also actively listens for knowledge about specific refuges that could be changing. If it is

determined that additional knowledge is necessary, the facilitator agent then handles

41

interaction with the user by requesting that specific expert systems be run. All

communication with the user is via text I/O at the console window from which the

facilitator agent was started. Figure 3-6 is the DECAF plan file for the facilitator agent.

42

43

-EQ
)

0
)

roI
-

o~"02Q
)

£l
-

.E~<+=ccoQ
.

LL-cowoQ
)

..cf-(
0I

C
")

Q
)

I
-

::J
0

)

i.L

3.3.1.5 dss_RunMove

The number of refuges activated is monitored. Looping through the list of refuges,

separate messages are sent to the move agent requesting that it initiate its activities by

assembling refuge information from each refuge agent.

3.3.1.6 dss_Cleanup

This task provides information to the user about a just completed consultation and sends

a message to dss_UserAction, essentially starting another consultation.

3.3.2 The Refuge Agent

The refuge agent provides the framework for actual instantiations of this agent type. An

agent called "refuge" is never implemented, per se. Refuge agents are activated that

have the two letter names as indicated earlier, although they are based on their common

DECAF files (refuge.lsp and refuge.plan) and the associated java classes. There may

be one to seven such agents active during a consultation. Figure 3-7 is the DECAF plan

file for the generic refuge agent. The purpose of each individual refuge agent is to

determine the status of its own knowledge as needed for the particular consultation. If

they are current, they report this belief to the move agent. If not, this alternate belief is

communicated to the facilitator agent so that the user can be prompted to run the

needed expert systems.

45

46

The refuge agent consists of three primary tasks, each one performing analogous sets of

actions but gathering information and updating its beliefs about one of three different

segments of knowledge: breeding habitat quality (dss_Breeding), wetland management

recommendations (dss_Habitat), or contributions to flyway management (dss_Flyway.)

Because each of these primary tasks are identical in their basic functioning, I will discuss

them together.

3.3.2.1 dss_Breeding, dss_Habitat, and dss_Flyway

Each task listens for the move agent's need for updated information about ecological

knowledge. Upon hearing this message, these tasks check the decision support

system's respective databases to determine if any expert systems need to be run. If any

do, an achieve message(s) is sent to the facilitator agent, requesting that it, in turn,

request the user to run the appropriate expert system(s). It is important to note there

can be more than one refuge agent active at this point, but all I/O with the single user is

handled via the facilitator agent. Each of the refuge agent's primary tasks then waits,

listening for a return message indicating that their respective expert system(s) has been

run. Upon hearing that information, the task then parses the expert system output file

and updates the appropriate database. In the case of dss_Breeding, the threshold value

from the configuration file is compared with the parsed value and determines a server's

(refuge's) ability to accept swans. In the case of dss_Flyway, the parsed value is

Boolean and is used directly to determine server ability. In the case of dss_Habitat, the

parsed value is used in conjunction with rules based on the knowledge represented in

Table 3-2 to determine server availability. See the section, "Service Mechanism:

Connecting Agents and Expert Systems" for further details about each of these three

algorithms. If either the database was current at the start and no expert system runs

47

were needed, or it has now been made current, the move agent is notified of this

updated belief by each, individual task of the refuge agent.

3.3.3 The Move Agent

The move agent contains the core of the queuing system and focuses on simulating the

distribution of swans. It requests refuge agents to provide information, assembles all

necessary system data, runs the queuing model, and writes output files. Message

passing between the move agent and the others is routine. Figure 3-8 is the DECAF

plan file for the move agent.

48

49

-EQ
)

0>roQ
)

>oEQ
)

s:.....l
-

.EQ
)

~croa.u..«owoQ
)

.r::.
l-eOI
M~:::J
0>
u:

3.3.3.1 dss_DataTracker

This task maintains the internal information for the move agent about the current

consultation as received from the facilitator agent.

3.3.3.2 dss_Assemble

This task sends separate messages to each active refuge agent for each piece of

ecological information (breeding, wetland, flyway) that may be needed. The task then

waits for all messages to return from the refuge agents indicating that all databases are

current. It then notifies the local task, dss_SimDispatcher, of this belief.

3.3.3.3 dss_SimDispatcher

After determining that information has been assembled for all refuges by listening for

information internal to the move agent and interacting with the JAVA utility class, this

task requests that the task, dss_Sim, be run for each year. These runs are requested in

one year increments, looping through the entire time interval as originally requested by

the user. The task, dss_SimDispatcher, creates the final output files, but the only

information included at this stage is header information and information describing the

current consultation (Figure 3-8.) Actual output data of simulated swan numbers is

written as part of a different task, dss_Sim. When the task, dss_SimDispatcher, hears

that all simulations have been run, the facilitator agent is notified of completion. A

request also is sent to the facilitator agent to inquire about the user's interest in

additional activity.

3.3.3.4 dss_Sim

After examining databases which have already been made current by the refuge agents,

this task creates a mask file that governs server acceptability (whether particular refuges

50

are considered as having habitat of acceptable quality) for the different queues. Using

the mask, this task adjusts the matrix of base probabilities of movement for the current

server (refuge and season). The earlier section, Service Mechanism: Connecting

Agents and Expert Systems, provides more details about the algorithm. Next, the

central queuing model, itself, is run. This provides the simulated distribution of swans,

appending these numbers to the consultation output files created by the task,

dss_SimDispatcher (Figure 3-8). Each time the task, dss_Sim, is executed, the output

files for the consultation are appended with the additional, simulated swan numbers. A

message is sent internally to notify the task, dss_SimDispatcher, that the queuing model

has been run for the year requested.

3.4 The Expert Systems

Three expert systems have been developed: one for assessing the quality of trumpeter

swan breeding habitat that affects servers in the breeding queue; one for recommending

water levels in montane, palustrine wetlands that affects servers in all queues; and one

for assessing the contribution a particular site can make towards meeting flyway

objectives that affects servers in the wintering and breeding queues. Because the

expert systems actually write output files to the hard drive of the workstation, access to

the working version that is compatible with the overall decision support system is

password protected and is accessed currently at

http://swan.msu.montana.edu/as/es.html.

I have followed the evolutionary prototyping method of software development

recommended by Sprague and Carlson (1982) and Carter et al. (1992). Essentially, this

requires developing a prototype system and conducting verification and validation as

part of the development process, continually refining the system. The actual process

51

followed for building the prototype consisted of five steps: (1.) completing a

requirements analysis to determine the question to be addressed, (2.) conducting a

knowledge engineering workshop to assemble the pieces of pertinent knowledge, (3.)

constructing a flowchart of the underlying ecological logic in the system, (4.) encoding

that knowledge into digital format, and (5.) making the system available on the World

Wide Web. All three expert systems were developed in this manner and followed the

approach described by Sojda et al. (in press) for the breeding habitat expert system.

All knowledge engineering sessions were led by two knowledge engineers using

standard techniques (Scott et al. 1991) and varied in length from 1-3 days and used 2-4

experts. Notes from those sessions along with further knowledge engineering details

can be found at http://swan.msu.montana.edu/cygnet. Knowledge acquired from the

experts included both facts and problem solving logic. Such knowledge was encoded

with a commercial expert system shell, using typical production rules and organized into

decision trees (Figure 3-9.) Such rules are generally of the form:

/F the wet/and is generally ice-free during the pre/aying period
AND 30% of the wet/and has Sago pondweed present

THEN the wet/and should be considered good pre/aying habitat

Utilities within the development shell were used for verification of logical consistency of

each expert system. The utilities automatically do a static check for problems such as

incomplete rules and trees and can also dynamically check the system by stochastically

simulating runs. Each expert system was checked using 500,000 such simulated runs.

52

Figure 3-9. Example of a tree structure used to encode knowledge in the wetland
management expert system as depicted graphically in the expert system shell.

3.4.1 Breeding Habitat Needs for Trumpeter Swans

This expert system helps determine the quality of a wetland as breeding habitat for

trumpeter swans based on knowledge of: (1.) wetland depth, (2.) size of the wetland,

(3.) growing season length, (4.) food resources for pre-laying birds, (5.) condition of

emergent vegetation and other aspects of providing suitable nest sites, and (6.) brood

rearing requirements. Knowledge engineering resulted in our categorizing what were

determined to be pertinent facts into six decision trees and twenty standalone rules, for a

total of 157 total rules. The six trees are: depth and size of the wetland, length of the

annual ice free period, prelaying food resources, nest site availability, propensity for nest

flooding, and brood habitat. The logical flow of how these decision trees and production

53

rules interact is found in the flowchart depicted in Figure 3-10. The expert system also

uses 18 goals and 21 variables and interacts with the user through 27 potential

questions. The actual output value is an integer from 0 to 100; the higher the number,

the more confident one can be that satisfactory habitat exists. A zero indicates that at

least one habitat component is severely compromised. The output value is a

characterization of the degree to which the wetland represents ideal habitat for breeding

trumpeter swans.

Figure 3-10. Organization of knowledge in the expert system, "Breeding Habitat
Needs for Trumpeter Swans."

54

The primary knowledge engineering session was three days in length. One person,

Leigh H. Fredrickson, whose expertise was utilized was a professor from the University

of Missouri specializing in waterfowl and wetlands ecology. The second, Todd A. Grant,

was a wildlife biologist for J. Clark Salyer National Wildlife Refuge. The third expert,

Murray K. Laubhan, was a wetlands research ecologist with the Midcontinent Ecological

Science Center of the United States Geological Survey. I was one of the knowledge

engineers and the other was David B. Hamilton, an ecologist with the Midcontinent

Ecological Science Center of the United States Geological Survey.

3.4.2 Management of Palustrine Wetlands in the Northern Rockies

This expert system suggests seasonal water levels within a one year time frame for

palustrine emergent wetlands. Actual recommendations are provided as either high,

medium, or low. It is intended for areas in the Intermountain West, but may have limited

application elsewhere. Recommendations are provided for four seasons and are based

on knowledge of: (1.) vegetation, (2.) hydrology, (3.) water quality, (4.) soils, (5.)

weather, (6.) wetland dynamics, and (7.) migratory bird management objectives (Figure

3-11). Because it is a planning tool, the system does not attempt to provide

recommendations for the current season. Knowledge has been organized into 43 trees

and 10 standalone rules, for a total of 1882 rules. In addition, the expert system utilizes

18 goals and 20 variables and interacts with the user through 78 potential questions.

55

Figure 3-11. Organization of knowledge in the expert system, "Management of
Palustrine Wetlands in the Northern Rockies."

The knowledge engineering session was three days in length. Both people whose

expertise was utilized were professors specializing in waterfowl and wetlands ecology,

each with more than 30 years of such research experience. One, Leigh H. Fredrickson,

was from the University of Missouri; the other, John A. Kadlec was from Utah State

University. I was one of the knowledge engineers and the other was David B. Hamilton,

an ecologist with the Midcontinent Ecological Science Center of the United States

Geological Survey.

56

3.4.3 Principles of Flywav Management

This expert system is actually entitled, "Assessing the Contribution an Area Can Make

Towards the Flyway Management Plan for the Rocky Mountain Population of Trumpeter

Swans." It provides an ecological assessment about whether an area can make a

contribution towards breeding and wintering conditions related to population and

distribution goals as depicted in the 1998 Flyway Management Plan for the Rocky

Mountain Population of Trumpeter Swans (Subcommittee on Rocky Mountain Trumpeter

Swans 1998.) This logic is depicted in Figures 3-12 and 3-13. Knowledge has been

organized into 3 trees and 1 standalone rule, for a total of 165 rules. In addition, the

expert system utilizes 10 goals and 23 variables and interacts with the user through 13

questions.

Figure 3-12. A flowchart depicting the knowledge and logic about principles of flyway
management related to addressing the question: "Can this area contribute to the Rocky
Mountain Population 1998 Plan's breeding population goals?"

57

Figure 3-13. A flowchart depicting the knowledge and logic about principles of flyway
management related to addressing the question: "Can this area contribute to the Rocky
Mountain Population 1998 Plan's wintering population goals?"

This expert system uses the September survey data for the period 1983-2000 along with

seven and five year trends in that data. Data are from unpublished reports of the U.S.

Fish and Wildlife Service and archived at Red Rock Lakes National Wildlife Refuge. To

minimize the variability when examining multiple year trends, only numbers of white

birds were analyzed. Exact multiple response permutation procedures (EMRSP) of

Mielke and Berry (2001) were used to determine the presence of an autoregressive

pattern in multiple seven or five year windows, depending on data availability. For the

years 1989-2000, the data were examined for the presence of a pattern over seven

years. For the years 1987-1988, the data were examined for the presence of a pattern

over five years. A trend was arbitrarily defined as occurring when the p-value was less

58

than 0.05. In situations where a trend existed, a linear regression analysis was then

done using SAS software (SAS Institute, Inc. Cary, N.C. 2000) to determine whether the

previously determined pattern represents an increasing or decreasing trend. The value

corresponding to the appraisal of a trend over the multiple year period was then

assigned to the most recent year in that period. For example, for the period 1986-1992,

no trend was detected for the Centennial Valley. The expert system would then use this

as the value for 1992.

There were two knowledge engineering sessions. The first focused on flyway

management as administered in the current system of Flyway Councils and coordinated

by the federal Office of Migratory Bird Management. It was three days in length and

involved four people. Three, John E. Cornely, David E. Sharp, and Robert E. Trost,

were specialists in migratory bird management from the United States Fish and Wildlife

Service; and one, Murray K. Laubhan, was a wetlands research ecologist with the

Midcontinent Ecological Science Center of the United States Geological Survey. The

second session was slightly different and centered on the ecological nature of how to

address the requirements of migratory birds distributed over time and space. Much of

the knowledge elicited in the second session has been incorporated in the service

mechanism of the queuing system as well as in this expert system. There were two

people involved in the second session. One person, Leigh H. Fredrickson, was a

professor from the University of Missouri specializing in waterfowl and wetlands ecology;

the other, Murray K. Laubhan, was a wetlands research ecologist with the Midcontinent

Ecological Science Center of the United States Geological Survey. For both sessions, I

was one of the knowledge engineers and the other was David B. Hamilton, an ecologist

with the Midcontinent Ecological Science Center of the United States Geological Survey.

59

3.5 Conclusions

The purpose of this project was to build a decision support system by applying

multiagent system methods and integrating queuing system theory. My system does, in

fact, simulate the movement of swans in time and space, relying on ecological

knowledge to do so. Here, I present observation-based conclusions about the

framework developed and the methodologies used in the multiagent system. Evidence

indicating whether intelligent agents were developed is examined first. Then, an

appraisal is made of queuing systems for modelling waterfowl migration. Empirical

validation of the system based on the simulations of swan movements, however, is

described elsewhere.

3.5.1 Evidence for a SYstem of Cooperating Intelligent Agents

Multiagent systems are relatively new and are not yet typically developed with standard

("off-the-shelf') methods and procedures. In addition, such systems have not yet been

applied in the field of waterfowl ecology. Because I was attempting to build a multiagent

system oriented towards modelling swan movements, it seems of primary importance to

show that a system of cooperating agents was, indeed, developed. I will show that the

three criteria that fundamentally define an agent have been met in my system: agents

must be autonomous, capable of sensing their environment, and able to take action in

response to changing conditions. The agents' listening and response capabilities

provide the nexus for addressing distributed problems. Furthermore, the perspective of

a BDI architecture was adopted, allowing the system to center on a belief structure and

the ability to update those beliefs as appropriate.

60

3.5.1.1 Autonomy

At a low level, each agent exists as its own set of programming elements, linked only by

the action execution scheduling of DECAF. In my system, each agent is both started

and shut down independently of each other. In addition, the persistence of each is not

dependent on any external elements aside from hardware, operating system, and basic

DECAF process continuance. At a higher, algorithmic view, the agents also are self­

directed in that they do not require direct commands from other agents to initiate their

own tasks. These characteristics lead me to conclude that my agents do embody the

essential agent criteria of autonomy. The latter aspect of being self-directed, however, is

somewhat vague when programming DECAF agents; Le., it is not total autonomy that

exists. Certain tasks within an agent may require information from another agent as a

trigger, or tasks may be initiated as the result of an achieve performative having been

sent. DECAF agents are programmed, from a conceptual perspective, as a series of

production rules. The underlying software schedules the execution of tasks and actions

partially based on those rules. In a similar vein, the provisions of an action (antecedent

of a rule) in one agent can often have its roots in the outcome of an action (consequent

of a rule) in a different agent via passing of KQML messages. The development of my

multiagent system demonstrates aspects of strong autonomy in agents, but also utilizes

the strength of DECAF to build systems of communicating and cooperating agents.

3.5.1.2 Sensory Capability: Listening

In general it is important that agents be capable of sensing their environment, but this

can take several forms. The decision support system does not have any direct

connection to sensors representing incoming data streams from the physical world. The

system does, however, have the capability of listening, or sensing, at two levels. First,

the nature of DECAF agent communication through message passing hinges on an

61

agent's ability to both send and receive messages. This is inherent in the standard,

"non-local task" for inter-agent communication in DECAF. Related to this is the parsing

of "provision cells" at the level of JAVA methods to transfer actual information within and

between agents. Together, these make up a kind of low-level listening capability,

listening for messages among agents. In my system, such messages are both providing

information (tell performatives) and requesting other agents to do something (achieve

performatives). In addition, the facilitator agent has an active listening capability for

determining when particular files pertaining to ecological knowledge have been written to

the hard drive. It should be pointed out, however, these files result from real-world

interaction of the user having run the expert system(s). I conclude that my agents do

collect information about their environment, but recognize that this is implemented in a

low-level, virtual environment. And, I recognize that these are not sophisticated listening

facilities or data stream handlers as might be necessary in some other applications.

3.5.1.3 Response Capability

As conditions change in the virtual world of the decision support system, each agent

responds as appropriate. Such response varies from requesting that the user run an

expert system, to sending and responding to messages among agents, to parsing

ecological information from newly arrived files, to running the base queuing model once

information is complete. It is such response to changing conditions, as perceived by the

agents, that allows the queuing system's service mechanism to function. It is also such

response that is the heart of agents addressing, cooperatively, the distributed nature of

flyway management.

62

3.5.1.4 Relationship to BDI Architectures

As pointed out earlier, Graham (2001) has delineated how the DECAF framework is

based on the concept of intention revision and how this has been implemented via the

scheduler. Furthermore, agents are programmed as hierarchical task networks. It is the

provision of information to populate and update the antecedents of rules governing the

networks that is, in fact, setting and updating the agent's beliefs. The connections

between listening capability and responding to changing conditions is an effectual

implementation of a SDI agent architecture.

3.5.2 Queuing Systems and Waterfowl Migration

Queuing systems have not been previously used as a modelling paradigm for waterfowl

migration. The intrinsic character of queuing theory is to represent the spatial and

temporal distribution of entities and how they move, are placed in queues, and are

serviced. The decision support system made use of these characteristics in modelling

the movement of swans through their migration corridor. The parallel of queuing system

servers and service mechanisms with waterfowl management areas and annual life

cycle events made the transfer of the theory to practical application straightforward.

Furthermore, the modularity of DECAF agents provided me the opportunity to apply the

internal agent tasks and actions to the specific elements of queuing system theory. The

nature of agents as independently responding to their environment allowed them to

function as ideal entities for implementing the service mechanism in my model of

waterfowl migration.

3.5.3 Future Directions

An inordinate number of examples of research related to parameterization of the various

components of the decision support system could be suggested. These are not

63

discussed, here, because suggestions for refining model parameters should be based

on validation experiments and sensitivity analysis. I will suggest some ways the system,

itself, might be improved, however. There also is room for developing and shaping

conceptual theory associated with multiagent systems and applying queuing theory as

frameworks for ecological modelling.

3.5.3.1 System Implementation Improvements

The following is a list of several possible system improvements:

• Use applets for a graphical user interface, especially for system startup

parameters.

• Provide automated trend analysis of system output for determining whether

virtual population change has indeed occurred in simulated numbers.

• Develop sufficiently robust ecological databases that the expert systems could

access and provide recommendations unassisted by the user. Each expert

system could be implemented as a stand-alone agent.

• Allow any area, or at least an increased number of areas, to affect the matrix of

movement probabilities, should sufficient ecological knowledge be available.

• Provide the facility for the user to suggest alternate management options

(override expert system output) so that the effects of such management could be

simulated.

• Apply probabilistic methods as a way of quantifying possible movement of

swans among areas within a season as an alternative to the relatively simplistic

weighting method that I used for calculating overall movement probabilities.

64

3.5.3.2 System Theory Development

Existing DECAF software allows the application of distributed processing, essentially

having different instantiations of agents running on different computers. If coupled with

the appropriate facilities, this could allow refuge biologists and ecological experts to

incorporate real-time advice, knowledge, and data into the system. This would, at least

conceptually, move the system even further towards a cooperative distributed problem

solving methodology if coupled with common knowledge bases and a common problem

solving algorithm. It would be interesting to empirically compare the simulated

distributions of swans to see if actual queuing system behavior would significantly

change.

Building agents that could utilize all the cross spatial and temporal scale information

related to the consequences of water levels on wetlands (Table 3-2) would add

additional dimensions to the algorithms governing the service mechanism. Using

negotiation among agents as a way of implementing a constraint satisfaction algorithm

(Armstrong and Durfee 1997; Pinson et al. 1997) for incorporating such cross-scalar

knowledge might begin to mimic some of the ecological complexity involved in the

flyway/wetlands/waterfowl domain. As in much of this domain, the knowledge being

used is not definitive, but such a model could be used to test which aspects of the

knowledge base are the most critical.

Propagating uncertainties associated with pieces of knowledge, as well as actual data

where it exists, through any knowledge-based system is hardly a trivial task. Classical

methods include certainty factors (Buchanan and Shortliffe 1984), Dempster-Shafer

theory (Horvitz et al. 1986; Shafer 1988,1990), and Bayesian methods (Pearl 1990;

Jensen 1996). In fact an entire subdiscipline has developed regarding the

understanding of uncertainty in artificial intelligence. Representing the uncertainties in

65

the decision support system would provide outputs with greater empirical value if those

probabilities could be appropriately propagated through such a complex network and

assigned to the final simulated distributions. The complexity of models that use

ecological knowledge as a basis for simulating the distribution of waterfowl across large

landscapes presents important and intricate challenges for methodology development.

Difficulties arise not only from a representation standpoint, but also from the need to

segregate dependent and independent probabilities, and from the difficulties in

identifying causality in complex systems.

Because the use of queuing systems for modelling waterfowl migration is hardly a

mature methodology, developing systems using stochastically modified arrival times

and stochastically modified processing methods holds promise for improving the degree

to which such a system would emulate real world situations. It is not entirely clear,

however, that such changes would improve the value of the system to waterfowl

managers. Empirical sensitivity analysis regarding arrival times and processing methods

could guide preliminary planning for further such development.

66

CHAPTER 4

EMPIRICAL EVALUATION OF A MULTIAGENT SYSTEM FOR
TRUMPTER SWAN MANAGEMENT

4.1 Introduction

A multiagent system was developed to assist waterfowl managers with the management

of trumpeter swans (see Section IV). DECAF software (Distributed Environment

Centered Agent Framework) was used to construct the agents, allow for their interaction,

and to handle user I/O (Graham and Decker 2000; Graham 2001). Within this

framework, a queuing system (Dshalalow 1995; Hillier and Lieberman 1995) was

integrated that simulates the geographic and temporal distribution of swans. The system

utilizes output from expert systems related to ecological aspects of the flyway

management of migratory birds, especially trumpeter swans and manipulation of their

habitat. These expert systems also were developed as part of the overall decision

support system (Sojda and Howe 1999.) Here, I report on verification and validation of

the entire decision support system and some of the component modules. The general

question to be addressed is whether the system achieved the purposes for which it was

intended.

4.1.1 Verification and Validation Defined

Wallace and Fujii (1989) define verification and validation of software as the analysis

and testing "to determine that it performs its intended functions correctly, to ensure that

it performs no unintended functions, and to measure its quality and reliability."

67

Verification is ensuring that the system is internally complete, coherent, and logical from

a modelling and programming perspective. Validation is examining whether the system

is realistic and useful to the user or decision maker. Was the system successful at

addressing its intended purpose? Were the stated objectives of the project met

(Geissman and Schultz 1988)? O'Keefe et al. (1987) state: "Validation means building

the right system. Verification means building the system right." I use the term

evaluation to encompass both verification and validation, but distinguish between them

when used independently. I agree with Adelman (1992) that both should be part of the

development process, and evaluators should specifically be part of the development

team. There is a plethora of discussions about the semantics of evaluating models, and

Johnson (2001) provides an excellent summary related to natural resource

management. My work is interdisciplinary, and I choose to accept the above definitions

because I feel that they are both the most logical and most widely accepted, especially

in the field of artificial intelligence. This delineation is particularly important in my case

because my project had not been provided formal, software development requirements

and specifications to be achieved.

A rich literature exists on verification and validation of expert systems and other artificial

intelligence methods. These fit the general area of decision support systems well,

because expert systems are almost always a type of decision support system (Adelman

1992; Bahill 1991; Cohen and Howe1989; Grogono et al. 1991; Gupta 1991; Hamilton et

al. 1991; O'Leary 1994). Although interest in the theory and application of intelligent

agents and multiagent systems has blossomed in the last decade, no widely accepted

methodology pertaining to their evaluation has yet emerged.

68

4.1.2 An Overview of Potential Methods for Verification and Validation

Adelman (1992) hinges successful implementation of decision support and expert

systems on incorporating three evaluation procedures: (1.) those that examine the

logical consistency of the system algorithms themselves (verification), (2.) those that

empirically test the predictive (in my case, ecological) accuracy of the system

(validation), and (3.) those that document user satisfaction.

Stuth and Smith (1993) followed the ideas of Eason (1988) and recommend iterative

prototyping methods for decision support system development. When using such

methods, verification and validation are part of the iterative process of system

development. Verification should be performed at the stage prior to any delivery of a

working system to users, even if only a prototype system has been developed. General

validation might be done at this stage as well, with more detailed efforts performed once

an operating system is delivered. If one subscribes to the concept that software

development can be a living process, then verification and validation are part and parcel

to that living process and need to continue as system refinements and re-deployments

continue (Carter et al. 1992; Stuth and Smith 1993).

Sprague and Carlson (1982) recommend that an organization building their first decision

support system recognize that it essentially is a research activity, and that evaluation

should center on a general, "value analysis". They state that iterative prototyping will

ensure a quality product from the managers' perspectives, but recognize the qualitative

nature of such evaluation. It is imperative that analytic and quantitative rigor be added

(Adelman 1991; Adelman 1992; Andriole 1989; Cohen and Howe 1989) beyond the

"soft testimonials" often seen. Sensitivity analysis can be a powerful tool for validation,

especially for heuristic-based systems, and for systems where few or no test cases are

available for comparison (Bahill 1991; O'Keefe et al. 1987). Another issue suggested by

69

Rushby (1991) is that it is necessary to show not only how well a system performs, but

also to show that it can avoid a catastrophic recommendation. This is important in many

natural resource venues because of the great concern for long term, irretrievable

ecological changes.

Verification and validation of knowledge-based and other decision support systems are

known to be more problematic than in other modelling efforts for many reasons (Gupta

1991). Under some conditions, modelling researchers can test performance against a

preselected gold standard. Often in natural resource issues, such a standard does not

exist. This is particularly true with near real-time decision support that is expected to

predict and guide future scenarios while those scenarios are, in fact, unfolding. Also,

not only is it important for a system to handle the most common cases, it ought to be

able to deal with extreme events. This latter ability is one characteristic often only found

with human experts; but, extreme events are not only common in, but often drive,

ecological systems.

It is sometimes possible to test expert system performance against an independent

panel of experts (O'Keefe et al. 1987). Two concerns must be addressed, however.

First, the panel of experts needed for such an evaluation must not be the same people

who will be closely connected to system development itself. To do so would add such

confounding effects that no reasonable experimental design is feasible. Second, one of

the basic tenets of using decision support systems for complex issues is that such

questions can be beyond the capability of single persons to conceptualize and solve

(Boland et al. 1992; Brehmer 1991).

Wallace and Fujii (1989) provide a comprehensive matrix of 41 techniques and tools that

can be applied to 10 verification and validation issues. Cohen and Howe (1989) take a

70

slightly different approach, but also discuss evaluation from the perspective of the

software development life cycle. They emphasize empirical studies to accomplish such

evaluation, whether one is focusing on verification or validation. Specifically for

knowledge-based systems, Murrell and Plant (1997) provide a categorization of 145

different automated techniques for testing such systems.

4.2 A Modelling Perspective

Models are abstractions of reality. They are representations of some portion or aspects

of the real world. There are several models integrated into the decision support system

for trumpeter swan management. Each of the expert systems is a digital representation

of ecological knowledge within a specific domain. The queuing system is a

representation of how swans move among specific areas. The refuge, move, and

facilitator agents represent the ecological knowledge and the logic of how swans are

distributed in the flyway in response to certain ecological conditions. By combining all

these models, the overall system provides a digital representation of one way for

waterfowl biologists to evaluate their management actions.

4.2.1 Purpose of the Multiagent System

The broad question I have posed is: Are multiagent systems an effective platform for

integrating flyway management into site-specific decision support for trumpeter swan

management? Within this context, I also was interested in determining the effect that

encoded ecological knowledge could have on simulated distribution of swans as

represented by a queuing system. The overall purpose of the system is to simulate the

effect of sets of specific management actions on swan distributions. The 1998

Management Plan for the Rocky Mountain Population of Trumpeter Swans

(Subcommittee on Rocky Mountain Trumpeter Swans 1998) is one such set of

71

management actions at a flyway level. The expert system, Management of Palustrine

Wetlands in the Northern Rockies, also provides a set of management

recommendations, but at a site specific level. All evaluation of the system hinges on

atternptinq to determine how well the system addresses the stated purpose.

Furthermore, from a theoretical perspective I am interested in determining the value of

using intelligent agents for reasoning about ecological questions in multiple scales.

4.2.2 Why Empirical Evaluation Is Important in the Trumpeter Swan Domain

It is easy to argue that evaluation of all decision support systems is important. In the

case of trumpeter swans, there are ecological and public policy reasons that increase

the importance of ensuring that the right system has been built and been built correctly.

First, swan numbers have not increased in the Tri-State Area to targeted levels

(Subcommittee on Rocky Mountain Trumpeter Swans 1998.) Second, there is

management interest in understanding the effect that management at one location might

have on the need for management at other locations to optimize use of public wildlife

management funds. Third, during 2001, the United States Fish and Wildlife Service

found itself embedded in litigation related to both endangered species and migratory bird

hunting issues connected to trumpeter swans.

4.2.3 Why Expert System Validation Was Not Attempted

Although detailed, empirical, field evaluation of each expert system will be important if

they are to be used as stand-alone systems, it was beyond the scope of this project to

do so. My undertaking was more focused on developing the algorithms for applying

multiagent systems and distributed problem solving methods. As such, the expert

systems should be thought of as an input to the multiagent system.

72

Furthermore, one of the values of expert system technology is that it allows knowledge

engineers to make existing expertise available to others. Often such an approach is

most valuable in situations where it is not currently feasible to procedurally model causal

relationships because (1.) empirical data from scientific experiments are lacking, or (2.)

the complexity of the system of interest prevents mathematical descriptions of those

causal relationships. It is my opinion that both of these conditions exist for Trumpeter

Swans in the Northern Rocky Mountains. Once a detailed understanding of the breeding

ecology of these birds is more complete, field experiments to validate this expert system

can be designed.

4.3 Methods

The decision support system for trumpeter swan management was evaluated at three

levels: (1.) verification of individual components, as well as the overall system, was

directed at ensuring logical consistency; (2.) soft validation of the expert systems was

accomplished through demonstrations to and informal trials by potential users; and (3.)

the system was empirically tested using observed swan distribution data. The latter

included analyzing the system for its sensitivity to various ecological parameters.

It was decided not to evaluate the system against a team with expertise in flyway

management of swans, primarily because it was not feasible to assemble such a panel

that was remotely independent of the people used in knowledge engineering. This was

true for two related reasons. First, the total number of workers in the domain is small.

Second, the cadre of such workers are closely interrelated institutionally and

academically.

73

4.3.1 Verification

Logical consistency in each of the expert systems was confirmed as part of the iterative

prototyping process (Eason 1988; D'Erchia et al. 2001), and this process was followed

throughout the development of the decision support system. A key part of designing

each of the individual expert systems was developing flowcharts of the ecological logic

and then using those to consult with experts for changes and refinement. Similarly, the

"planeditor" facility in DECAF allowed me to develop graphical representations of the

logic underlying each individual agent. I used these to consult with specialists in

multiagent system design prior to further development and implementation.

Utilities within the expert system development shell were used for verification of logical

consistency of each expert system. The utilities automatically do a static check for

problems such as incomplete rules and trees and can also dynamically check the

system by stochastically simulating runs. For example, if more than one rule tried to set

a value for a single-valued variable, an error would be detected by the shell. Similarly, if

the consequent portion of a rule was inadvertently not provided, an error would be

detected. All such errors were corrected. Each expert system was checked periodically

and corrected during development, and the final systems were checked using 500,000

such simulated runs with no problems detected. When running the multiagent system,

DECAF has a graphical window for each agent that provides information about how the

agent is functioning, including error messages of failed communications among agents.

This facility was used for fixing any problems that arose.

74

4.3.2 Soft Validation of the Expert Systems

Demonstrations of each expert system were made at every available opportunity to

waterfowl managers, field biologists, migratory bird specialists, and researchers. This

included individual meetings, workshops, and telephone consultations where individuals

were requested to run actual scenarios and provide comments. All problems

uncovered, or concerns and suggestions mentioned, were considered, and the

system(s) changed accordingly. In addition, the expert systems have been available in

stand-alone fashion on the World Wide Web for the duration of the project, both in

prototype and final versions. Few comments were received via this method, but these

were similarly used to improve the systems.

4.3.3 Empirical Testing of the Multiagent SYstem

No public demonstrations of the entire, completed multiagent system have been done to

date for soft validation purposes. Validation efforts have been concentrated on empirical

testing of the system. The system, itself, begins by using an observed number of swans

at each of 27 geographic areas for the breeding season of a particular year and then

simulates the number at each of those areas for the four subsequent seasons,

concluding with a simulated number for the breeding season (of the subsequent year).

The system always simulates breeding swan numbers in one year increments. It was a

comparison of the simulated number for the subsequent year versus the actual observed

number for that same year that was the basis of my empirical testing. An actual

observed number of swans was available only for the breeding season, and not the

other seasons, so analysis was limited to data for that season. Simulated data for the

intervening seasons was used only by the service mechanism to generate the

concluding number. Observed data were available for 14 contiguous years, beginning

75

with 1987. Therefore, comparisons of simulated and observed data could be made for

the 13 years, 1988-2000.

Although all 27 servers (geographic areas) were always used in the queuing system,

seven areas never have had swans during those breeding seasons and were excluded

from statistical analysis. In all such cases, the system did not simulate swans in those

areas. This was an attempt to ensure that the consistent simulation of no swans where

none were expected did not artificially inflate the accuracy and precision of the system

during evaluation.

The decision support system uses swan numbers that were collected by the member

agencies of the Pacific Flyway Council and informally reported by the United States Fish

and Wildlife Service on an annual basis (e.g., Reed 2000). These data and reports are

archived in files at Red Rock Lakes National Wildlife Refuge. Data from the unpublished

written reports were entered into digital format under contract between the United States

Geological Survey and the Environmental Statistics Group at Montana State University.

These overall data are currently available via the World Wide Web at:

http://swan.msu.montana.edu/cygnet/time_series_project.html.

4.3.3.1 Data Analysis

Multivariate Matched-Pairs Permutation Test (MVPTMP) statistical procedures (Mielke

and Berry 2001) were used for all empirical analyses. Number of responses was 20,

representing the number of areas; and number of blocks was 13, representing the

number of years. A pair is represented by two, one-dimensional arrays of 20 responses

each. The first of the pair is simulated data, the second is either observed data or

simulated data from a run of the system with a different configuration; both arrays

represent data corresponding to the same year. All such arrays (years) for a particular

76

run or the observed data form a 20 by 13 matrix termed a group in MVPTMP analysis.

Because this is matched-pairs type procedure, the analysis is always comparing two

groups. In such analyses, a small p-value is evidence of similarity between the two

groups. In a few cases, groups of six areas rather than 20 were examined to test

whether the broader relationships also held for a smaller group of areas of special

management concern.

4.3.3.2 Description of the Experimental Runs

Null hypotheses were developed to assist with an assessment of the validity of the entire

system as well as its components. Subsequently, corresponding runs of the system

were made for validation purposes and are described in Table 4-1. I was interested in

performance of the system from a flyway perspective over time, not the perspective of

individual areas or individual years. Therefore, the multivariate approach provided by

MVPTMP seemed particularly appropriate because it allows a statistical look at a

problem that has concurrent spatial and temporal components.

77

Table 4-1. Description of experimental runs of the decision support system used for validation.
These represent the adjustment of all major inputs to the system for sensitivity-type analysis.

Specific system components that were ex peri mentally altered

Run Brief description of Number Number Movement
Breeding

Percentage Startinghabitat'label run of expert of probability
quality

retained in queue
systems refuges matrix

threshold
queue numbers

A base queulno model 0 S a
B default configuration 3 7 S 0.6 0.1 a
c default configuration,

3 1 S 0.6 0.1 a1 refuqe

D starting queue uses
3 7 S 0.6 0.1 a'predicted numbers

E
default configuration,

1 [flyway] 7 S 0.6 0.1 a1 expert system

F default configuration, 1
7 S 0.6 0.1 a1 expert system [breeding]

G
default configuration, 1

7 S 0.6 0.1 a1 expert system [wetlandl

H alternate breeding
3 7 S 0.8 0.1 athreshold

I alternate breeding
3 7 S 0.4 0.1 athreshold

J
alternate queue

3 7 S 0.6 0.75 apercentaqe

K alternate queue
3 7 S 0.6 0.5 apercentaqe

L alternate queue
3 7 S 0.6 0.25 apercentage

M alternate movement
3 7 Sa 0.6 0.1 aprobability matrix

alternate queue

N percentage & expert
3 7 S 0.6 0.1 asystem outputs forced

to unacceptable
alternate queue

p percentage & expert
3 7 S 0.6 0 asystem outputs forced

to unacceptable

S: matrix of standard movement probabilities developed from expert opinion
Sa: matrix of alternate movement probabilities. See Section 4.3.3.3 for details.
a: each year's starting queue uses observed numbers for breeding season of that year
a': each year's starting queue uses numbers generated by the previous year's run of the queuing mode

78

4.3.3.3 Sensitivity Testing

Much of the sensitivity testing was straightforward. Configuration parameters were

simply changed to more and lesser extreme values and output compared. Such

parameters changed were: the number of expert systems; the number of refuge servers;

the breeding habitat quality thresholds; and the percentage accepted into a queue when

it is determined to be unacceptable by the system. All those parameters are set either in

the system configuration file or by choosing which refuge agents to activate at run time.

Sensitivity testing for the movement probabilities was quite different. In that case, new

movement probability matrices had to be generated to replace those developed during

knowledge engineering sessions with waterfowl experts. I followed the now classic

methods described by Shortliffe and Buchanan (1984) for sensitivity testing of their

certainty factors used in their medical expert systems. They chose several different

intervals into which to map their data, using the midpoint of the range as the new value.

In my system, movement probabilities range from 0 to 1.0. In the simplest case of

mapping to two intervals, 0.25 is the midpoint of the first interval and 0.75 of the second.

Next, any value less than or equal to 0.5 in the original probability matrices was replaced

with 0.25, and any value greater than 0.5 was replaced with 0.75. The system was then

run using these new probability matrices. Using this procedure, I mapped data over 2, 4,

6 and 10 intervals and generated a set of four alternate matrices of movement

probabilities for each interval. As the number of intervals decreases (Le., the width of

the interval increases), one would expect that system performance would deteriorate if

the system was sensitive to the real movement probabilities.

79

4.4 Results

All verification and soft validation issues were handled as part of the software

development process and no known issues remain. Here, I will focus on results from the

empirical testing of the multiagent system. Thirty-four different experiments were

conducted, representing the adjustment of all major inputs to the system. Table 4-2

provides the results from all MVPTMP analyses. I agree with Mielke (personal

communication) that interpretation of p-values in determining whether to reject a null

hypothesis should be left to the reader because it is a probabilistic and somewhat

subjective process. So, the following are simply my personal examination of those

values. I rejected all null hypotheses associated with a p-value less than 0.01, and failed

to reject them when the p-value was greater than 0.1. Values between 0.01 and 0.1

were considered equivocal. The basic null hypothesis is that the two groups being

tested are dissimilar and is rejected with an accompanying small P-value. In an

MVPTMP analysis, such a small P-value results when the 80 statistics representing the

analysis of paired data matrices are randomly distributed and results from similarity

between the two groups. Therefore, rejecting the null hypothesis is evidence of similarity

between the two groups. However, failure to reject the null hypothesis is not evidence of

dissimilarity.

80

Table 4-2. Interpretation of statistical analyses of experimental runs of the decision support
system using MVPTMP. Data are for the standard 20 areas unless otherwise noted. Null
hypotheses were developed a priori to compare output from runs of the system as described in
Table 4-1. In the table below, 0 = observed numbers from 1988-2000. The generic null
hypothesis (Ho) is: the 80 statistics representing the analysis of paired data matrices are randomly
distributed. Small differences (similarities) in pairs of data result in a small P-value and a
rejection of Ho. Interpretations that should result are provided when the decision is made to reject
the null hypotheses. Whether to reject the null hypothesis in each instance is left to the discretion
of the reader based on their individual interpretation of the p-value provided. No P-value is
reported when output between the two groups was identical.

Test Groups
p-value

label compared a.
from Interpretation from rejecting Ho

MVPTMP

1 A&O .0001 output from base queuing model similar to observed numbers

2 8&A .0002 output from base queuing model similar to default dss

3A 8&0 .0001
output using all expert systems (3) and activating all (7) refuge agents

similar to observed numbers

38 8&0 .0001
output using all expert systems and activating all refuge servers similar
to observed numbers, analvzina output data for only 6 selected areas

4A C [br] & 0 .0001
output with only 8ear River M8R as an active agent similar to

observed numbers

48 C [ca] & 0 .0002
output with only Camas NWR as an active agent similar to observed

numbers

4C C [cv] & 0 .0001
output with only Centennial Valley as an active agent similar to

observed numbers

4D C [gl] & 0 .0001
output with only Grays Lake NWR as an active agent similar to

observed numbers

4E C [ip] & 0 .0002
output with only Island Park as an active agent similar to observed

numbers

4F C [jh] & 0 .0002
output with only Jackson Hole as an active agent similar to observed

numbers

4G C [urn] &0 .0001
output with only Upper Madison River as an active agent similar to

observed numbers

5A C [br] & 8 .0002
output with only 8ear River M8R as an active agent similar to that

when 7 refuqe aoents activated

58 C [ca] & 8 .03
output with only Camas NWR as an active agent similar to that when 7

refuoe aoents activated

5C C [cv] & 8 .0002
output with only Centennial Valley as an active agent similar to that

when 7 refuqe aoents activated

5D C [gl] & 8 .0002
output with only Grays Lake NWR as an active agent similar to that

when 7 refuae aoents activated

5E C [ip] & 8 .11
output with only Island Park as an active agent similar to that when 7

refuae aaents activated

5F C [jh] & 8 .05
output with only Jackson Hole as an active agent similar to that when 7

refuae aaents activated

5G C [urn] & 8 .0002
output with only Upper Madison River as an active agent similar to that

when 7 refuqe aoents activated

6A E&8 - output using 3 expert systems identical to that with only the flyway
expert system

68 F&8 .0002
output using 3 expert systems similar to that with only the breeding

expert svstem

6C G&8 .0002
output using 3 expert systems similar to that with only the wetland

expert system

7A H&8 - output using alternate breeding threshold of 0.4 identical to that using
the standard, 0.6

78 1&8 - output using alternate breeding threshold of 0.8 identical to that using
the standard, 0.6

81

8A J&B .0002
output using alternate percentage retained in unacceptable queues is

set to 0.75 similar to default system

8B K&B .0002
output using alternate percentage retained in unacceptable queues is

set to 0.5 is similar to default system

8C L&B .0002
output using alternate percentage retained in unacceptable queues is

set to 0.25 similar to default system

9 O&B .001
output using simulated swan numbers for each seasonal starting

aueue similar to default system

10A M[10]&B .0002
output when movement probabilities are mapped to 10 intervals similar

to default system

10B M [6] & B .0002
output when movement probabilities are mapped to 6 intervals similar

to default system

10C M [4] & B .0002
output when movement probabilities are mapped to 4 intervals similar

to default system

100 M [2] & B .0002
output when movement probabilities are mapped to 2 intervals similar

to default system
output when alternate percentage retained in unacceptable queues is

11 N&B .0001 set to 0 and expert system outputs forced to unacceptable is similar to
default system

output when alternate percentage retained in unacceptable queues is
12A P&B .0001 set to 0 and expert system outputs forced to unacceptable is similar to

default system, analvzinq output data for only 6 selected areas
output when alternate percentage retained in unacceptable queues is

12B P&O .0008 set to 0 and expert system outputs forced to unacceptable is similar to
observed numbers

a. br =Bear River Migratory Bird Refuge; ca =Camas National Wildlife Refuge; cv =
Centennial Valley and Red Rock Lakes National Wildlife Refuge; gl = Grays Lake
National Wildlife Refuge; ip = Island Park- and Harrimann State Park; jh = Jackson Hole
and the National Elk Refuge; um = Upper Madison River

Although the results of the MVPTMP analyses provide a mathematical representation of

a multivariate comparison, it is difficult to graphically depict comparisons of different

groups of spatial data over time because of the inherent multidimensional structure. To

partially handle this, I have chosen either to plot data as departures between groups, or

to plot only select portions of the data. In Figures 4-1 and 4-2, the departure of the

experimental data from the observed data in terms of number of swans has been

plotted. Overall, the evidence is strong that the base model mimics the observed pattern

of swan distribution over time (Table 4-2, Test 1; Figure 4-3) , as does the system run

with the default configuration (Table 4-2, Test 3A; Figure 4-1). Almost all other

experimental runs of the model show the same pattern. The scale of the y-axis in Figure

4-2 has been expanded to show the data for only six selected areas of special

82

management interest. It is noted that in spite of apparent disparity of some areas from

observed numbers, e.g., Canada and Yellowstone Lake, there is no empirical difference

from a flyway perspective as analyzed using MVPTMP (Table 4-2, Tests 3A-B). These

two areas were ones for which the experts felt they had the least confidence in their

information, and I was unable to secure additional information for these areas. Figure 4­

3 depicts the differences between simulated numbers and the base queuing model, Le.,

the decision support system run without the outputs from the expert systems. Figure 4­

4, in turn, shows the similarity between the outputs from the base queuing model and the

default system, i.e., run with the expert systems.

83

(lC)
~

Figure 4-1. Plot of the difference in number of swans between the observed number and the simulated number
when using expert systems (default system: Run B from Table 4-1). Simulated numbers are from the complete
system run with all refuge servers activated. Those severs with most extreme differences are shown by lines for
emphasis. During this time, the total population varied between 1115 and 3471 birds.

ClO
C1I

Figure 4-2. Plot of the difference in number of swans between the observed number and the simulated number for
six selected servers. Simulated numbers are from the complete system run with all refuge servers activated and
input from all expert systems (Run B from Table 4-1). During this time, the total population varied between 1115 and
3471 birds.

(X)
en

Figure 4-3. Plot of the difference in number of swans between the observed number and the simulated number when not
using expert systems (base queuing model: Run A from Table 4-1). Simulated numbers are from the complete system
run with all refuge servers activated. Those severs with most extreme differences are shown by lines for emphasis.
During this time, the total population varied between 1115 and 3471 birds.

00.....

Figure 4-4. Plot of the difference in the simulated number of swans between the base queuing model (not using expert
systems: Run A from Table 4-1) and the default system (Run 8 from Table 4-1). Both data sets are from the system run
with all refuge agents activated. Those severs with most extreme differences are shown by lines for emphasis. The y­
axis retains the scale of that from Figures 4-1 and 4-3 for comparison. During this time, the total population varied
between 1115 and 3471 birds.

When the system is run with only one refuge agent active, the distribution of swans over

time compared to the observed numbers did not show significant disparities (Table 4-2,

Tests 4A-G). Figures 4-5 thru 4-7 provide examples of typical distributions of swans for

selected years for such system runs. The results from years 1988, 1994, and 2000 were

arbitrarily selected to cover the range of years in the tests. When these runs of the

system were compared to running the system with all agents active (rather than

comparing against observed numbers), the evidence for the system not being sensitive

to anyone particular refuge agent was not as consistently strong (Table 4-2, Tests SA­

G). However, not rejecting the null hypothesis of similarity for Island Park runs, for

example, does not prove that dissimilarity exists in that case, only that the evidence is

weak for proving similarity. The Island Park relationship has been plotted in Figure 4-8.

88

00
CD

Figure 4-5. Plot for 1988 that shows both the observed number of swans and the output from seven individual
runs of the system, each time with only one particular refuge server (agent) having been activated (Run C from
Table 4-1). The appearance of few data points results from the combination of nearly identical data from different
runs being plotted on top one another and the required scale to plot data from the server, "Canada". The total
population in 1988 was 1115 birds.

CD
o

Figure 4-6. Plot for 1994 that shows both the observed number of swans and the output from seven individual runs
of the system, each time with only one particular refuge server (agent) having been activated (Run C from Table
4-1). The appearance of few data points results from the combination of nearly identical data from different runs
being plotted on top one another and the required scale to plot data from the server, "Canada". The total
oooulatlon in 1994 was 2349 birds.

CD....

Figure 4-7. Plot for 2000 that shows both the observed number of swans and the output from seven individual
runs of the system, each time with only one particular refuge server (agent) having been activated (Run C from
Table 4-1). The appearance of few data points results from the combination of nearly identical data from
different runs being plotted on top one another and the required scale to plot data from the server, "Canada".
The total population in 2000 was 3471 birds.

CD
N

Figure 4-8. Plot of the difference in the simulated number of swans between running the system with only the
Island Park agent active (Run C from Table 4-1) and the default system (Run B from Table 4-1). Both data
sets are from the system run with corresponding expert systems activated. Those severs with most extreme
differences are shown by lines for emphasis. During this time, the total population varied between 1115 and
3471 birds.

The refuge agents manage, listen for, and access expert system output in combination

with the move agent to implement the server mechanism of the queuing system. This

implementation was an attempt to infuse ecological information along with a flyway

perspective especially as represented in the overall goals of the1998 Management Plan

for the Rocky Mountain Population of Trumpeter Swans (Subcommittee on Rocky

Mountain Trumpeter Swans 1998). The expert system information had no effect on the

simulated distribution of swans (Table 4-2, Tests 6A-C). This was true if all three expert

systems had been activated in combination, or if they had been activated individually.

Changing values for the breeding habitat quality threshold or for the alternate

percentage retained in unacceptable queues was another way to alter the service

mechanism. However, such changes did not affect the simulated distribution of swans

when compared to the system run with the default configuration (Table 4-2, Tests 7-8).

Because all aspects of the system seemed so insensitive to the expert systems, I

conducted some runs where the expert system output was forced to only values that

would make all refuge servers unacceptable for all seasons and all years (Table 4-1, run

N). In an attempt to create an artificial run with even more extreme conditions, I also did

not allow these now unacceptable servers to accept any swans; all had to be

redistributed (Table 4-1, run P). The simulated numbers from these runs also showed

similarity to both the observed numbers and default system number (Table 4-2, Tests

11-12).

The matrices of probabilities representing movement from season to season are the

foundation of the service mechanism, the algorithm for which is principally organized

within the move agent. And, that is why I conducted the experiments to alter those

probabilities. The statistical analysis provided strong evidence that there was similarity

in simulated swan distributions using the artificially mapped probabilities when compared

93

to output from the system run with the probabilities provided by the experts (Table 4-2,

Tests 10A-D). This was even true when the movement probabilities were mapped to

only two intervals. Even though the service mechanism is based on the movement

probabilities, the system was not sensitive to the actual values provided by the experts.

Figures 7 and 8 depict the close agreement in simulated swan numbers as the

movement probabilities are altered. Although not shown here, the plots of swan

distributions corresponding to the mapping of four and six intervals were similar to those

shown for two and ten intervals. It is suspected that the deviation for the Yellowstone

Lake numbers represents the lack of confidence in those original associated probabilities

as provided by the experts and potentially carried through in the mapping. It is not

known why that deviation apparently does not exist for 1990. I speculate that the

probabilities provided by the experts may actually apply to 1990, but not other years.

94

(D
(II

Figure 4-9. Plot of the difference in number of swans between the observed number and the simulated
number when the base movement probabilities have been mapped to 10 intervals. Simulated numbers are
from the complete system run with all refuge servers activated and input from all expert systems (Run M from­
Table 4-1). During this time, the total population varied between 1115 and 3471 birds.

CD
0)

Figure 4-10. Plot of the difference in number of swans between the observed number and the simulated number
when the base movement probabilities have been mapped to 10 intervals. Simulated numbers are from the
complete system run with all refuge servers activated and input from all expert systems (Run M from-Table 4-1).
nllrinn thi~ tim~ th~ tnt:::ll nnnlll:::ltinn \I:::lri~n h~t\l\l~~n 111 ~ :::lnn ~471 hirn~

4.5 Discussion

The totality of the decision support system rests on a foundation of intelligent agents

being used to implement and employ a queuing system to simulate the distribution of

swans. Outputs from three expert systems are used to provide inputs to the base

queuing model. There could have been other ways to provide such input. I chose

expert systems because they allowed a unique way to provide ecological expertise to the

system, yet allowed on-site managers and biologists to provide their unique

interpretation of their own situations. The expert systems act as a type of filter that

accepts knowledge about on-site conditions, but then makes recommendations using

that information about the best approach for providing habitat for trumpeter swans,

always from a flyway perspective. The idea behind encoding the key ecological

knowledge is that the system can be run as a model that is simulating the best

management possible for seven key geographic areas. If one accepts the notion that

the system, as it is run in its default configuration, represents close to ideal ecological

conditions, then one can assess the similarity between observed distributions of swans

with those simulated by the system. If these distributions are similar, two conclusions

are plausible. One, the actual conditions in the flyway from 1987-2000 represented

ideal management. Or two, the concepts represented by the 1998 Management Plan for

the Rocky Mountain Population of Trumpeter Swans (Subcommittee on Rocky Mountain

Trumpeter Swans 1998) would not have changed the distribution of swans significantly

from what had been observed. I easily assume that the experts would not have

developed the 1998 Plan if they had not felt that improving the management of trumpeter

swans was possible and therefore, albeit subjectively, place little credence on the first

conclusion. I then conclude that the 1998 Plan could not have affected the distribution of

swans even if implemented completely. It is important to recognize that my conclusion

97

has been drawn in retrospect, and does not imply criticism of the managers in

developing the 1998 Plan.

Any and all inferences drawn from using the decision support system hinge on trusting

the base queuing model that underlies it. The empirical evidence that I gathered on its

performance leads me to conclude that the base queuing model does accurately

simulate swan distributions in the flyway. Although I did not empirically test them, I also

feel that the MVPTMP procedures of Mielke and Berry (2001) were an effective

approach for grasping a multidimensional view of the effect of management actions on

the flyway distributions of waterfowl over time.

It is puzzling why the multiagent system seemed so insensitive to all parameters tested.

It is possible that the system was simply never taken to thresholds where the various

parameters altered would result in system performance degradation. However, it is

difficult for me conceptualize additional experiments of this nature beyond those

employed without requiring major restructuring of the move agent, and to a smaller

degree, the facilitator agent. One explanation that I proffer (but have not tested) is that

the base queuing model is particularly effective at representing the actual ecological

diversity in the world of Rocky Mountain trumpeter swans, both spatial and temporally.

The queuing system has been based on substantial expertise gathered using formal

knowledge engineering procedures. It seems that if the model has effectively encoded

and utilized that expertise, embedded within that knowledge are many aspects related to

the importance of diversity in the flyway ecology of waterfowl. Certainly ecological

diversity is not a new principle. I do infer that my decision support system provides

evidence that management actions at one, two, or even seven important trumpeter swan

habitats cannot have a substantial effect on the temporal and spatial distribution of

swans in the flyway, at least within the simulations of my system. It would be interesting

98

to restructure the decision support system to allow for greater than seven active refuge

agents. This would allow further empirical exploration about whether management

thresholds might exist when the total number of sites is greater than seven. There have

been several attempts by waterfowl managers to move swans, and no major changes in

swan distribution have been reported. However, I am aware of no experiments that were

designed to evaluate those attempts. Such anecdotes might be interpreted as weak

evidence corroborating my analytical findings, however.

I also note that my system is possibly limited by the actual knowledge of the experts, the

knowledge engineering efforts, and the temporal and geographic scope of the underlying

data and knowledge. It is also not known if dependencies might result from having

developed the movement probability knowledge from a subset of experts who collected

and assembled the actual observed data. However, there was no other way to have

collected either set of data or knowledge, nor does another independent flyway exist in

which to test the system to statistically isolate any potential dependencies.

Twenty-seven areas sharing birds amongst each other, even if within somewhat

structured migration parameters, across four seasonal changes, becomes a massively

interconnected, multi-dimensional network. I obviously was able to represent this

network algorithmically, but did not attempt to represent it mathematically. I do wonder

whether a deeper understanding of the algebraic relationships, and any emergent

behaviors from the complexity of the network, might not further elucidate a small aspect

of ecological diversity as related to flyway management and migration of waterfowl.

Alternatively, such a theoretical approach might elucidate thresholds where the service

mechanism that I implemented begins to break down.

99

4.6 Conclusions

Validation is the process of determining whether the stated purpose of the system was

achieved. I conclude that multiagent systems can be an effective platform for modelling

the movement of waterfowl in a flyway perspective. Although the technology allowed me

to integrate site-specific and flyway perspectives into the model, local management

actions might not actually affect flyway swan distributions. The algorithmic complexity of

the system may possibly be mimicking natural diversity of the flyway, its swan habitats,

and their management. Because models are abstractions of reality, it is inherent that

they will have shortcomings from not being able to accurately represent all knowledge,

logical relationships, and probabilistic intricacies.

4.6.1 In Terms of Waterfowl Ecology and Management...

• Ecological knowledge has been encoded into the overall system in many

places. Doing so allowed the queuing system to effectively simulate the

distribution of swans, mimicking observed numbers well.

• The 1998 Management Plan for the Rocky Mountain Population of Trumpeter

Swans, as written, could not have affected the flyway distribution of swans.

• The distribution of swans in the flyway could be effectively simulated, and this

is a strategic precursor when needing to predict the reestablishment of

traditional migratory pathways. Documenting the development of such

pathways would be critical; and applying MVPTMP as a multivariate tool was a

new approach for comparing flyway distributions of waterfowl.

• Although the system could simulate swan distributions, the types of

management actions included in the system seemed to have no effect on

those distributions. This is possibly explained by the natural diversity of the

100

system being modeled. Alternatively, it could result from an ineffective

implementation stemming from a lack of knowledge about the effects of

management actions.

4.6.2 In Terms ofMultiagent Systems...

• DECAF worked well as a multiagent platform for an ecological queuing

system.

• Agents communicated effectively to provide simulated distributions of

trumpeter swans, and accessed ecological knowledge successfully.

• Although my agents did not encompass all the ecological and mathematical

knowledge necessary to intricately model flyway management of swans, they

did seem capable of cooperating with each other to reason in multiple spatial

and temporal scales.

• The multiagent framework worked well to integrate output (knowledge) from

individual expert systems, ensured that that output remained attributable to

individual users, and was successful at communicating to the user when

additional expert system knowledge was necessary.

4.6.3 Future Directions

There are many potential future directions that would be fruitful for research in the use of

multiagent systems for flyway management of waterfowl. They are as varied as the

questions that managers face. I believe that multiagent systems are ideal platforms for

modelling waterfowl movements that integrate a flyway and local perspective. It is a

domain that is inherently represented as a distributed problem(s), and the technology

evolved from algorithms that provided the capability for complex and distributed

101

problems. The work I have conducted leads toward the need for determining what other

factors might allow a deeper understanding of the effects of management actions on the

flyway distribution of waterfowl. Knowing those would allow the more refined

development of algorithms for effective decision support systems via collaboration by

intelligent agents. This would result from more robust knowledge in their belief systems,

more detailed relationships in updating their intentions, and deeper communication

strategies for addressing distributed problems. A companion thrust could be to add

probabilistic sophistication to the service mechanism by representing the uncertainty in

the movement probabilities and propagating that uncertainty into the simulated

distributions.

102

CHAPTER 5

ARTIFICIAL SWANS, ARTIFICIAL MARSHES, AND ARTIFICIAL
INTELLIGENCE: SUMMARY, CONCLUSIONS, AND REFLECTIONS

5.1 What Was Accomplished

When starting this research, doing work that merged the field of waterfowl and wetland

management with the field of artificial intelligence intrigued me. My goal was to develop

and empirically test a tool that would help refuge managers be able to think about their

local marshes from a flyway perspective. I already knew that managing natural

resources is difficult. I did not expect to make it easy nor provide a cookbook. I did hope

that the tools I would provide would allow people, myself included, to conceptualize

problems that were both small-scale and site-specific simultaneously. These were

problems that intertwine time as a critical component and include yesterday's events and

choices as constraints to what we should do now. Such problems often have more

intricacies than one person can perceive, visualize, and solve. There seemed to be a

possibility of applying new artificial intelligence methodologies to such problems. The

ability to encode the knowledge and problem solving abilities of experts so that it might

be more widely utilized seemed useful. And, I recognized that logically connecting this

knowledge and metaknowledge in multiple dimensions was the venue of artificial

intelligence. However, these were methodologies based on theories and technologies

more rapidly developing than I had certainly envisioned. What started out as cutting-

edge in 1991 was nearly obsolete by 2001; and the project evolved in many

technological ways. But, the goal remained the same. What I hopefully have

103

contributed emanates from an innovative, interdisciplinary, conceptual synthesis, and

subsequently from empirical evaluation of the resulting methodology.

System and methodology development appeared at least partly successful. For the first

time, digital swans could be managed in digital marshes. Expert systems are available

on the World Wide Web that could provide assessments of trumpeter swan breeding

habitat, make recommendations about managing semipermanent wetlands, and gauge

the value of an area to the flyway management of trumpeter swans. Plus, queuing

theory had been applied to modelling waterfowl migration for the first time, albeit a digital

migration. That migration was simulated over time by creating intelligent agents linked

together by an artificial intelligence based framework, DECAF, that had the capability to

deal with such distributed problems (but had not yet been applied to many real

situations). These agents were autonomous, had some sensory capability, and could

respond to changing conditions. The agents effectively used KQML protocols to send

and receive messages among each other.

Although system development had charted brand new interdisciplinary territory, the

ultimate quest was to know whether it worked. Empirically testing multiagent systems,

much like ecological models, is never straightforward because they are inherently

complex, can exhibit emergent behaviors, and often have a heuristic foundation due to

incomplete knowledge. Because trumpeter swans have been of great management

interest, especially by the U.S. Fish and Wildlife Service, there is reasonably good, long

term data about their numbers throughout the Northern Rocky Mountains. This provided

a unique opportunity to empirically test the decision support system with experimental

runs against a backdrop of observed numbers across 20 areas for the period 1988-2000.

It was encouraging to see the base queuing model perform so well as judged by

matched-pairs multivariate permutation methods. It was more puzzling to be unable to

104

adequately explain why the system seemed so insensitive to various parameters and

configuration changes. Nonetheless, analysis of the various experimental simulations

provide evidence that local management at single wetlands or small groups of them,

even when they comprise critical habitats locally, has little effect on the flyway

distribution of trumpeter swans over time. I suspect that the algorithms underlying the

multiagent system, particularly those composing the service mechanism, perform

reasonably well in representing the natural ecological diversity of swans and their use of

habitats in the flyway. This likely stems from these algorithms and knowledge having

been based on both effective knowledge engineering and the cooperation of true

experts. Empirical testing of simulations provides some evidence that the 1998 Flyway

Management Plan for the Rocky Mountain Population of Trumpeter Swans might only

have had a small chance to affect the distribution of swans. One might also interpret this

to mean that the Plan effectively avoided distributions that would have resulted in

population collapse. My work did not involve population modelling or estimation, and

that would be a necessary component to assess these possibilities.

5.2 What the Future Offers

Foremost, I emphasize that the decision support system for trumpeter swan

management is a model, which by definition, is an abstraction of reality. But models can

be important because they allow us to perturb systems, run experimental simulations to

test management scenarios, and explore knowledge bases. However, all models can

only be based on information that exists at the time of development. Therein lies the

future.

105

5.2.1 The Flyway Distribution of Waterfowl Via Multiagent Systems

The system could be enhanced to predict the number of swans at specific sites. More

accurate information on movement probabilities would be necessary, as would measures

of precision. This information needs to be gathered through experimental field studies

on waterfowl migration and movements. But, that is only part of the picture. Research

to quantify the expected consequences of water levels on wetlands, swans, and wetland

use by swans (Table 3-2) would allow probabilistic modelling in spatial and temporal

dimensions. Understanding the associated uncertainties would allow further melding of

artificial intelligence methodologies, using decision trees and Bayesian belief networks,

into models of waterfowl management with both flyway and local perspectives. The end

result would be the kind of modelling that melds science and management (Williams

1997; Clark and Schmitz 2001), and that might integrate qualitative and quantitative

ecological information (Rykiel 1989; Starfield 1989). Such work must continue to build

better estimates of fundamental ecological relationships as described by Johnson

(1999). As we improve our models of waterfowl distribution and movement, we will

likewise continue to improve our ability to evaluate management actions.

Even without additional ecological knowledge, my current system could be improved in

at least four ways. First, the service mechanism in the queuing system could be made

into a probabilistic mechanism using the heretofore unused estimates of precision

provided by the experts regarding the movement probabilities. This would potentially

allow confidence intervals (albeit based on heuristics) to be placed on the simulated

distributions, or alternatively allow probability distributions to be developed and used.

Second, ways of presenting the multivariate results of distributions changing over time

(trend analysis) to the user would be advantageous in explaining the results. This is no

trivial task, but the modular nature of DECAF should allow additional agents to

106

communicate to accomplish this. Third, the system could more closely fit accepted

definitions of decision support (Adelman 1992; D'Erchia et al. 2001; Sprague and

Carlson 1982). This would include increased emphasis on user interactions, particularly

in the areas of problem definition and scenario development, as well as in the

presentation of results and their concurrent statistical analysis. Along with this, online

use of the system is a needed feature, including multiple user collaboration. Finally, in a

more futuristic development, agents could be built to gather information from ecological

sensors to judge habitat conditions, check on the status of the migration of radioed

swans, and communicate with biologists in the field about current conditions. The

question to be asked with any of these four improvements is whether they would cause

the simulated distribution of swans to be more accurate or precise, or have some other

demonstrable benefit to swan management. New system developments could likely be

accompanied by a newly articulated purpose(s). One possibility would be to propose

and test new management scenarios.

A working decision support system has been built and empirically evaluated. I

encourage the continued modelling of feathered swans with digital ones and support the

additional blurring of the distinction to further the use of adaptive resource management.

Now, it is time to explore other ways to apply artificial intelligence in the multidimensional

modelling of waterfowl migration as decision support for wildlife managers. It is also time

to put on the hip boots for additional ecological field work.

107

CHAPTER 6

LITERATURE CITED

Adelman, L. 1991. Experiments, quasi-experiments, and case studies: a review of
empirical methods for evaluating decision support systems. IEEE Transactions on
Systems, Man, and Cybernetics 21(2):293-301.

Adelman, L. 1992. Evaluating decision support and expert systems. John Wiley and
Sons. New York, New York.

Andriole, S. J. 1989. Handbook of decision support systems. TAB Professional and
Reference Books. Blue Ridge Summit, Pennsylvania. 248 pages

Armstrong, A., and E. Durfee. 1997. Dynamic prioritization of complex agents in
distributed constraint satisfaction problems. Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence 15:620-625.

Bahill, T. A. 1991. Verifying and validating personal computer-based expert systems.
Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 205 pages.

Batabyal, A. A. 1996. The queuing theoretic approach to groundwater management.
Ecological Modelling 85:219-227.

Blankenhorn, W. U. and T. Caraco. 1992. Social subordinance and a resource queue.
The American Naturalist 139:442-449.

Boland, R. J., A. K. Mahewshwari, D. Te'eni, D. G. Schwartz, and R. V. Tenkasi. 1992.
Sharing perspectives in distributed decision making. pages 306-313, in: Proceedings of
the Conference on Computer-Supported Cooperative Work. Association for Computing
Machinery. New York, New York.

Brehmer, B. 1991. Distributed decision making: some notes on the literature. pages 3­
14 in: Rasmussen, J., B. Brehmer, and J. Leplat, eds. Distributed decision making:
cognitive models for cooperative work. John Wiley and Sons. Chichester, England.

Burd, M. 1996. Server system and queuing models of leaf harvesting by leaf-cutting
ants. The American Naturalist 148:613-629.

Carter, G. M., M. P. Murray, R. G. Walker, and W. E. Walker. 1992. Building
organizational decision support systems. Economic Press Inc. San Diego, California.
358 pages.

108

Carver, N., Z. Cvetanovic, and V. Lesser. 1991. Sophisticated cooperation in FAIC
distributed problem solving systems. pages 191-198 in; Proceedings of the Ninth
National Conference on Artificial Intelligence. AAAI Press. Menlo Park, California.

Carver, N., and Lesser, V. 1992. The evolution of blackboard control architectures.
PSCI Technical Report 92-71. Department of Computer Science, University of
Massachusetts. Amherst, Massachusetts.

Chang, C. 1997. Using computer simulation to manage crowding in parks: a study.
Landscape and Urban Planning 37(3-4):147-161.

Clark, W. R., R. A. Schmitz. When modelers and field biologists interact: progress in
resource science. pages 197-208 in: Shenk, T. M., and A. B. Franklin, eds. Modelling in
Natural Resource Management: Development, Interpretation, and Application. Island
Press. Washington, DC.

Cohen, Y. 1984. A simplified approach to the queuing model of white-tailed deer
harvest. Journal of Wildlife Management 48(1):271-275.

Cohen, P. R., and A. E. Howe. 1989. Toward AI research methodology: three case
studies in evaluation. IEEE Transactions on Systems, Man, and Cybernetics 19(3):634­
646.

Corkill, D. D. 1991. Blackboard systems. AI Expert 6(9):40-47.

Davis, J. R. and J. L. Clark. 1989. A selective bibliography of expert systems in natural
resource management. AI Applications 30:1-17.

Decker, K., A. Pannu, K. Sycara, and M. Williamson. 1997. Designing behaviors for
information agents. Pages 404-413 in: Proceedings of the First International Conference
on Autonomous Agents. Marina del Rey, California

D'Erchia, F., C. Korschgen, M. Nyquist, R. Root, R. Sojda, P. Stine. 2001. A framework
for ecological decision support systems: building the right systems and building the
systems right. U.S. Geological Survey, Biological Resources Division, Information and
Technology Report USGS/BRD/ITR-2001-0002. 50 pages.

Dshalalow, J. H. 1995. An anthology of classical queuing models. pages 1-42 in:
Dshalalow, J. H., ed. Advances in queuing: theory, methods, and open problems. CRC
Press. Boca Raton, Florida.

Durfee, E. H. and V. R. Lesser. 1991. Partial global planning: a coordination framework
for distributed hypothesis formation. IEEE Transactions on Systems, Man, and
Cybernetics 21:1167-1183.

Durfee, E. H. and J. S. Rosenscheln. 1994. Distributing problem solving and multi­
agent systems: comparisons and examples. pages 94-104 in: Proceedings of the
Thirteenth International Distributed Artificial Intelligence Workshop.

109

Durfee, E. H., V. R. Lesser, and D. D. Corkill. 1989. Cooperative distributed problem
solving. pages 84-147 in: Barr, A., P. R. Cohen, and E. A. Feigenbaum, eds. The
Handbook of Artificial Intelligence, Vol. IV. Addison-Wesley. Reading, Massachusetts.

Eason, K. 1988. Information technology and organizational change. Taylor and Francis
Publishing. London, United Kingdom. 247 pages.

Ens, B. J., Weissing. F. J., and Drent, R. H. 1995. The despotic distribution and
deferred maturity: two sides of the same coin. The American Naturalist 146:625-650.

Erol, K., Hendler, J., and Nau, D. S. 1994. Complexity results for HTN planning.
Technical Report 94-44. Computer Science Department, University of Maryland.
College Park, MD. 30 pages.

Geissman, J. R., and R. D. Schultz. 1988. Verification and validation of expert systems.
AI Expert 3(2):26-33.

Graham, J. R. 2001. Real-time scheduling in distributed multi agent systems. PhD
Dissertation. University of Delaware. Newark, Delaware. 166 pages.

Graham, J. R. and Decker, K. S. 2000. Towards a distributed, environment-centered
agent framework. pages 290-304 in: Jennings, Nicholas R. and Y. Lesperance, eds.
Proceedings of the Sixth International Workshop on Agent, Theories, Architectures, and
Languages (ATAL-99). Springer-Verlag. Berlin, Germany.

Graham, J. R., D. McHugh, M. Mersic, F. McGreary, M. V. Windley, D. Cleaver, and K.
S. Decker. 2001. Tools for developing and monitoring agents in distributed multiagent
systems. pages 12-27 in: Lecture Notes in Computer Science No. 1887: Fourth
International Conference on Autonomous Agents. Springer-Verlag. Berlin, Germany.

Graham, I., and P. L. Jones. 1988. Expert systems: knowledge, uncertainty, and
decision. Chapman and Hall. New York, New York. 363 pages.

Grogono, P., A. Batarekh, A. Preece, R. Shinghal, and C. Suen. 1991. Expert system
evaluation: a selected bibliography. Expert Systems 8(4):227-239.

Gross, D. and C. M. Harris 1974. Fundamentals of queuing theory. John Wiley and
Sons, Inc. New York, New York. 556 pages.

Gupta, U. 1991. Validating and verifying knowledge-based systems. IEEE Computer
Society Press. Washington, DC. 423 pages.

Hamilton, D., and K. Kelley. 1991. State-of-the-art practice in knowledge-based system
verification and validation. Expert Systems With Applications 3:403-410.

Hillier, F. S. and G. J. Lieberman. 1995. Introduction to operations research. McGraw­
Hill, Inc. New York, New York. 998 pages.

Holling, C. S. 1978. Adaptive environmental assessment and management. John Wiley
and Sons. New York, New York.

110

Hollnagel, E. 1991. The pragmatic and the academic view on expert systems. Expert
Systems With Applications 3:179-185.

Horvitz, E. J., D. E. Heckerman, and C. P. Langlotz. 1986. A framework for comparing
alternative formalisms for plausible reasoning. Science 210-214.

Huhns, M. N., and L. M. Stephens. 1999. Multiagent systems and societies of agents.
pages 79-120 in: Weiss, G., ed. Multiagent systems. MIT Press. Cambridge,
Massachusetts.

Hushon, J. M. 1990. Overview of environmental expert systems. pages 1-24 in:
Hushon, J. M., ed. Expert systems for environmental applications. American Chemical
Society. Washington, DC.

Jacobs, D. and K. R. Dixon. 1982. A queuing model of white-tailed deer harvest.
Journal of Wildlife Management 46(2):325-332.

Jensen, F. V. 1996. An introduction to Bayesian belief networks. Springer-Verlag. New
York, New York. 178 pages.

Johnson, D. H. 1999. The insignificance of statistical significance testing. Journal of
Wildlife Management 63(3):763-772.

Johnson, D. H. 2001. Validating and evaluating models. pages 105-119 in: Shenk, T.
M., and A. B. Franklin, eds. Modelling in Natural Resource Management: Development,
Interpretation, and Application. Island Press. Washington, DC.

Kendall, D. G. 1953. Stochastic processes occurring in the theory of queues and their
analysis by the method of the imbedded Markov chain. Annals of Mathematical
Statistics 24(3):338-354.

Kleinrock, L. 1975. Queuing systems volume I: theory. John Wiley and Sons. New
York, New York. 417 pages.

Kokko, H., J. Lindstrom, R. V. Alatalo, and P. T. Rintamaki. 1998. Queuing for territory
positions in the lekking black grouse (Tetrao tetrix). Behavioral Ecology 9(4):376-383.

Labrou, Y. and T. Finin 1997. A proposal for a new KQML specification. Technical
Report TR CS-97-03. Computer Science and Electrical Engineering Department,
University of Maryland Baltimore County. Baltimore, Maryland. 42 pages.

Maitre, B., and Laasri, H. 1990. Cooperating expert problem-solving in blackboard
systems: ATOME case study. pages 251-263 in: Y. Demazeau, ed. Decentralized A.I.:
Proceedings of the First European Workshop on Modelling Autonomous Agents in a
Multi-Agent World. England: Elsevier Science Publishers. Cambridge, England.

Maniak, U. and W. Trau. 1971. Optimal operations of reservoirs in the Harz Mountains.
pages 901-907 in: Mathematical Models in Hydrology: Proceedings of the Warsaw
Symposium. Paris, France.

111

Mielke, P. W. and K. J. Berry. 2001. Permutation methods: a distance function
approach. Springer-Verlag. New York, New York. 352 pages.

Mielke, P. W., K. J. Berry, and C. O. Neidt. 1996. A permutation test for multivariate
matched-pair analyses: comparisons with Hotelling's multivariate matched-pair T2 test.
Psychological Reports 78:1003-1008.

Murrell, S. and R. T. Plant. 1997. A survey of tools for the validation and verification of
knowledge-based systems: 1985-1995. Decision Support Systems 21:307-323.

Nii, H. P. 1986a. Blackboard systems: the blackboard model of problem solving and the
evolution of blackboard architectures. AI Magazine 7(2):38-53.

Nii, H. P. 1986b. Blackboard systems: blackboard application systems, blackboard
systems from a knowledge engineering perspective. AI Magazine 7(3):82-106.

O'Keefe, R. M., O. Balci, and E. P. Smith. 1987. Validating expert system performance.
IEEE Expert 2(4):81-90.

O'Leary, D. E. 1994. Verification and validation of intelligent systems: five years of AAAI
workshops. International Journal of Intelligent Systems 9:653-657.

Pearl, J. 1990. The Bayesian approach. pages 339-344 in: Shafer, G., and J. Pearl,
eds. Readings in uncertain reasoning. Morgan Kaufmann Publishers. San Mateo,
California.

Pinson, S. D., J. A. Louca, and P. Moraitis. 1997. A distributed decision support system
for strategic planning. Decision Support Systems 20:35-51.

Rao, A. S. and M. P. Georgeff. 1991. Modeling rational agents within a BDI­
architecture. pages 1-18 in: Allen, J., R. Fikes, and E. Sandewall, Principles of
knowledge representation and reasoning: proceedings of the second international
conference. Morgan Kaufmann Publishers. San Mateo, California.

Rao, A. S. and M. P. Georgeff. 1995. BOI agents: from theory to practice. pages 312­
319 in: Proceedings of the First International Conference on Multiagent Systems. AAAI
Press. Menlo Park, California.

Reed, T. 2000. 2000 Fall trumpeter swan survey. Unpublished report. U.S. Fish and
Wildlife Service. Lakeview, Montana. 28 pages.

Rushby, J. 1988. Validation and testing of knowledge-based systems: how bad can it
get? pages 77-83 in: Gupta, U., ed. Validating and Verifying Knowledge-Based
Systems. IEEE Computer Society Press. Los Alamitos, California.

Russell, S. J. and P. Norvig. 1995. Artificial intelligence: a modern approach. Prentice
Hall. Englewood Cliffs, New Jersey. 932 pages.

Rykiel, E. J. 1989. Artificial intelligence and expert systems in ecology and natural
resource management. Ecological Modelling 46:3-8.

112

Scott, A. C., J. E. Clayton, and E. L. Gibson. 1991. A practical guide to knowledge
acquisition. Addison-Wesley Publishing Company. Reading, Massachusetts. 509
pages.

Shafer, G. 1988. Probability judgment in artificial intelligence. pages 127-135 in: Kanal,
L. N. and J. F. Lemmer, eds. Uncertainty in artificial intelligence: proceedings of the
fourth conference. Elsevier Science Publishers. B.V. Amsterdam, The Netherlands.

Shafer, G. 1990. Belief functions. pages 473-481 in: Shafer, G., and J. Pearl,eds.
Readings in uncertain reasoning. Morgan Kaufmann Publishers. San Mateo, California.

Shortliffe, E. H., and B. G. Buchanan. 1984. A model of inexact reasoning in medicine.
pages 233-262 in: Buchanan, B. G., and E. H. Shortliffe, eds. Rule-based expert
systems: the MYCIN experiments of the Stanford Heuristic Programming Project.
Addison-Wesley Publishing Company. Reading, Massachusetts.

Sojda, R. S., D. J. Dean, and A. E. Howe. 1994. A decision support system for wetland
management on national wildlife refuges. AI Applications 8(2):44-50.

Sojda, R. S., and A. E. Howe. 1999. Applying cooperative distributed problem solving
methods to trumpeter swan management. pages 63-67 in Cortes, U. and M. Sanchez­
Marre, eds. Environmental Decision Support Systems and Artificial Intelligence.
American Association for Artificial Intelligence Technical Report WS-99-07. AAAI Press.
Menlo Park, California.

Sojda, R. S., J. E. Cornely, and A. E. Howe. in press. Development of an expert system
for assessing trumpeter swan breeding habitat in the Northern Rocky Mountains.
Waterbirds (in press).

Sprague, R. H. Jr. and E. D. Carlson. 1982. Building effective decision support
systems. Prentice-Hall. Englewood Cliffs, New Jersey. 329 pages.

Starfield, A. M., B. P. Farm, and R. H. Taylor. 1989. A rule-based ecological model for
the management of an estuarine lake. Ecological Modelling 46:107-119.

Stuth, J. W. and M. S. Smith. 1993. Decision support for grazing lands: an overview.
pages 1-35 in J.W. Stuth and B.G. Lyons, eds. Decision support systems for the
management of grazing lands. Man and the Biosphere Series Volume 11: Papers from
the International Conference on Decision Support Systems for Resource Management.
The Parthenon Publishing Group. Pearl River, New York

Subcommittee on Rocky Mountain Trumpeter Swans. 1998. Pacific Flyway
management plan for the Rocky Mountain population of trumpeter swans. Unpublished
report. Pacific Flyway Study Committee. Portland, Oregon.

Wallace, D. R. and R. U. Fujii. 1989. Software verification and validation: an overview.
IEEE Software 6(3):10-17.

Walters, C. 1986. Adaptive management of renewable resources. Macmillan
Publishing Co. New York, New York. 374 pages.

113

Weiss, G. 1999. Prologue: multiagent systems and distributed artificial intelligence.
pages 1-23 in: Weiss, G., ed. Multiagent systems: a modern approach to distributed
artificial intelligence. MIT Press. Cambridge, Massachusetts.

White, G. C., L. H. Carpenter, and D. R. Anderson. 1985. Application of expert systems
in wildlife. Transactions of the North American Wildlife and Natural Resources
Conference 50:363-366.

Williams, B. K. 1997. Logic and science in wildlife biology. Journal of Wildlife
Management 61(4): 1007-1015.

Wooldridge, M. and N. R. Jennings. 1995. Intelligent agents: theory and practice.
Knowledge Engineering Review 10(2):115-152.

Wooldridge, M. 1999. Intelligent agents. pages 27-77 in: Weiss, G., ed. Multiagent
systems: a modern approach to distributed artificial intelligence. MIT Press. Cambridge,
Massachusetts.

114

APPENDIX 1

THE DEFAULT CONFIGURATION FILE [dss.config] FOR THE DECISION
SUPPORT SYSTEM FOR TRUMPETER SWAN MANAGEMENT

The following text file, dss.config, resides in the directory, .. ./decafldss/data/:

#dss configuration

#number between a- 100
BREEDING_THRESHOLD_VALUE = 60

#number between a- 1
REMAIN_IN_QUEUE_MULTIPLIER = .1

#ignore Breeding expert system output (yes/no)
IGNORE_BREEDING_EXPERT_SYSTEM = no

#ignore Flyway expert system output (yes/no)
IGNORE_FLYWAY_EXPERT_SYSTEM = no

#ignore Wetland expert system output (yes/no)
IGNORE_WETLAND_EXPERT_SYSTEM = no

115

..a.

..a.
(J)

APPENDIX 2

THE OBSERVED NUMBERS OF SWANS
AS USED IN THE QUEUING SYSTEM

This table provides the total, observed number of swans (September) represented in each queuing system server. Actual totals are
calculated during system execution (by the program ../decaf/dss/move/dss_move.c) from the raw data contained in the files
../decaf/dss/datalFall_<year>.txt.

YEAR
SERVER"

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1971 0 0 0 0 2 1 0 337 0 0 69 5 0 35 44 0 0 0 0 0 0 0 0 0 0 0 0 0
1974 124 0 0 0 2 0 0 343 0 0 88 0 0 54 50 0 0 0 0 0 0 0 0 0 0 0 0 0
1977 278 0 0 0 0 0 0 329 0 0 61 0 0 55 34 0 12 0 0 0 0 0 0 0 0 0 0 0
1979 0 0 0 0 3 0 0 380 0 0 60 2 0 41 43 0 11 0 0 0 0 0 0 0 0 0 0 0
1980 703 0 0 0 6 0 0 313 0 0 70 7 0 40 40 0 6 0 0 0 0 0 0 0 0 0 0 0
1983 845 0 0 0 1 0 0 254 0 0 96 4 0 35 47 0 7 0 0 0 0 0 0 0 0 0 0 0
1984 945 0 0 0 3 2 0 269 0 0 96 1 2 31 0 0 10 0 0 0 0 0 0 0 0 0 0 0
1985 1038 0 0 0 0 0 0 291 0 0 104 7 0 0 24 0 3 0 0 0 0 0 0 0 0 0 0 0
1986 1019 0 0 0 1 0 0 201 0 0 98 3 0 36 45 0 2 0 0 0 0 0 2 0 0 0 0 0
1987 1241 0 0 0 0 0 0 343 0 0 0 6 0 0 0 0 6 0 0 4 0 0 0 0 0 0 0 0
1988 1115 0 0 0 4 1 0 340 0 0 86 13 . 0 43 78 0 7 9 6 10 0 0 0 0 0 0 0 0
1989 1409 0 0 0 3 2 0 312 0 0 90 6 0 30 77 0 6 5 17 10 0 0 1 0 0 0 0 0
1990 1574 0 0 0 0 0 0 353 1 0 78 12 0 28 64 0 3 0 19 5 0 0 0 0 0 0 0 0
1991 1598 0 0 0 2 0 0 234 0 0 75 17 7 33 64 0 5 0 50 0 0 0 14 23 36 2 0 0
1992 1660 0 0 0 2 1 0 210 0 0 55 8 11 0 74 5 6 21 26 9 4 0 0 13 39 36 0 0
1993 2172 0 0 0 0 0 0 76 0 0 47 10 9 0 60 0 2 12 28 4 0 0 0 13 34 9 0 0
1994 2349 0 0 0 0 0 0 113 0 0 52 10 15 35 65 8 5 12 49 1 0 0 4 24 22 32 0 0
1995 2498 0 0 0 0 0 0 80 0 0 54 21 24 34 67 0 11 6 34 3 2 0 11 20 14 23 0 0
1996 2240 0 0 0 0 3 0 119 0 0 64 9 12 21 58 3 16 6 34 2 16 0 5 21 22 33 0 0
1997 1756 0 0 6 0 1 0 98 0 0 62 13 25 18 76 10 19 4 35 2 0 0 2 23 23 2 0 0
1998 3058 0 0 0 0 0 0 116 0 0 60 14 20 23 53 6 16 7 47 4 5 0 0 16 27 5 0 0
1999 3088 0 0 0 0 3 0 114 0 0 45 17 21 20 48 11 18 3 34 6 3 0 8 19 14 1 0 0
2000 3471 0 0 0 5 2 0 126 0 0 79 21 15 18 56 8 10 7 37 3 7 0 0 28 15 3 0 0

1 Server names as used in the queuing system are found on the following page.

Server names as used in the queuing system. These can also be found in the file
..Idecaf/dss/move/dss_move.c :

1 Canada
2 Okanagan
3 Freezeout Lake
4 Flathead Valley
5 Upper Madison
6 Mid-Madison
7 Lower Madison
8 Centennial Valley
9 Teton Basin
10 Swan Valley
11 Island Park
12 Lower Henry's Fork
13 Paradise Valley
14 Yellowstone Lake
15 Jackson Hole
16 Green River
17 Camas NWR
18 American Falls
19 Grays Lake NWR
20 Salt River
21 Bear LklSoda Sp
22 Bear River MBR
23 Lower Snake River
24 Ruby Lake NWR
25 Malheur NWR
26 Summer Lake WMA
27 Central Valley
28 Unknown

117

APPENDIX 3

THE RAW VALUES FOR LIKELIHOOD OF
MOVEMENT BETWEEN SEASONS

The following matrices are interpreted as the likelihood of movement from server (area) j
to server i where a cell in the matrix is represented as row i, column j. Server names
are in the following order:

1 Canada
2 Okanagan
3 Freezeout Lake
4 Flathead Valley
5 Upper Madison
6 Mid-Madison
7 Lower Madison
8 Centennial Valley
9 Teton Basin
10 Swan Valley
11 Island Park
12 Lower Henry's Fork
13 Paradise Valley
14 Yellowstone Lake
15 Jackson Hole
16 Green River
17 Camas NWR
18 American Falls
19 Grays Lake NWR
20 Salt River
21 Bear LklSoda Sp
22 Bear River MBR
23 Lower Snake River
24 Ruby Lake NWR
25 Malheur NWR
26 Summer Lake WMA
27 Central Valley
28 Unknown

118

--CD

Breedina to Postbreed"
0 5 0 0 20 5 5 10 5 0 75 0 0 5 5 0 2 2 0 0 5 0 0 0 0 0 0 0
0 100
0 0 100 0
0 100
0 100
0 100
0 100
0 0 0 0 5 0 0 100 10 0 50 0 0 50 5 0 5 5 0 0 0 0 0 0 0 0 0 0
0 100
0 100
0 0 0 0 5 5 0 10 10 0 100 0 0 5 5 0 5 15 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 95 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 10 0 0 5 0 0 5 0 0 55 25 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 5 0 0 0 95 0 0 0 0 35 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 15 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 100 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 80 40 50 0 0 0 0 0 0 0
0 100
0 100 0 0 0 0 0 0 0
0 100
0 100 0 0 0 0 0
0 100 0 0 0 0
0 100 0 0 0
0 100 0 0
0 100
0 100

Postbreedina to Wint .ertng
0 100
0 100 5 0
0 0 0 0 50 50 0 0 15 15 75 20 0 5 2 0 0 10 0 0 0 1 2 0 0 0 5 0
0 100
0 0 0 0 100 0 0 0 20 20 95 20 0 10 2 0 0 10 0 5 0 1 2 0 0 0 5 0
0 0 0 0 90 0 0 0 25 20 95 35 0 0 2 0 0 10 0 0 0 1 2 0 0 0 5 0
0 0 0 0 80 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 15 5 90 35 0 5 0 0 0 5 0 0 0 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 100 25 60 50 0 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0
0 100
0 0 0 0 0 0 0 0 20 20 100 40 0 10 2 0 0 10 0 0 5 0 2 0 0 0 5 0
0 0 0 0 0 0 0 0 0 0 33 33 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0
0 100
0 0 0 0 30 0 0 0 15 5 50 15 0 100 5 0 0 5 0 5 0 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 10 0 10 5 0 0 100 0 0 0 0 25 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 35 30 60 75 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 15 0 55 20 0 0 0 0 0 0 0
0 100
0 100 25 0 0 0 0 0 0
0 100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 75 0 0 0 0 0
0 100 0 0 0 0
0 100 0 0 0
0 100 5 0
0 100
0 100

­No

Prebreed"W" In~

0 100
0 100 0
0 100
0 100
0 0 75 0 100 75 0 2 0
0 0 75 0 0 100 0
0 100
0 100
0 0 80 0 80 80 0 10 0 0 80 5 0 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0
0 0 60 0 60 60 0 15 0 0 60 10 0 0 3 0 10 0 0 0 0 0 0 0 0 0 0 0
0 0 75 0 75 75 0 15 0 0 100 3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
0 0 80 0 80 80 0 5 0 0 85 5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
0 0 100 0
0 0 70 0 70 70 0 2 0 0 30 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 20 0 20 20 0 2 0 0 20 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0
0 100
0 0 50 0 50 50 0 10 0 0 50 15 0 0 0 0 15 100 0 0 0 0 0 0 0 0 0 0
0 100
0 0 5 0 5 5 0 0 0 0 5 0 0 0 50 0 0 0 0 100 0 0 0 0 0 0 0 0
0 0 5 0 5 0 0 5 0 0 5 0 0 0 0 0 0 5 0 0 100 0 0 0 0 0 0 0
0 0 5 0 5 5 0 5 0 0 5 5 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0
0 100 0 0 0 0 0
0 100 0 0 0 0
0 100 0 0 0
0 100 0 0
0 5 0
0 100

­N-

Prebreedina to Breed"Ins
a 100
a 100
a a 100 a
a 100
a a a a a a a 5 a a a a a 5 a a a a a a a a a a a a a a
a 100
a 100
a a a a a a a 45 a a 5 a a a a a a a a a a a a a a a a a
a 100
a 100
a a a a a a a 2 a a 10 a a 5 a a 5 a a a a a a a a a a a
a a a a a a a a a a a 100 a a a a a a a a a a a a a a a a
a 100
a a a a a a a 5 a a 5 a a 10 a a a a a a a a a a a a a a
a a a a a a a a a a a a a 5 65 a a a a a a a a a a a a a
a a a a a a a a a a a a a a a 100 a a a a a a a a a a a a
a a a a a a a 5 a a 2 a a 5 a a 4 a a a a a a a a a a a
a a a a a a a 5 a a 5 a a a a a 5 5 5 a a a a a a a a a
a 100
a a a a a a a a a a a a a a 40 a a a 40 a a a a a a a a a
a a a a a a a a a a 10 a a a a a a a 50 a 50 a a a a a a a
a 100
a 100 a a a a a
a 100 a a a a
a 100 a a a
a 100 a a
a 100
a 100

­N
N

...
N
W

APPENDIX 4

STRAIGHTLINE DISTANCES BETWEEN
AREAS AND GROUPINGS OF AREAS

Table of distances (km) between Rocky Mountain population of trumpeter swan September survey areas. Areas delineating
rows and columns follow the order in the subsequent table, "explanation of actual location of survey areas".

0 594 600 549 1323 1176 1176 1323 1323 1323 1323 1323 1323 1323 1323 1630 1323 1323 1323 1323 1601 1601 1397 1698 1328 1384 1765
594 0 597 457 867 867 867 867 867 867 867 867 867 867 867 1165 867 867 867 867 1091 1091 829 1126 735 790 1166
600 597 0 156 325 251 209 332 399 399 399 399 274 377 399 669 399 522 556 556 556 685 603 881 727 866 1221
549 457 156 0 412 330 302 398 468 468 468 468 381 476 468 756 468 558 614 614 614 725 568 868 638 765 1136

1323 867 325 412 0 88 117 65 93 141 49 107 90 70 129 336 128 221 188 207 275 367 418 627 647 798 1083
1176 867 251 330 88 0 45 86 170 218 136 164 82 147 213 419 172 275 261 286 339 436 424 666 629 779 1086
1176 867 209 302 117 45 0 131 193 193 193 193 79 176 193 463 193 329 352 352 352 482 464 710 658 807 1121
1323 867 332 398 65 86 131 0 92 136 63 170 135 124 149 351 87 189 180 208 253 349 369 588 597 749 1035
1323 867 399 468 93 170 193 92 0 50 40 43 175 99 60 256 84 146 96 117 173 277 343 553 614 764 1030
1323 867 399 468 141 218 193 136 50 0 90 60 225 140 66 219 92 110 47 78 126 229 343 553 614 764 1030
1323 867 399 468 49 136 193 63 40 90 0 59 142 82 90 295 85 172 132 154 222 313 377 553 614 764 1030
1323 867 399 468 107 164 193 170 43 60 59 0 191 131 94 276 44 116 99 132 169 271 343 553 614 764 1030
1323 867 274 381 90 82 79 135 175 225 142 191 0 109 198 397 209 308 268 287 353 451 480 701 697 848 1144
1323 867 377 476 70 147 176 124 99 140 82 131 109 0 94 292 167 242 178 183 256 359 463 642 706 857 1123
1323 867 399 468 129 213 193 149 60 66 90 94 198 94 0 209 135 169 91 90 162 266 407 553 614 764 1030
1630 1165 669 756 336 419 463 351 256 219 295 276 397 292 209 0 307 262 188 148 165 199 500 516 773 907 1080
1323 867 399 468 128 172 193 87 84 92 85 44 209 167 135 307 0 104 122 159 187 270 295 553 614 764 1030
1323 867 522 558 221 275 329 189 146 110 172 116 308 242 169 262 104 0 94 133 107 171 244 393 511 656 883
1323 867 556 614 188 261 352 180 96 47 132 99 268 178 91 188 122 94 0 44 84 182 336 429 606 747 956
1323 867 556 614 207 286 352 208 117 78 154 132 287 183 90 148 159 133 44 0 83 178 336 429 606 747 956
1601 1091 556 614 275 339 352 253 173 126 222 169 353 256 162 165 187 107 84 83 0 99 336 429 606 747 956
1601 1091 685 725 367 436 482 349 277 229 313 271 451 359 266 199 270 171 182 178 99 0 334 324 599 727 882
1397 829 603 568 418 424 464 369 343 343 377 343 480 463 407 500 295 244 336 336 336 334 0 306 272 412 661
1698 1126 881 868 627 666 710 588 553 553 553 553 701 642 553 516 553 393 429 429 429 324 306 0 454 531 576
1328 735 727 638 647 629 658 597 614 614 614 614 697 706 614 773 614 511 606 606 606 599 272 454 0 152 495
1384 790 866 765 798 779 807 749 764 764 764 764 848 857 764 907 764 656 747 747 747 727 412 531 152 0 386
1765 1166 1221 1136 1083 1086 1121 1035 1030 1030 1030 1030 1144 1123 1030 1080 1030 883 956 956 956 882 661 576 495 386 0

E f ,f actual I f ,f

~

N
~

CODE ACTUAL NAME SPECIFIC LOCATION USED FOR DISTANCES
Canada Canada Grande Prairie, AB
okanag Okanagan Kelowna, BC
freeze Freezeout Lake Fairfield, MT
f1athe Flathead Lake approximate center of Flathead Lake, MT
upornad Upper Madison River and Hebcen Lake East end of Hebqen Lake
ennisl Ennis Lake and Mid-Madison River Ennis Lake
lowmad Lower Madison River 10km due south of Interstate 90
centen Centennial Valley approximately in the Swan Lake area of Red Rock Lakes NWR
tetonb Teton Basin approximately 25km ENE of Teton, 10
swanva Swan Valley Swan Valley, 10
island Island Park Big Bend area of the Henry's Fork in Harriman State Park, 10
lowhen Lower Henry's Fork River, Market Lake, and Sand Creek St. Anthony, 10
paradi Paradise Valley approximately 4km South of Emigrant, MT
yellow Yellowstone Lake and Nearby River approximate center of Yellowstone Lake
jackso Jackson Hole Flat Creek marshes in National Elk Refuge
greenr Green River Seedskadee NWR
camas Camas NWR and Mud Lake midway between Camas NWR And Mud Lake
americ American Falls Reservoir approximate center of the North one-third of reservoir
graysl Grays Lake NWR approximate center of Grays Lake
saltr Salt River near Thayne, WY
bearba Bear River Basin, Bear Lake NWR, and Soda Springs Soda Springs, 10
bearmb Bear River Migratory Bird Refuge near mouth of the Bear River
lowsna Lower Snake River Brunneau Dunes State Park, 27km South of Mountain Home, 10
rubyl Ruby Lake NWR approximately 6km North of the South refuge boundary
malheu Malheur NWR midway between Harney and Malheur Lakes
summer Summer Lake approximate center of Summer Lake, OR
centra Central Valley of California Willows, CA

NOTES:
• Measurements from Grande Prairie and Kelowna were taken to Island Park and applied to areas in the core tri-state area, except for Bear

River Basin and Bear River MBR.
• Measurements from Flathead, Freezeout, Lower Madison, Central Valley, Summer Lake, Malheur, Ruby Lake were taken to the following

groupings:
o to Soda Springs, 10for Grays Lake, Salt River, and Bear River Basin;
o to Ashton, 10 for Island Park, Lower Henry's Fork, Camas, Teton Basin, Swan Valley, and Jackson Hole

• Measurements from Lower Snake River were taken to the following groupings:
o to Soda Springs, 10 for Grays Lake, Salt River, and Bear River Basin;
o to Teton, 10 for Lower Henry's Fork, Teton Basin, and Swan Valley

APPENDIX 5

DOCUMENTATION FOR THE AGENTS, TASKS, AND ACTIONS

Facilitator Agent: plan file overview
Facilitator Agent
_Startup

bldDisplayESAdv Builds the advertise KQML message addressed to the
Matchmaker agent about the dss_DisplayESStatus task.

Requests that the advertise KQML message built by the

advMMDisplayES bldDisplayESAdv action be sent to the Matchmaker
agent. No response message is expected, and task will
continue its execution as soon as the message is sent.

bldCleanupAdv Builds the advertise KQML message addressed to
Matchmaker about the dss_Cleanup task.

Requests that the advertise KQML message built by the

advMMCleanup bldCleanupAdv action be sent to the Matchmaker agent.
No response message is expected, and task will continue
its execution as soon as the message is sent.

startUserAction
Starts the dss_UserAction task via a local achieve
message.

Waits for the three OK outcomes from the other actions of
taskTerminator this task, and returns the OK outcome notifying DECAF

that _Startup is complete.

_Shutdown

stop Prints a short status message to the system console.

dss_UserAction

Presents two choices to the user via the system console:
(1) start a new Decision Support System consultation or

selectDSSAction
(2) quit. If option 1 is chosen, a local achieve KQML
message is sent to dss_AskUser task, else if option 2 is
selected, a local achieve KQML message is sent to the
_Shutdown task.

125

dss_Cleanup

Prints a descriptive summary of the just-completed
simulation that consists of user name, simulation
description, start and end years, refuge agents that were

announceSimCompletion active during the consultation, expert system(s) that did
not participate in the run, whether simulated or the actual
observed swan numbers were used, and whether
Canadian bird numbers were included in the input data.

requestNextUserAction Sends a local achieve KQML message to the
dss_UserAction task.

dss_AskUser

Interactively obtains the user information needed by the
Decision Support System to start a new consultation. This
includes user's name, simulation description, start and
end years, the names of refuge agents that should be
active during the simulation, whether the system should
use simulated swan numbers, and if input data should
include Canadian bird numbers.

Also reads the local DSS configuration file to decide what
expert systems should be ignored during the simulation.
When an expert system is ignored, the DSS database file
that corresponds to that expert system is modified to
prevent changes in the queuing model based on the
information contained in the database. Unless the

getUserlnfo configuration file disabled all expert systems, the user will
be given an option to clear out the databases for the
active expert systems. When a database is cleared DSS
will reinitialize it later using the output of the
corresponding expert system.

Because this action uses user-provided information from
both the console and the configuration file, an unforeseen
input or output errors may occur. When the action detects
an error it will ask the user whether to restart the system.
If the answer is "No" the action will return a FAIL
outcome, which will activate the bldShutdownMsg task.
Otherwise the action will attempt to collect the needed
information again. User-provided information is stored in a
Java utility class internal to the Facilitator agent.

bldProcessUserMsg
Builds a local achieve KQML message requesting the
dss_ProcessUserRequest task.

Requests that the achieve KQML message built by the
bldProcessUserMsg action be sent to the Facilitator

achFacProcessUser agent. No response message is expected, and task will

I
continue its execution as soon as the message is sent.

126

bldShutdownMsg Builds a local achieve KQML message requesting the
Shutdown task.

Requests that the achieve KQML message built by the

achFacShutdown bldShutdownMsg action be sent to the Facilitator agent.
No response message is expected, and task will continue
its execution as soon as the message is sent.

Waits for the OK outcome from one of the other actions of
cOllectAskUser this task, and then returns the OK outcome informing

DECAF that dss_AskUser task has finished.

dss_DisplayESStatus

Prints to the console a request from a refuge agent
informing the user that a particular expert system needs

showUserESStatus to be run. No message is printed if the refuge agent says
that the database is current, or if the expert system output
file already exists.

Monitors a specific directory on disk to see if the expert
system output exists. The action continues to wait until

listenForESFile the file is detected, and the user is then notified that the
file has been found, and the task continues its execution.
The current pause between file system checks is one
second.

Requests that the tell KQML message be sent as a
response to the refuge agent, telling the refuge agent that

telRefugeESAch a previous achieve request has been successfully
satisfied. No response message is expected, and task will
continue its execution as soon as the message is sent.

dss_RunMove

Builds an achieve message addressed to the Move
bldAssembleMsg agent, requesting that the dss_Assemble task be initiated

when possible.

Requests that the achieve KQML message built by the

achMoveAssemble bldAssembleMsg action be sent to the Move agent. No
response message is expected, and task will continue its
execution as soon as the message is sent.

Ensures that each refuge agent requested by the user
has been notified of the new request. This is done by
building an achieve message requesting the
dss_Assemble task of the Move agent. The name of the

processRefugeNames
refuge agent to be notified is included in the content field
of the KQML message. This action uses the Java utility
class FacilitatorData internal to the Facilitator agent to
carry out the processing of refuge agent names specified
by the user.

127

Builds a local tell message in response to a local achieve
bidRunMoveDoneMsg message from the dss_ProcessUserRequest task saying

that the previous request was successfully satisfied.

Requests that the tell KQML message built by the

telFacUserRequest bldRunMoveDoneMsg action be sent to the Facilitator
agent. No response message is expected, and task will
continue its execution as soon as the message is sent.

I
dss_ProcessUserRequest

Builds an achieve KQML message addressed to the
Move agent requesting the dss_DataTracker task. This
message contains a subset of user-provided information
that the Move agent requires. The subset consists of the

bldTrackerMsg user's name, start and end years of the simulation, active
refuges, the use of Canadian bird numbers, user-provided
simulation description, as well as the number of times the
dss_Assemble task will be requested by the Facilitator
agent.

Requests that the achieve KQML message built by the

achMoveTracker bldTrackerMsg action be sent to the Move agent. A
response message is expected, and the task will pause
its execution until a reply is received.

bldRunMoveMsg
Builds a local achieve KQML message requesting
dss_RunMove task.

Requests that the achieve KQML message built by the

achFacRunMove
bldRunMoveMsg action be sent to the Facilitator agent. A
response message is expected, and the task will pause
its execution until a reply is received.

Ensures that refuge agent(s) of the requested simulation
have been activated for each year of the simulation. This
is implemented by sending a local achieve message

processRequestYears requesting the dss_RunMove task and including the year
for which the refuge agent(s) should be run. Year
accounting is done by the Java utility class FacilitatorData
internal to the Facilitator agent.

Move Agent: plan file overview
MAtove ~gen

_Startup

bldAssembleAdv
Builds the advertise KQML message addressed to the
Matchmaker agent about the dss_ task.

Requests that the advertise KQML message built by the

advMMAssemble
bldAssembleAdvaction be sent to the Matchmaker agent.
No response message is expected, and task will continue
its execution as soon as the message is sent.

128

bldSimAdv
Builds the advertise KQML message addressed to
Matchmaker about the dss_Sim task.

Requests that the advertise KQML message built by the

advMMSim bldSimAdv action be sent to the Matchmaker agent. No
response message is expected, and task will continue its
execution as soon as the message is sent.

bldTrackerAdv
Builds the advertise KQML message addressed to
Matchmaker about the dss_DataTracker task.

Requests that the advertise KQML message built by the

advMMTracker bldTrackerAdv action be sent to the Matchmaker agent.
No response message is expected, and task will continue
its execution as soon as the message is sent.

Waits for the three OK outcomes from the other actions of
taskTerm inator this task, and returns the OK outcome notifying DECAF

that _Startup is complete.

_Shutdown

stop Prints a short status message to the system console.

dss_DataTracker

Uses the simulation information sent by the Facilitator
agent to update the data stored in the Java utility class

updateMoveData
internal to the Move agent. Upon successful update
constructs a tell KQML message addressed to the
Facilitator agent in response to a previous achieve
message.

Requests that the tell KQML message built by the

telFacProcessUserTrackDone updateMoveData action be sent to the Facilitator agent. A
response message is not expected, and the task will
continue its execution as soon as the message is sent.

dss_Assemble

bldBreedingChkDBMsg
Builds an achieve KQML message addressed to the
Refuge agent requesting the dss_Breeding task.

Requests that the achieve KQML message built by the
bldBreedingChkDBMsg action be sent to the Refuge

achRefBreed agent. A response message is expected, and the task will
pause the execution of the "Breeding" path until a reply is
received.

Builds an achieve KQML message addressed to the
Refuge agent requesting the dss_Flyway task.

bldFlywayChkDBMsg

129

Requests that the achieve KQML message built by the
bldFlywayChkDBMsg action be sent to the Refuge agent.

achRefFly A response message is expected, and the task will pause
the execution of the "Flyway" path until a reply is
received.

bldHabitatChkDBMsg Builds an achieve KQML message addressed to the
Refuge agent requesting the dss_Habitat task.

Requests that the achieve KQML message built by the
bldHabitatChkDBMsg action be sent to the Refuge agent.

achRefHab A response message is expected, and the task will pause
the execution of the "Habitat" path until a reply is
received.

Waits for the three OK outcomes from the other actions of
this task. When the other three actions provide the OK
outcomes it means that the refuge agent has successfully

collectRefugeMsgs achieved its objectives and dss_Assemble can signal the
dss_SimDispatcher task that one refuge is ready for one
year of the DSS simulation run. A local achieve KQML
message requesting dss_SimDispatcher task is therefore
constructed by this action.

Requests that the achieve KQML message built by the

achSimDispatcher collectRefugeMsgs action be sent to the Move agent. A
response message is not expected, and the task will
continue its execution as soon as the message is sent.

dss_SimDispatcher

Waits for local achieve KQML messages from the
dss_Assemble task. Upon receipt of each message the
internal Java utility class is notified of the new message.
The utility class keeps track of the received messages

listenAssembleMsg and determines the outcome of this action. If more
messages are expected from dss_Assemble then this
action will produce the continue outcome. If all expected
messages have been received, then the action returns
the complete outcome.

bldSimRunMsg
Builds a local achieve KQML message requesting the
dss_Sim task.

Requests that the achieve KQML message built by the

achMoveSimRun bldSimRunMsg action be sent to the Move agent. A
response message is expected and the task will pause its
execution until the response is received.

Ensures that the dss_Sim task is called for every year of
the user-requested simulation. This is implemented with

processSimYears the help of the Java utility class TrackerData internal to
the Move agent. The utility class increments the
simulation start year each time this action is invoked until
the end year is reached.

130

bldSimDoneMsg
Builds an achieve KQML messages addressed to the
Facilitator agent requesting the dss_Cleanup task.

Requests that the achieve KQML message built by the

achFacCleanup bldSimDoneMsg action be sent to the Facilitator agent. A
response message is not expected and the task will
continue its execution as soon as the message is sent.

Waits for an outcome from one of the actions of this task,
collectSimDispatch and returns the OK outcome notifying DECAF that task

dss_SimDispatcher is complete.

dss_Sim

Invokes the C-code native function to check the
temporary output directory for database update files. If
these files exist, the new information will be imported into
the DSS databases. At most three update files can exist
per user, per refuge, per year, corresponding to the three

updateDSSDBs DSS databases.

Because this action needs to perform several input and
output operations on disk, an unforeseen error may
occur. In this case the action will return the FAIL outcome.
Otherwise the outcome OK is returned.

Invokes the C-eode native function to create a refuge
availability mask. The mask is represented as a matrix
with refuge names as rows and seasons as columns. A
zero value (0) in the mask denotes that the refuge is
"restricted" during the season, which implies that the
queuing model will redistribute some percentage of
swans from this refuge queue into other queues. The
exact percent value of the redistributed amount is

writeMask
specified in the DSS configuration file. If a value of one
(1) is specified in the mask file for a refuge during a
season then the refuge is "unrestricted" and the queuing
model will not reduce the expert-suggested bird
movement probabilities for this refuge during the season.

Because this action needs to perform several input and
output operations on disk, an unforeseen error may
occur. In this case the action will return the FAIL outcome.
Otherwise the outcome OK is returned.

Invokes the C-code native function to create the
movement probability matrix based on the original expert-
suggested migration probabilities and the mask file
created by the writeMask action. The expert-suggested

adjustMoveProbs probabilities were obtained from knowledge engineering
sessions and have been stored in the native function
code at compilation time as four (4) two-dimensional
arrays.

131

The probability adjustment algorithm reads the mask file,
and if a value of one (1) is present for the refuge and
season combination then the original migration probability
value is carried over into the final movement probability
matrix.

If a value of zero (0) is present for the refuge and season
then the REMAIN_IN_QUEUE_MULTIPLIER value is
read from the DSS configuration file and is then multiplied
by the expert-suggested migration probability value. The
resulting probability value is stored in the movement
probability matrix for the current refuge and season. The
remaining percentage

Pr = (1-
REMAIN_IN_QUEUE_MULTIPLlER)*ORIGINAL_VALUE
is added to the refuge with the maximum probability
value. In case there is more than one refuge with the
maximum probability value, P, is distributed to the
geographically closest refuge with the maximum
probability value. And if there is a tie between refuge
distances, the Pr is distributed equally between the
closest refuges with the maximum probability values.

Because this action needs to perform several input and
output operations on disk, an unforeseen error may
occur. In this case the action will return the FAIL outcome.
Otherwise the outcome OK is returned.

Invokes the C-code native function to carry out the
simulation of one year of swan migration. The function
first performs the weighting of the adjusted movement
probabilities in order to normalize them with respect to
bird movement during a season. Migration probability
matrix is a 28 by 28 cell matrix with each cell
corresponding to one of the refuges. The last cell
represents the "Unknown" queue, which was introduced
to prevent the loss of birds due to difficulty in predicting
what movement probabilities will be used during the
simulation. The Unknown queue is treated in the same
manner as regular refuges, except the transition

runQueueModel probability from the Unknown queue to other queues is
always zero (0). The probability normalization process
guarantees that the sum of every row in the matrix is
always one (1).

The queuing model makes the assumption that all
Canadian birds that winter in the U.S. return to Canada to
breed. The queuing model separates the U.S. and
Canadian birds into two (2) distinct starting vectors and
two independent simulations are performed. To obtain the

I
final output the resulting vectors are combined after the
simulation is complete. Because it is known that no U.S.
birds winter in Canada. the oueuina model

132

implementation explicitly sets the probability of U.S. birds
migrating to Canada to zero (0). Note that if this
adjustment results in an all-zero row in the migration
probability matrix, the movement probability of birds into
the Unknown queue will be set to one (1) for this row in
the matrix in order to prevent the loss of any birds.

Once the weighted probabilities are obtained the
simulation runs for each season, multiplying the migration
probability matrix for each of the seasons by the starting
vector of that season to obtain the starting vector for the
next season. Mathematically, the simulation calculation
can be expressed as follows:

MO•1* So=S1
where MO•1is the movement probability matrix from
season 0 to season 1 and So is the starting vector with
swan numbers for season O. S1 is then the resulting
starting vector with swan numbers for the next season.

The simulation always starts with the observed number of
swans surveyed during the end of the breeding
September season, and ends with the predicted bird
numbers at the start of the next breeding season. The
September survey numbers are read from the data files
on disk each time a simulation is run.

Because this action needs to perform several input and
output operations on disk, an unforeseen error may
occur. In this case the action will return the FAIL outcome.
Otherwise the action builds a local tell KQML message in
response to a previous achieve KQML message from the
dss_SimDispatcher task, and returns the OK outcome.

Requests that the tell KQML message built by the

telMoveSimDispRunAch
runQueueModel action be sent to the Move agent. A
response message is not expected, and the task will
continue its execution as soon as the message is sent.

bldShutdownMsg
Builds a local achieve KQML message requesting the
_Shutdown task.

Requests that the achieve KQML message built by the

achMoveShutdown bldShutdownMsg action be sent to the Move agent. A
response message is not expected, and the task will
continue its execution as soon as the message is sent.

Waits for the OK outcome from one of the actions of this
collectSim task and returns the OK outcome notifying DECAF that

task dss_Sim is complete.

133

Refuge Agent: plan file overview
Refuge Agent
_Startup

bidBreedAdv
Builds the advertise KQML message addressed to the
Matchmaker agent about the dss_Breeding task.

Requests that the advertise KQML message built by the

advMMBreed
bldBreedAdv action be sent to the Matchmaker agent. No
response message is expected, and task will continue its
execution as soon as the message is sent.

bldFlywayAdv
Builds the advertise KQML message addressed to
Matchmaker about the dss_Flyway task.

Requests that the advertise KQML message built by the

advMMFlyway
bldFlywayAdv action be sent to the Matchmaker agent.
No response message is expected, and task will continue
its execution as soon as the message is sent.

bidHabitatAdv
Builds the advertise KQML message addressed to
Matchmaker about the dss_Habitat task.

Requests that the advertise KQML message built by the

advMMHabitat
bldHabitatAdv action be sent to the Matchmaker agent.
No response message is expected, and task will continue
its execution as soon as the message is sent.

Waits for the three OK outcomes from the other actions of
taskTerminator this task, and returns the OK outcome notifying DECAF

that _Startup is complete.

_Shutdown

stop Prints a short status message to the system console.

dss_Breeding

Checks the DSS Breeding database whether the data
corresponding to the current year, season, and refuge
needs to be obtained from the expert system. Necessity
of the update is indicated by the sentinel value "-1II in the
breeding.dat database file.

This action can return one of three possible outcomes:

ckBreedingDB
FAIL if the file read operation fails, cur if the database file
does not contain the "-1" value, and not_cur if the
database does contain the "-1II value for this year,
season, and refuge.

134

Depending on the outcome value the action will build an
appropriate KQML message: the FAIL outcome is
associated with an achieve message to the _Shutdown
task of the Refuge agent, the cur and not_cur outcomes
are associated with an achieve message to the
dss_DisplayESStatus action of the Facilitator agent with
different values of the :content KQML field.

Requests that the achieve KQML message built by the
ckBreedingDB action be sent to the Facilitator agent.

achFacDispBreedES Response message is expected and the task will pause
its execution until the response from the Facilitator agent
is received.

Requests that the achieve KQML message built by the
ckBreedingDB action be sent to the Facilitator agent.

achFacDispBreed Response message is expected and the task will pause
its execution until the response from the Facilitator agent
is received.

Parses the output of the breeding expert system and
extracts the integer representation of the breeding habitat
quality. This value is then written to a binary file in a

procDataB temporary directory preceded by the four-digit
representation of next year. If the parsing process
terminates normally this action will return the OK
outcome. Otherwise the action returns the FAIL outcome.

Builds the tell KQML message addressed to the

bldBreedCurMsg dss_Assemble task of the move agent. This message is
the response to a previous achieve message from the
achRefBreed action.

Requests that the tell KQML message built by the

telMoveAssembleBreed bldBreedCurMsg action be sent to the Move agent. No
response message is expected, and task will continue its
execution as soon as the message is sent.

Requests that the achieve KQML message built by either
the ckBreedingDB or procDataB actions be sent to the

achRefShutdownBreed Refuge agent. No response message is expected, and
task will continue its execution as soon as the message is
sent.

Waits for the OK outcome from one of the other actions of
collectBreeding this task, and then returns the OK outcome informing

DECAF that dss_Breeding task has finished.

dss_Flyway

Checks the DSS Flyway database whether the data
corresponding to the current year, season, and refuge

ckFlywayDB needs to be obtained from the expert system. Necessity
of the update is indicated by the sentinel value "-1II in the
flvwav.dat database file.

135

This action can return one of three possible outcomes:
FAIL if the file read operation fails, cur if the database file
does not contain the "-1II value, and not_cur if the
database does contain the "-1" value for this year,
season, and refuge.

Depending on the outcome value the action will build an
appropriate KQML message: the FAIL outcome is
associated with an achieve message to the _Shutdown
task of the Refuge agent, the cur and not_cur outcomes
are associated with an achieve message to the
dss_DisplayESStatus action of the Facilitator agent with
different values of the :content KQML field.

Requests that the achieve KQML message built by the
ckFlywayDB action be sent to the Facilitator agent.

achFacDispFlyES Response message is expected and the task will pause
its execution until the response from the Facilitator agent
is received.

Requests that the achieve KQML message built by the
ckFlywayDB action be sent to the Facilitator agent.

achFacDispFly Response message is expected and the task will pause
its execution until the response from the Facilitator agent
is received.

Parses the output of the flyway expert system and creates
an integer representation of the expert system's
assessment for the breeding and wintering seasons.
There are three possible integers that this action assigns
to the expert system's assessment: "999", "1", and "0".
The first value of "999" is used in cases when the expert
system did not have enough information to make a
recommendation. Values "999" and "1II are treated alike in

procDataF by movement probability adjustment algorithm in the
queuing model. The two values corresponding to the
breeding and wintering seasons are then written to a
binary file in a temporary directory preceded by the four-
digit representation of next year for the breeding season,
and the current year for the wintering season. If the
parsing process terminates normally this action will return
the OK outcome. Otherwise the action returns the FAIL
outcome.

Builds the tell KQML message addressed to the

bldFlyCurMsg dss_Assemble task of the move agent. This message is
the response to a previous achieve message from the
achRefFlyaction.

Requests that the tell KQML message built by the

telMoveAssembleFly
bldFlyCurMsg action be sent to the Move agent. No
response message is expected, and task will continue its
execution as soon as the message is sent.

136

Requests that the achieve KQML message built by either
the ckFlywayDB or procDataF actions be sent to the

achRefShutdownFly Refuge agent. No response message is expected, and
task will continue its execution as soon as the message is
sent.

Waits for the OK outcome from one of the other actions of
collectFlyway this task, and then returns the OK outcome informing

DECAF that dss_Flyway task has finished.

dss_Habitat

Checks the DSS Habitat database whether the data
corresponding to the current year, season, and refuge
needs to be obtained from the expert system. Necessity
of the update is indicated by the sentinel value "-1" in the
habitat.dat database file.

This action can return one of three possible outcomes:
FAIL if the file read operation fails, cur if the database file
does not contain the "-1" value, and not_cur if the

ckHabitatDB database does contain the "-1" value for this year,
season, and refuge.

Depending on the outcome value the action will build an
appropriate KQML message: the FAIL outcome is
associated with an achieve message to the _Shutdown
task of the Refuge agent, the cur and not_cur outcomes
are associated with an achieve message to the
dss_DisplayESStatus action of the Facilitator agent with
different values of the :content KQML field.

Requests that the achieve KQML message built by the
ckHabitatDB action be sent to the Facilitator agent.

achFacDispWetES Response message is expected and the task will pause
its execution until the response from the Facilitator agent
is received.

Requests that the achieve KQML message built by the
ckHabitatDB action be sent to the Facilitator agent.

achFacDispHab Response message is expected and the task will pause
its execution until the response from the Facilitator agent
is received.

Parses the output of the wetland expert system and
extracts an integer representation of the wetland habitat
quality for current year's postbreeding and wintering
seasons, and next year's prebreeding and breeding

procDataW
seasons. There are four possible values: "999", "3", "2",
and "1". The "999" value corresponds to a case when the
expert system could not make a recommendation, and
"3", "2", "1" correspond to "high", "medium", and "low"
water levels respectively. The values are saved to a
hinarv filA in a tarnnorarv directorv nrA~ArJP.rJ hv thA four-

137

digit representation of the year that corresponds to the
season: the current year for postbreeding and wintering
seasons, and the next year for prebreeding and breeding
seasons .. If the parsing process terminates normally this
action will return the OK outcome. Otherwise the action
returns the FAIL outcome.

Builds the tell KQML message addressed to the

bidHabitatCurMsg dss_Assemble task of the move agent. This message is
the response to a previous achieve message from the
achRefHab action.

Requests that the tell KQML message built by the

telMoveAssembleHab bldHabCurMsg action be sent to the Move agent. No
response message is expected, and task will continue its
execution as soon as the message is sent.

Requests that the achieve KQML message built by either
the ckHabitatDB or procDataW actions be sent to the

achRefShutdownHab Refuge agent. No response message is expected, and
task will continue its execution as soon as the message is
sent.

Waits for the OK outcome from one of the other actions of
collectHabitat this task, and then returns the OK outcome informing

DECAF that dss_Habitat task has finished.

138

APPENDIX 6

EACH AGENT'S .Isp FILE AS REQUIRED BY DECAF

../decafldss/faclfac.lsp
(defaction

:name ("bldShutdownMsg")
:parent ("dss_AskUser")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("selectDSSAction.OK")
:to ("dss_UserAction.OK")

(defaction
:name ("requestNextUserAction")
:parent ("dss_Cleanup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior-profi1e (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("advMMCleanup")
:parent ("_Startup")
:parameters ("NOPROV")

139

:provisions ("KQML")
:outcomes ("OK")

(NLT
:name ("advMMDisplayES")
:parent ("_Startup")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(defaction
:name ("collectAskUser")
:parent ("dss_AskUser")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" .behaviorprofile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("taskTerminator.OK")
:to ("_Startup.OK")

(deftask
:name ("dss_Cleanup")
:parent ("NONE")
:children ("announceSimCompletion"

"requestNextUserAction")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("bldCleanupAdv.OK")

140

:to ("advMMCleanup.KQML")

(deftask
:name ("dss_DisplayESStatus")
:parent ("NONE")
:children ("showUserESStatus"

"teIRefugeESAch"
"listenForESFile")

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("listenForESFile")
:parent ("dss_DisplayESStatus")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("go" .behaviorprofile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("teIFacUserRequest")
:parent ("dss_RunMove")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("achFacProcessUser.OK")
:to ("collectAskUser.trigger")

(provides
:from ("processRefugeNames.done")

141

:to ("bldRunMoveDoneMsg.trigger")

(provides
:from ("teIFacUserRequest.OK")
:to ("dss_RunMove.OK")

(NLT
:name ("achMoveAssemble")
:parent ("dss_RunMove")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("achFacRunMove.OK")
:to ("processRequestYears.trigger")

(defaction
:name ("announceSimCompletion")
:parent ("dss_Cleanup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline (liD")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("processRequestYears")
:parent ("dss_ProcessUserRequest")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("done" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"again" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE"

:density"NONE")
)

:deadline (liD")
:earliest_start_time ("0")

142

:caf ("AND")

(defaction
:name ("getUserlnfo")
:parent ("dss_AskUser")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("FAIL" .behaviorproflle (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("Oil)
:caf ("AND")

(provides
:from ("bldRunMoveMsg.OK")
:to ("achFacRunMove.KQML")

(provides
:from ("processRequestYears.done")
:to ("dss_ProcessUserRequest.OK")

(provides
:from ("telRefugeESAch. OK")
:to ("dss_DisplayESStatus.OK")

(provides
:from ("achMoveAssemble.OK")
:to ("processRefugeNames.trigger")

(provides
:from ("startUserAction.OK")
:to ("taskTerminator.finished_UserAction")

(NLT
:name ("achMoveTracker")

143

:parent ("dss_ProcessUserRequest")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(defaction
:name ("bldDisplayESAdv")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV") .
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("bldTrackerMsg")
:parent ("dss_ProcessUserRequest")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("processRefugeNames")
:parent ("dss_RunMove")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("done" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"again" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE"

:density"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

144

(NLT
:name ("achFacShutdown")
:parent ("dss_AskUser")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("bldRunMoveDoneMsg.OK")
:to ("teIFacUserRequest.KQML")

(defaction
:name ("bldRunMoveDoneMsg")
:parent ("dss_RunMove")
:children ("NON E")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" .behaviorprofile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("bldTrackerMsg.OK")
:to ("achMoveTracker.KQML")

(NLT
:name ("achFacProcessUser")
:parent ("dss_AskUser")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(deftask
:name ("_Startup")
:parent ("NONE")
:children ("taskTerminator"

"bldDisplayESAdv"
"advMMDisplayES"
"bldCleanupAdv"

145

"advMMCleanup"
"startUserAction")

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("ANO")

(deftask
:name ("dss_ProcessUserRequest")
:parent ("NONE")
:children ("bldRunMoveMsg"

"achFacRunMove"
"processRequestYears"
"bldTrackerMsg"
"achMoveTracker")

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(deftask
:name ("dss_UserAction")
:parent ("NONE")
:children ("selectDSSAction")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("Oil)
:earliest_start_time ("Oil)
:caf ("AND")

(provides
:from ("listenForESFile.go")
:to ("teIRefugeESAch.KQML")

146

(provides
:from ("bldShutdownMsg.OK")
:to ("achFacShutdown.KQML")

(provides
:from ("showUserESStatus.go")
:to ("teIRefugeESAch.KQML")

(provides
:from ("achMoveTracker.OK")
:to ("bldRunMoveMsg.trigger")

(provides
:from ("showUserESStatus.listen")
:to ("listenForESFile.trigger")

(provides
:from ("getUserlnfo.FAIL")
:to ("bldShutdownMsg.trigger")

(defaction
:name ("stop")
:parent ("_Shutdown")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("requestNextUserAction. OK")
:to ("dss_Cleanup.OK")

(defaction
:name ("bldCleanupAdv")

147

:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("bldAssembleMsg. OK")
:to ("achMoveAssemble.KQML")

(provides
:from ("advMMCleanup.OK")
:to ("taskTerminator.finished_Cleanup")

(provides
:from ("dss_RunMove.trigger")
:to ("bldAssembleMsg.trigger")

(provides
:from ("getUserlnfo.OK")
:to ("bldProcessUserMsg.trigger")

(deftask
:name ("dss_AskUser")
:parent ("NONE")
:children ("getUserlnfo"

"collectAskUser"
"bldShutdownMsg"
"achFacShutdown"
"achFacProcessUser"
"bldProcessUserMsg")

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")

148

:caf ("AND")

(provides
:from ("stop.OK")
:to ("_Shutdown.OK")

(deftask
:name ("_Shutdown")
:parent ("NONE")
:children ("stop")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("taskTerminator")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("finished_UserAction"

"finished_DisplayES"
"finished_Cleanup")

:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density
"NONE")

)
:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("bldProcessUserMsg.OK")
:to ("achFacProcessUser.KQML")

(provides
:from ("bldDisplayESAdv.OK")
:to ("advMMDisplayES.KQML")

149

(defaction
:name ("bldAssembleMsg")
:parent ("dss_RunMove")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("teIRefugeESAch")
:parent ("dss_DisplayESStatus")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(defaction
:name ("startUserAction")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("Oil)
:caf ("AND")

(provides
:from ("announceSimCompletion.OK")
:to ("requestNextUserAction.trigger")

(provides
:from ("collectAskUser. OK")
:to ("dss_AskUser.OK")

(NLT

150

:name ("achFacRunMove")
:parent ("dss_ProcessUserRequest")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(deftask
:name ("dss_RunMove")
:parent ("NONE")
:children ("bldAssembleMsg"

"achMoveAssemble"
liteIFacUserRequest"
"bldRunMoveDoneMsg"
"processRefugeNames")

:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" .behaviorprofile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("processRequestYears.again")
:to ("bldRunMoveMsg.trigger")

(defaction
:name ("bldProcessUserMsg")
:parent (f1dss_AskUser")

:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("showUserESStatus")
:parent ("dss_DisplayESStatus")
:children ("NONE")
:parameters ("NOPROV")

151

:provisions ("NOPROV")
:outcomes ("go" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"listen" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE"

:density"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("achFacShutdown.OK")
:to ("collectAskUser.trigger")

(defaction
:name ("bldRunMoveMsg")
:parent ("dss_ProcessUserRequest")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("processRefugeNames.again")
:to ("bldAssembleMsg. trigger")

(provides
:from ("advMMDisplayES.OK")
:to ("taskTerm inator .finished_DisplayES")

(defaction
:name ("selectDSSAction")
:parent ("dss_UserAction")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")

152

)
:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(util ity_function
(label Information_Gather)
(goodness_quality_slider 1.0)
(goodness_cost_slider 0.0)
(goodness_duration_slider 0.0)
(threshold_quality_slider 0.0)
(threshold_cost_slider 0.0)
(threshold_duration_slider 1.0)
(quality_threshold 0)
(costjimit 5)
(durationjimit 600)
(uncertainty_quality_slider 0.2)
(uncertainty_cost_slider 0.7)
(uncertainty_duration_slider 0.1)
(threshold_certainty_quality_slider .1)
(threshold_certainty_cost_slider .2)
(threshold_certainty_duration_slider .3)
(quality_certainty_threshold 1)
(cost_certainty_threshold 2)
(duration_certainty_threshold 3)
(meta_goodness_slider 1.0)
(meta_threshold_slider 0.0)
(meta_uncertainty_slider 0.0)
(meta_uncertainty_threshold_slider 0.0)

)

../decaf/dss/refuge/refuge.lsp
(NLT

:name ("achFacDispBreed")
:parent ("dss_Breeding")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("achRefShutdownHab.OK")
:to ("collectHabitat.trigger")

(deftask
:name ("_Shutdown")
:parent ("NONE")

153

:children ("stop")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("collectBreeding")
:parent ("dss_Breeding")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(deftask
:name ("dss_Breeding")
:parent ("NONE")
:children ("procDataB"

"collectBreeding"
"bldBreedCurMsg"
"achRefShutdown Breed"
"achFacDispBreedES"
"telMoveAssembleBreed"
"ckBreedingDB"
"achFacDispBreed")

:parameters ("NOPROV")
:provisions ("NOPROV")

. :outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density
"NONE")

)
:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("achFacDispBreedES")
:parent ("dss_Breeding")
:parameters ("NOPROV")

154

:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("achFacDispFlyES.OK")
:to ("procDataF.trigger")

(provides
:from ("collectBreeding.OK")
:to ("dss_Breeding.OK")

(provides
:from ("procDataB.FAIL")
:to ("achRefShutdownBreed.KQML")

(defaction
:name ("ckBreedingDB")
:parent ("dss_Breeding")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("FAIL" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"cur" .behaviorproflle (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"not_cur" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE"

:density"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("collectFlyway")
:parent ("dss_Flyway")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")

155

:caf ("AND")

(NLT
:name (lachFacDispWetES")
:parent (ldss_Habitat")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(defaction
:name ("bldFlyCurMsg")
:parent ("dss_Flyway")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavioryrofile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("bldHabCurMsg")
:parent ("dss_Habitat")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavioryrofile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("bldHabitatAdv")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")

156

:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("ckFlywayDB")
:parent ("dss_Flyway")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("FAIL" .behaviorprofile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"cur" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"not_cur" .behaviorprotile (:cost "NONE" :quality "NONE" :duration "NONE"

:density"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("achFacDispHab")
:parent ("dss_Habitat")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("teIMoveAssembleFly.OK")
:to ("collectFlyway.trigger")

(provides
:from ("achRefShutdownFly.OK")
:to ("collectFlyway.trigger")

(NLT
:name ("advMMBreed")
:parent ("_Startup")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

157

(provides
:from ("advMMBreed.OK")
:to ("taskTerminatorJinished_Breed")

(provides
:from ("bldHabitatAdv.OK")
:to ("advMMHabitat.KQML")

(NLT
:name ("advMMHabitat")
:parent ("_Startup")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("bldBreedCurMsg.OK")
:to ("teIMoveAssembleBreed.KQML")

(provides
:from ("stop.OK")
:to ("_Shutdown.OK")

(provides
:from ("achFacDispBreed.OK")
:to ("bldBreedCurMsg.trigger")

(provides
:from ("procDataB.OK")
:to ("bldBreedCurMsg.trigger")

(provides
:from ("ckFlywayDB.not_cur")
:to ("achFacDispFlyES.KQML")

(provides

158

:from ("taskTerminator.OK")
:to ("_Startup.OK")

(provides
:from ("ckFlywayDB.cur")
:to ("achFacDispFly.KQML")

(NLT
:name ("achFacDispFlyES")
:parent ("dss_Flyway")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(NLT
:name ("achRefShutdownFly")
:parent ("dss_Flyway")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("bldFlywayAdv.OK")
:to ("advMMFlyway.KQML")

(provides
:from ("ckHabitatDB. not_cur")
:to ("achFacDispWetES.KQML")

(provides
:from ("advMMFlyway.OK")
:to ("taskTerminator.finished_Flyway")

(NLT
:name ("advMMFl yway")
:parent ("_Startup")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

159

(NLT
:name ("achRefShutdownBreed")
:parent ("dss_Breeding")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("advMMHabitat.OK")
:to ("taskTerminatorJinished_Habitat")

(provides
:from ("achFacDispWetES.OK")
:to ("procDataW. trigger")

(deftask
:name ("dss_Habitat")
:parent ("NONE")
:children ("procDataW"

"collectHabitat"
"bldHabCurMsg"
"ckHabitatDB"
"achFacDispWetES"
"achRefShutdownHab"
liteIMoveAssem bleHab"
"achFacDispHab")

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior-profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("procDataW.OK")
:to ("bldHabCurMsg.trigger")

(provides

160

:from ("collectFlyway.OK")
:to ("dss_Flyway.OK")

(provides
:from ("ckHabitatDB.cur")
:to ("achFacDispHab.KQML")

(defaction
:name ("bldFlywayAdv")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("ckHabitatDB.FAIL")
:to ("achRefShutdownHab.KQML")

(defaction
:name ("bldBreedCurMsg")
:parent ("dss_Breed ing")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" .behaviorproflle (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("collectHabitat")
:parent ("dss_Habitat")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")

161

:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density
"NONE")

)
:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("teIMoveAssembleFly")
:parent ("dss_Flyway")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(deftask
:name ("dss_Flyway")
:parent ("NONE")
:children ("procDataF"

"coliectFIyway"
"bldFlyCurMsg"
"ckFlywayDB"
"achRefShutdownFly"
"telMoveAssembleFly"
"achFacDispFlyES"
"achFacDispFly") ,

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("teIMoveAssembleBreed")
:parent ("dss_Breed ing")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("telMoveAssembleBreed. OK")
:to ("collectBreeding.trigger")

162

(provides
:from ("bldHabCurMsg.OK")
:to ("teIMoveAssembleHab.KQML")

(provides
:from ("bldBreedAdv.OK")
:to ("advMMBreed.KQML")

(defaction
:name ("stop")
:parent ("_Shutdown")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("achRefShutdownHab")
:parent ("dss_Habitat")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("procDataW.FAIL")
:to ("achRefShutdownHab.KQML")

(provides
:from ("achFacDispFly.OK")
:to ("bldFlyCurMsg.trigger")

(provides
:from ("achFacDispBreedES.OK")
:to ("procDataB.trigger")

163

(provides
:from ("achFacDispHab.OK")
:to ("bldHabCurMsg.trigger")

(defaction
:name ("bldBreedAdv")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("procDataW")
:parent ("dss_Habitat")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("FAIL" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("ckBreedingDB.FAIL")
:to ("achRefShutdownBreed .KQML")

(provides
:from ("bldFlyCurMsg.OK")
:to ("teIMoveAssembleFly.KQML")

164

(provides
:from ("teIMoveAssembleHab.OK")
:to ("collectHabitat.trigger")

(provides
:from ("ckFlywayDB.FAIL")
:to ("achRefShutdownFly.KQML")

(deftask
:name ("_Startup")
:parent ("NONE")
:children ("bldBreedAdv"

"advMMBreed"
"bldFlywayAdv"
"advMMFlyway"
"bldHabitatAdv"
"advMM Habitat"
"taskTerminator")

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("achFacDispFly")
:parent ("dss_Flyway")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("ckBreedingDB.not_cur")
:to ("achFacDispBreedES.KQML")

(defaction
:name ("procDataF")
:parent ("dss_Flyway")
:children ("NONE")
:parameters ("NOPROV")

165

:provisions ("trigger")
:outcomes ("FAIL" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("ckBreedingDB.cur")
:to ("achFacDispBreed.KQML")

(defaction
:name ("ckHabitatDB")
:parent ("dss_Habitat")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("FAIL" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"cur" :behavior-profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"not_cur" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE"

:density "NON E")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("procDataB")
:parent ("dss_Breeding")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("FAIL" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

166

(provides
:from ("collectHa bitat.OK")
:to ("dss_Habitat.OK")

(provides
:from ("achRefShutdownBreed.OK")
:to ("collectBreed ing.trigger")

(provides
:from ("procDataF.OK")
:to ("bldFlyCurMsg.trigger")

(NLT
:name ("teIMoveAssembleHab")
:parent ("dss_Habitat")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("procDataF.FAIL")
:to ("achRefShutdownFly.KQML")

(defaction
:name ("taskTerminator")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("finished_Breed"

"finished_Flyway"
"finished_Habitat")

:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density
"NONE")

)
:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(util ity_function
(label Information_Gather)

167

(goodness_quality_slider 1.0)
(goodness_cost_slider 0.0)
(goodness_duration_slider 0.0)
(threshold_quality_slider 0.0)
(threshold_cost_slider 0.0)
(threshold_duration_slider 1.0)
(quality_threshold 0)
(costIlmit 5)
(duratlonhrnlt 600)
(uncertainty_quality_slider 0.2)
(uncertainty_cost_slider 0.7)
(uncertainty_duration_slider 0.1)
(threshold_certainty_quality_slider .1)
(threshold_certainty_cost_slider .2)
(threshold_certainty_duration_slider .3)
(quality_certainty_threshold 1)
(cost_certainty_threshold 2)
(duration_certainty_threshold 3)
(meta_goodness_slider 1.0)
(meta_threshold_slider 0.0)
(meta_uncertainty_slider 0.0)
(meta_uncertainty_threshold_slider 0.0)

)

..Idecafldss/move/move.lsp
(deftask

:name ("_Shutdown")
:parent ("NONE")
:children ("stop")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("achMoveShutdown.OK")
:to ("collectSim .trigger")

(provides
:from ("achRefHab.OK")
:to ("collectRefugeMsgs.finished_HabitatChkDB")

168

(NLT
:name ("teIFacProcessUserTrackDonelt)

:parent (ltdss_DataTracker")
:parameters (ltNOPROVIt)
:provisions (ltKQMLIt)

:outcomes ("OKIt)

(provides
:from (ltbldBreedingChkDBMsg.OKIt)

:to (ltachRefBreed.KQMLIt)

(provides
:from (ltadvMMTracker.OKIt)

:to (lttaskTerminator.finished_Tracker")

(provides
:from (ltbldFlywayChkDBMsg.OKIt)

:to (ltachRefFly.KQMLIt)

(defaction
:name ("bldSimRunMsglt)

:parent (ltdss_Sim Dispatcher")
:children (ltNONEIt)

:parameters (ltNOPROVIt)

:provisions (lttriggerlt)

:outcomes (ltOKIt :behavior_profile (:cost ItNONE" :quality ItNONEIt :duration ItNONEIt :density
ItNONEIt)

)
:deadline (ltOlt)
:earliest_start_time (ltOlt)
:caf (ltANDIt)

(provides
:from ("achMoveSimRun.OKIt)

:to (ltprocessSimYears.triggerlt)

(provides
:from (ltbldSimAdv.OKIt)
:to (ltadvMMSim.KQMLIt)

169

(provides
:from (tllistenAssem bleMsg.continue")
:to (tlcollectSimDispatch.triggertl)

(provides
:from ("updateDSSDBs.OKtI)

:to (tlwriteMask. triggertl)

(provides
:from (tlupdateMoveData.OKtI)

:to (tlteIFacProcessUserTrackDone.KQMLtI)

(NLT
:name (tladvMMTrackertl)

:parent ("_Startuptl)
:parameters (tlNOPROVtI)

:provisions (tlKQMLtI)

:outcomes (tlOK")

(deftask
:name ("dss_DataTrackertl)

:parent (tlNONEtI)

:children ("updateMoveData"
"telFacProcessUserTrackDone")

:parameters (tlNOPROV")
:provisions (tlNOPROV")
:outcomes ("OK" :behavior_profile (:cost tlNONE" :quality tlNONEtI :duration "NONE" :density

"NONEtI)
)

:deadline (tlO")
:earliest_start_time ("0")
:caf ("ANDtI)

(NLT
:name ("teIMoveSimDispRunAch")
:parent ("dss_Sim")
:parameters ("NOPROVtI)

:provisions ("KQMLtI)

:outcomes ("OK")

170

(provides
:from ("bldHabitatChkDBMsg.OK")
:to ("achRefHab.KQML")

(NLT
:name ("advMMAssemble")
:parent ("_Startup")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("bldTrackerAdv.OK")
:to ("advMMTracker.KQML")

(defaction
:name ("writeMask")
:parent ("dss_Sim")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("FAIL" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("Oil)
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("updateMoveData")
:parent ("dss_DataTracker")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("0K" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

171

(defaction
:name ("processSimYears")
:parent ("dss_SimDispatcher")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("done" .behaviorproflle (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"again" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE"

:density"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("collectSim")
:parent ("dss_Sim")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("achRefBreed.OK")
:to ("collectRefugeMsgs.finished_BreedingChkDB")

(defaction
:name ("adjustMoveProbs")
:parent ("dss_Sim")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("FAIL" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

172

(provides
:from ("achRefFly.OK")
:to ("collectRefugeMsgs.finished_FlywayChkDB")

(provides
:from ("dss_Sim.OK")
:to ("collectSim.OK")

(provides
:from ("stop.OK")
:to ("_Shutdown.OK")

(NLT
:name ("achSimDispatcher")
:parent ("dss_Assemble")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("achFacCleanup.OK")
:to ("collectSimDispatch.trigger")

(NLT
:name ("achRefHab")
:parent ("dss_Assem ble")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(defaction
:name ("bldSimAdv")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")

173

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("achMoveSimRun")
:parent ("dss_SimDispatcher")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(defaction
:name ("bldBreedingChkDBMsg")
:parent ("dss_Assem ble")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("bldAssembleAdv.OK")
:to ("advMMAssemble.KQML")

(provides
:from ("taskTerminator.OK")
:to ("_Startup.OK")

(defaction
:name ("updateDSSDBs")
:parent ("dss_Sim")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("FAIL" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")

174

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from (lprocessSimYears.again")
:to (lbldSimRunMsg.trigger")

(provides
:from (lbldSimRunMsg.OK")
:to (lachMoveSimRun.KQML")

(defaction
:name (lbldTrackerAdv")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("0K" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("bldSimDoneMsg")
:parent ("dss_SimDispatcher")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("ANO")

(provides
:from ("advMMSim.OK")
:to ("taskTerminatorJinished_Sim")

175

(defaction
:name ("bldShutdownMsg")
:parent ("dss_Sim")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("listenAssembleMsg")
:parent ("dss_SimDispatcher")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("continue" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE"

:density"NONE")
"complete" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE"

:density"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(defaction
:name ("bldFlywayChkDBMsg")
:parent ("dss_Assemble")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("adjustMoveProbs.FAIL")
:to ("bldShutdownMsg.trigger")

176

(provides
:from ("bldShutdownMsg.OK")
:to ("achMoveShutdown.KQML")

(provides
:from ("bldSimDoneMsg.OK")
:to ("achFacCleanup.KQML")

(defaction
:name ("bldHabitatChkDBMsg")
:parent ("dss_Assemble")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline (liD")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("writeMask.OK")
:to ("adjustMoveProbs.trigger")

(deftask
:name ("dss_Sim")
:parent ("NONE")
:children ("writeMask"

"updateDSSDBs"
"adjustMoveProbs"
"runQueueModel"
"collectSim"
"bldShutdownMsg"
"achMoveShutdown"
"teIMoveSimDispRunAch")

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("Oil)
:earliest_start_time ("0")
:caf ("AND")

177

(NLT
:name ("achRefBreed")
:parent ("dss_Assemble")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(NLT
:name ("achMoveShutdown")
:parent ("dss_Sim")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(provides
:from ("teIMoveSimDispRunAch.OK")
:to ("collectSim.trigger")

(NLT
:name ("advMMSim")
:parent ("_Startup")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("OK")

(defaction
:name ("collectSimDispatch")
:parent ("dss_SimDispatcher")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("runQueueModel.done")

178

:to ("teIMoveSimDispRunAch.KQML")

(defaction
:name ("stop")
:parent ("_Shutdown")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("collectRefugeMsgs.OK")
:to ("achSimDispatcher.KQML")

(provides
:from ("adjustMoveProbs.OK")
:to ("runQueueModel.trigger")

(provides
:from ("teIFacProcessUserTrackDone.OK")
:to ("dss_DataTracker.OK")

(provides
:from ("listenAssembleMsg.complete")
:to ("bldSimRunMsg.trigger")

(deftask
:name ("dss_Assemble")
:parent ("NONE")
:children ("bldFlywayChkDBMsg"

"collectRefugeMsgs"
"bldHabitatChkDBMsg"
"achRefBreed"
"achRefFl y"
"achRefHab"
"bldBreedingChkDBMsg"

179

"achSim Dispatcher")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("collectSimDispatch.OK")
:to ("dss_SimDispatcher.OK")

(defaction
:name ("runQueueModel")
:parent ("dss_Sim")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("trigger")
:outcomes ("FAIL" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
"done" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE"

-l~nsity "NONE")
)

Jeadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(deftask
:name ("_Startup")
:parent ("NONE")
:children ("bldAssembleAdv"

"bldSimAdv"
"advMMAssemble"
"advMMSim"
"taskTerm inator"
"bldTrackerAdv"
"advMMTracker")

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" .behavlorproflle (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

180

(defaction
:name ("bldAssembleAdv")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(provides
:from ("writeMask.FAIL")
:to ("bldShutdownMsg.trigger")

(provides
:from ("processSim Years.done")
:to ("bldSimDoneMsg.trigger")

(provides
:from ("achSim Dispatcher.OK")
:to ("dss_Assemble.OK")

(provides
:from ("updateDSSDBs.FAIL")
:to ("bldShutdownMsg.trigger")

(provides
:from ("runQueueModeI.FAIL")
:to ("bldShutdownMsg.trigger")

(provides
:from ("advMMAssemble.OK")
:to ("taskTerminator.finished_Assemble")

181

(deftask
:name ("dss_SimDispatcher")
:parent ("NONE")
:children ("listenAssembleMsg"

"collectSimDispatch"
"processSimYears"
"bldSim RunMsg"
"achMoveSimRun"
"bldSimDoneMsg"
"achFacCleanup")

:parameters ("NOPROV")
:provisions ("NOPROV")
:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density

"NONE")
)

:deadline ("0")
:earliest_start_time ("Oil)
:caf ("AND")

(defaction
:name ("collectRefugeMsgs")
:parent ("dss_Assemble")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("finished_BreedingChkDB"

"finished_FlywayChkDB"
"finished_HabitatChkDB")

:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density
"NONE")

)
:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(NLT
:name ("achRefFly")
:parent ("dss_Assemble")
:parameters ("NOPROV")
:provisions ("KQML")
:outcomes ("0K")

(NLT
:name ("achFacCleanup")
:parent ("dss_SimDispatcher")
:parameters ("NOPROV")
:provisions ("KQML")

182

:outcomes ("OK")

(defaction
:name ("taskTerminator")
:parent ("_Startup")
:children ("NONE")
:parameters ("NOPROV")
:provisions ("finished_Tracker"

"finished_Assemble"
"finished_Sim")

:outcomes ("OK" :behavior_profile (:cost "NONE" :quality "NONE" :duration "NONE" :density
"NONE")

)
:deadline ("0")
:earliest_start_time ("0")
:caf ("AND")

(utility_function
(label Information_Gather)
(goodness_quality_slider 1.0)
(goodness_cost_slider 0.0)
(goodness_duration_slider 0.0)
(threshold_quality_slider 0.0)
(threshold_cost_slider 0.0)
(threshold_duration_slider 1.0)
(quality_threshold 0)
(cost_limit 5)
(duration_limit 600)
(uncertainty_quality_slider 0.2)
(uncertainty_cost_slider 0.7)
(uncertainty_duration_slider 0.1)
(threshold_certainty_quality_slider .1)
(threshold_certainty_cost_slider .2)
(threshold_certainty_duration_slider .3)
(quality_certainty_threshold 1)
(cost_certainty_threshold 2)
(duration_certainty_threshold 3)
(meta_goodness_slider 1.0)
(meta_threshold_slider 0.0)
(meta_uncertainty_slider 0.0)
(meta_uncertainty_threshold_slider 0.0)

)

183

	ETDrss0001
	ETDrss0002sigsblocked
	ETDrss0003
	ETDrss0004
	ETDrss0005
	ETDrss0006
	ETDrss0007
	ETDrss0008
	ETDrss0009
	ETDrss0010
	ETDrss0011
	ETDrss0012
	ETDrss0013
	ETDrss0014
	ETDrss0015
	ETDrss0016
	ETDrss0017
	ETDrss0018
	ETDrss0019
	ETDrss0020
	ETDrss0021
	ETDrss0022
	ETDrss0023
	ETDrss0024
	ETDrss0025
	ETDrss0026
	ETDrss0027
	ETDrss0028
	ETDrss0029
	ETDrss0030
	ETDrss0031
	ETDrss0032
	ETDrss0033
	ETDrss0034
	ETDrss0035
	ETDrss0036
	ETDrss0037
	ETDrss0038
	ETDrss0039
	ETDrss0041
	ETDrss0042
	ETDrss0043
	ETDrss0044
	ETDrss0045
	ETDrss0046
	ETDrss0047
	ETDrss0049
	ETDrss0050
	ETDrss0051
	ETDrss0052
	ETDrss0053
	ETDrss0055
	ETDrss0056
	ETDrss0057
	ETDrss0058
	ETDrss0059
	ETDrss0060
	ETDrss0061
	ETDrss0062
	ETDrss0063
	ETDrss0064
	ETDrss0065
	ETDrss0066
	ETDrss0067
	ETDrss0068
	ETDrss0069
	ETDrss0070
	ETDrss0071
	ETDrss0072
	ETDrss0073
	ETDrss0074
	ETDrss0075
	ETDrss0076
	ETDrss0077
	ETDrss0078
	ETDrss0079
	ETDrss0080
	ETDrss0081
	ETDrss0082
	ETDrss0083
	ETDrss0084
	ETDrss0085
	ETDrss0086
	ETDrss0087
	ETDrss0088
	ETDrss0089
	ETDrss0090
	ETDrss0091
	ETDrss0092
	ETDrss0093
	ETDrss0094
	ETDrss0096
	ETDrss0097
	ETDrss0098
	ETDrss0099
	ETDrss0100
	ETDrss0101
	ETDrss0102
	ETDrss0103
	ETDrss0104
	ETDrss0105
	ETDrss0106
	ETDrss0107
	ETDrss0108
	ETDrss0109
	ETDrss0110
	ETDrss0111
	ETDrss0112
	ETDrss0113
	ETDrss0114
	ETDrss0115
	ETDrss0116
	ETDrss0117
	ETDrss0118
	ETDrss0119
	ETDrss0120
	ETDrss0121
	ETDrss0122
	ETDrss0123
	ETDrss0124
	ETDrss0125
	ETDrss0126
	ETDrss0127
	ETDrss0128
	ETDrss0129
	ETDrss0130
	ETDrss0131
	ETDrss0132
	ETDrss0133
	ETDrss0134
	ETDrss0135
	ETDrss0136
	ETDrss0137
	ETDrss0138
	ETDrss0139
	ETDrss0140
	ETDrss0141
	ETDrss0142
	ETDrss0143
	ETDrss0144
	ETDrss0145
	ETDrss0146
	ETDrss0147
	ETDrss0148
	ETDrss0149
	ETDrss0150
	ETDrss0151
	ETDrss0152
	ETDrss0153
	ETDrss0154
	ETDrss0155
	ETDrss0156
	ETDrss0157
	ETDrss0158
	ETDrss0159
	ETDrss0160
	ETDrss0161
	ETDrss0162
	ETDrss0163
	ETDrss0164
	ETDrss0165
	ETDrss0166
	ETDrss0167
	ETDrss0168
	ETDrss0169
	ETDrss0170
	ETDrss0171
	ETDrss0172
	ETDrss0173
	ETDrss0174
	ETDrss0175
	ETDrss0176
	ETDrss0177
	ETDrss0178
	ETDrss0179
	ETDrss0180
	ETDrss0181
	ETDrss0182
	ETDrss0183
	ETDrss0184
	ETDrss0185
	ETDrss0186
	ETDrss0187
	ETDrss0188
	ETDrss0189
	ETDrss0190
	ETDrss0191
	ETDrss0192
	ETDrss0193

