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Abstract

Decision support systems are often not empirically evaluated, especially the underlying modelling components. This can be attributed to such
systems necessarily being designed to handle complex and poorly structured problems and decision making. Nonetheless, evaluation is critical
and should be focused on empirical testing whenever possible. Verification and validation, in combination, comprise such evaluation. Verifica-
tion is ensuring that the system is internally complete, coherent, and logical from a modelling and programming perspective. Validation is ex-
amining whether the system is realistic and useful to the user or decision maker, and should answer the question: ‘“Was the system successful
at addressing its intended purpose?”’ A rich literature exists on verification and validation of expert systems and other artificial intelligence
methods; however, no single evaluation methodology has emerged as preeminent. At least five approaches to validation are feasible. First, under
some conditions, decision support system performance can be tested against a preselected gold standard. Second, real-time and historic data sets
can be used for comparison with simulated output. Third, panels of experts can be judiciously used, but often are not an option in some
ecological domains. Fourth, sensitivity analysis of system outputs in relation to inputs can be informative. Fifth, when validation of a complete
system is impossible, examining major components can be substituted, recognizing the potential pitfalls. I provide an example of evaluation of
a decision support system for trumpeter swan (Cygnus buccinator) management that I developed using interacting intelligent agents, expert
systems, and a queuing system. Predicted swan distributions over a 13-year period were assessed against observed numbers. Population survey
numbers and banding (ringing) studies may provide long term data useful in empirical evaluation of decision support.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction example, decision support systems should contribute to reduc-

ing the uncertainty faced by managers when they need to make

Decision support systems use a combination of models,
analytical techniques, and information retrieval to help
develop and evaluate appropriate alternatives (Adelman,
1992; Sprague and Carlson, 1982). Because such systems han-
dle complex and poorly structured problems, they are difficult
to empirically evaluate. However, it is still easy to argue that
evaluation of all decision support systems is important. For
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decisions regarding future options (Graham and Jones, 1988),
and evaluating such a contribution quickly adds both architec-
tural and statistical complexity. Another case in point, distrib-
uted decision making suits problems where the complexity
prevents an individual decision maker from conceptualizing,
or otherwise dealing with the entire problem (Boland et al.,
1992; Brehmer, 1991). Designing the empirical evaluation of
distributed systems is hardly straightforward because of these
characteristics. This is somewhat different than the validation
and calibration of individual ecological models as portrayed
by Rykiel (1996).
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Ultimately, there are ecological and public policy reasons
that increase the importance of ensuring that the right system
has been built and been built correctly, as in the case of trum-
peter swan management in North America. First, trumpeter
swan numbers in some locales have not reached desired levels.
Second, there is interest in fostering new migratory traditions.
And third, some issues have been challenged with litigation.
Such uncertainties and questions are common among many
migratory bird issues around the world from both population
and habitat perspectives. Any decision support or modelling
efforts in this and related arenas require empirical evaluation
in light of the importance they have in both environmental
and socioeconomic dimensions.

In this paper, I focus on the evaluation of the knowledge-based,
intelligent agent, and modelling components of decision support
systems and the integration of those components. Evaluation of
the overall acceptance among natural resource managers of deci-
sion support systems, or other socioeconomic measures of their
success and failure, are certainly important but are not addressed.

2. Discerning differences between verification
and validation

Some of the earlier definitions of verification and validation
in relation to computer software and simulation modelling
(Fishmann and Kiviat, 1968; Mihram, 1972; Adrion et al.,
1982) have changed little over the years. Mihram (1972) is
quite specific in focusing on the algorithm(s): ‘“The determina-
tion of the rectitude of the completed model vis-a-vis its
intended algorithmic structure.” Verification has been defined
by Adrion et al. (1982) as ‘““demonstration of consistency,
completeness, and correctness of the software.” All seemed
to agree that the focus of validation was the comparison of
model output with observations from the real world. They
also emphasized that verification should precede validation.
These definitions are not absolute, but their use is becoming
more definite over time. The following are from O’Keefe
et al. (1987) for expert systems and were adapted from Boehm
(1981) pertaining to software in general: ‘““Validation means
building the right system. Verification means building the sys-
tem right.” These have been frequently referenced by others in
relation to decision support systems, especially artificial intel-
ligence based systems (e.g., D’Erchia et al., 2001; Mosqueira-
Rey and Moret-Bonillo, 2000; Plant and Gamble, 2003;
Santos, 2001). A combined definition of verification and vali-
dation of software, provided by Wallace and Fujii (1989), was
the analysis and testing “‘to determine that it performs its
intended functions correctly, to ensure that it performs no un-
intended functions, and to measure its quality and reliability.”
The simplicity and completeness of Mihram’s (1972) defini-
tion of validation in relation to simulation is attractive:
*...the adequacy of the model as a mimic of the system which
it is intended to represent.” There has been a plethora of dis-
cussions about the semantics of evaluating more conventional
models, and Johnson (2001) provides a fine summary related
to natural resource management. The extensive literature re-
view provided by Rykiel (1996) points out the less definitive

nature of the semantics and concepts related to empirical eval-
uation of ecological models than those generally held for soft-
ware and decision support systems. His description of the need
to specify the ecological situation to which a model can be ap-
plied, and to specify what inferences can be made, is critical.

My specifications for verification and validation in refer-
ence to decision support systems draw almost entirely from
the above authors. Verification is ensuring that the decision
support system is internally complete, coherent, and logical
from a modelling and programming perspective. Have the
algorithms, knowledge, and other structures been correctly
encoded? Are there no unintended consequences? Is there any
superfluous code, e.g., production rules never used? Do input
and output routines, themselves, function as intended? Thus,
verification refers to adequacy of the software and computer
code. Validation is less concerned with internal operation of
the software and more concerned with usefulness to the user.
I believe that validation can take two slightly different ap-
proaches. Foremost, validation is examining whether the deci-
sion support system achieved the project’s stated purpose. For
decision support systems, this is often related to helping the
user(s) reach a decision(s). This could involve making better
decisions, avoiding poor ones, or helping the user make
them more quickly or with less data, information, and knowl-
edge. Second, and especially in reference to individual
models, validation can take the more restrictive meaning of
whether a model is an adequate representation of the system
it represents. This is sometimes described as black-box testing:
do the inputs result in correct (and useful) outputs? Validation,
typically, is comparing outputs from the model, or complete
decision support system if feasible, to expectations as repre-
sented by some real-world standard. Sometimes, but not often,
black-box testing is achieved on entire decision support sys-
tems; it is often difficult to do so because of their complexity.
Whether stand-alone model or decision support system is
being tested, I agree with Mihram (1972) and Adrion et al.
(1982) that verification must occur before validation. This
avoids the inadvertent situation where software provides ex-
pected outputs simply via calibration and correlation of input
and outputs, rather than via scientific and logical relationships.
I discuss this further in Section 3, along with more specific
methods and criteria for verification and validation.

I use the term evaluation to encompass both verification and
validation, but distinguish between them when used indepen-
dently. I agree with Adelman (1992) that both should be part
of the development process, and evaluators should specifically
be part of the development team to foster iterative improve-
ments. This is not to ignore the need for independent verifica-
tion and validation of models and systems to ensure that the
development team does not inadvertently err in their work.

3. Potential methods for empirical evaluation
3.1. An overview

Stuth and Smith (1993) followed the ideas of Eason (1988)
and recommended iterative prototyping methods for decision
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support system development. Verification and validation are
part of that iterative process. Verification should be performed
prior to any delivery of a working system, even if a prototype.
General validation might be done at this stage as well, with
detailed efforts performed later. If one agrees that software
development can be a living process, then verification and
validation are part and parcel to that process and need to
continue as system refinements and redeployments continue
(Carter et al., 1992; Stuth and Smith, 1993).

Sprague and Carlson (1982) recommend that organizations
building their first decision support system recognize that it es-
sentially is a research activity, and that evaluation should center
on a general, ‘“‘value analysis”. Since then, it has become im-
perative that analytic and quantitative rigor be added beyond
“soft testimonials” (Adelman, 1991, 1992; Andriole, 1989;
Cohen and Howe, 1989). Sensitivity analysis can be a validation
tool, especially for heuristic-based systems, and for systems
where few or no test cases are available for comparison (Bahill,
1991; O’Keefe et al., 1987). Such an approach can accomplish
two things. First, outputs can be examined, in relation to the do-
main being modelled, to see if they are approximately correct
and whether they vary in expected directions with the changed
inputs. Second, inputs at the extremes of continua can be shown
to have appropriate outputs. Thus, sensitivity analyses can pro-
vide information about whether modelled systems have been
adequately represented. Whenever validation is conducted, it
is important to recognize to where inferences can be drawn,
in space and time, from the validation data set. Another issue
is the need to show not only how well a system performs, but
also that it can avoid a catastrophic recommendation (Rushby,
1988). This is important in many natural resource venues be-
cause of the great concern for irretrievable or long term ecolog-
ical changes. Other classic cases where unintended catastrophic
recommendations of decision support systems must clearly be
avoided include the operation of nuclear power plants and the
management of endangered species.

It should be pointed out that progress during the past few
decades in both theory and application development related
to all aspects of decision support systems has lessened the
need for some of the previously required internal verification
of underlying logic and engines. Much of this is now handled
within various shell environments used for developing applica-
tions. For example, logic inconsistencies are often now indi-
cated on-the-fly during system development. This does not
neglect the need to ensure that underlying causal relationships
are correctly represented in models, knowledge bases, and do-
main ontologies. Automated methodologies for this are not
usually available. Such confirmation needs to be done by care-
ful development, intense personal checks, and objective peer
review. Component testing as part of validation should also
provide insights. As such, this becomes a grey area in the dis-
tinction between verification and validation. In this paper,
I will continue to agree that verification should concentrate
principally on ensuring that the ecological and decision mak-
ing logic has been “faithfully and accurately...translated into
computer code or mathematical formalisms” (Rykiel, 1996).
The important point is that verification is not forsaken.

It is my sense that validation is often the more neglected
part of evaluation of decision support systems, so I will focus
there. However, I do not wish to slight verification as systems
must be built based on sound cause—effect relationships and
not on poorly understood relationships between input and out-
put. If correlation analyses between model inputs and
desired outputs are conducted without ensuring whether the
underlying knowledge and cause—effect relationships have
been correctly represented in the code, one runs the risk of un-
intentionally calibrating the model(s) to produce desired re-
sults. If faced with the dilemma of checking for calibration
versus true validation, it can be useful to apply the system
on a different data set or information base (if available), rep-
resenting a different time frame or geography. Often, operating
the system for extreme cases can also uncover heretofore un-
discovered inconsistencies or errors.

3.2. Analogous concepts from artificial intelligence

Successful implementation of decision support and expert
systems hinges on incorporating three evaluation procedures
(Adelman, 1992): (1) examining the logical consistency of
system algorithms (verification), (2) empirically testing the
predictive accuracy of the system (validation), and (3) docu-
menting user satisfaction.

Verification and validation of knowledge-based and other
decision support systems are known to be more problematic
than in general modelling for many reasons (Gupta, 1991).
A few difficulties in verifying multiagent systems (O’Leary,
2001) are noteworthy, such as rule conflict, circularity, non-
used or unreachable antecedents, and agent isolation. Plus,
not only is it important for a system to handle common cases,
it ought to be able to deal with extreme inputs. This latter abil-
ity is one characteristic often only found with human experts.
However, extreme events are not only common in, but often
drive, ecological systems. Wallace and Fujii (1989) provide
a matrix of 41 techniques and tools that can be applied to
10 software verification and validation issues. Cohen and
Howe (1989) take a slightly different approach specific to ar-
tificial intelligence methods, and they, too, discuss evaluation
from the perspective of the software development life cycle.
They emphasize empirical studies for such evaluation, whether
focusing on verification or validation. For testing knowledge-
based systems, Murrell and Plant (1997) provide a categoriza-
tion of 145 automated techniques. Although the theory and
application of intelligent agents and multiagent systems has
blossomed for decision support system development, no widely
accepted methodology pertaining to the evaluation of agent-
based systems has yet emerged.

3.3. Alternative validation methods

3.3.1. Gold standard

Under some conditions, modelling researchers can test per-
formance against a preselected gold standard. Mosqueira-Rey
and Moret-Bonillo (2000) describe this for intelligent systems
as having test cases with known, prior outcomes. Virvou and
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Kabassi (2004) actually had such a set of cases based on ex-
pert opinion that they used for testing an intelligent graphical
user interface. Often in natural resource issues, such a standard
does not exist. This is particularly true with near real-time de-
cision support that is expected to predict and guide future sce-
narios while those scenarios are, in fact, unfolding. Although
this approach is theoretically desirable, I am not aware of an
actual implementation that employs a gold standard for evalu-
ation of an environmental decision support system. This is not
surprising in a domain where problems tend to be ill-defined
and the associated knowledge uncertain and incomplete. One
might consider validation of a system with historic data (see
Section 3.3.2) to be a type of gold standard, with two assump-
tions. First, the analysis of the historic data has to be of both
sufficient accuracy and sufficient precision. Second, the sys-
tem cannot be providing real-time recommendations or predic-
tions. Finally, a gold standard may not feasibly exist for
systems tackling NP-hard problems, as is often the case in
artificial intelligence based decision support.

3.3.2. Real-time and historic data sets

In an ideal world, one could construct a decision support
system and test its performance against actual scenarios as
they unfold. This is not often possible because implementation
of systems may need to be immediate. One alternative is to
build the system using data, information, and knowledge
from one set of situations and validate using an independent
set, as done for crop yields (Priya and Shibasaki, 2001), for
a bass bioenergetics model (Rice and Cochran, 1984), and
for timber harvest (Wang and LeDoux, 2003). Prior versus
post-testing is another example of this, and a decision support
system for credit management was so validated by Kanungo
et al. (2001). When a data-driven model is a significant part
of the decision support system, sometimes the data can be ran-
domly separated into two parts, one for model development
and one for validation. Pretzsch et al. (2002) illustrate this us-
ing an extensive data set with a forest management simulator.
Haberlandt et al. (2002) also took this approach for water qual-
ity assessments in river basins. A third option, when the
decision support system is not data-based but rather knowledge-
based, is to empirically evaluate predictions (outputs) from
the system against a historic data set. This does assume that
the logic underlying the system is constant over time. An ex-
ample of this latter case is more fully developed in Section 4
(see tests 1 and 3A in Table 1). Consultation with statistical
experts is advised, because such data analysis is often com-
plex. For example, analyses dealing with spatial and temporal
autocorrelation may be needed, multivariate analyses may be
warranted, or Bayesian methodologies might be used to
address evolving solutions.

3.3.3. Panel of experts

It is sometimes possible to test performance against an in-
dependent panel of experts (O’Keefe et al., 1987). The panel is
considered to provide optimal (or nearly so) recommenda-
tions, predictions, or diagnoses against which the outputs
from the decision support system are statistically compared.

Table 1
Interpretation of MVPTMP analyses from 4 of 34 experimental runs of the
decision support system for trumpeter swan management

Test MVPTMP
(p-value)

1 0.0001

Interpretation from rejecting the null hypothesis

Output from base queuing model similar to
observed numbers

Output using all expert systems (3) and
activating all (7) refuge agents similar to
observed numbers

Output using three expert systems identical to
that with only the flyway expert system

Output using alternate breeding threshold of 0.4
identical to that using the standard, 0.6

3A 0.0001

6A -

TA -

Null hypotheses were developed a priori (Sojda, 2002). No p-value is reported
when output between the two groups was identical.

This is a relatively common technique in the field of artificial
intelligence and recent examples include multiagent web min-
ing (Chau et al., 2003) and graphical user interface develop-
ment (Virvou and Kabassi, 2004). Two concerns must be
addressed, however. First, the panel of experts needed for
such an evaluation must not be connected to system develop-
ment. To do so would be so confounding that no reasonable
experimental design would be feasible. Second, one of the ba-
sic tenets of using decision support systems for complex issues
is that such questions can be beyond the capability of single
persons to conceptualize and solve (Boland et al., 1992;
Brehmer, 1991).

3.3.4. Sensitivity analysis

Sensitivity analysis is often more important in model vali-
dation than in decision support system validation. This stems
from the typical decision support system being highly com-
plex, and it being difficult to isolate individual inputs, or small
enough groups of inputs, to perform sensitivity analysis. Plus,
some sort of gold standard or data set is still needed with
which to work (see test 7A in Table 1). However, many deci-
sion support systems have underlying models integrated within
their completed structure, and sensitivity analysis on the indi-
vidual models can be quite useful. Whether a particular model
should be sensitive or insensitive to its inputs depends on the
purpose of the model. However, if it is totally insensitive, it is
difficult to understand what contribution the model might be
providing to the larger system, unless one is modelling a com-
ponent responsible for ecological buffering. Rios-Insua et al.
(2000) provide a good example of varying input values and
weights and their effect on ranking of strategies for restoring
radionuclide contaminated aquatic ecosystems. Their system
actually provided this type of sensitivity analysis to their end
users so that they could validate potential strategies in terms
of the uncertainty of final recommendations. Scheller and
Mladenoff (2004) varied six input parameters, such as tree
mortality, to determine the effect of a model component on
an output, woody debris. They then compared this result
with other published estimates. They chose to use sensitivity
analysis on a component ecological process because they
felt that their system did not provide output similar to
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traditional landscape models, i.e., an equivalent gold standard
did not exist for their entire system.

3.3.5. Component testing

Sometimes it is not possible to validate a complete system,
but one can test individual components. It is not uncommon,
for example, to have multiple expert systems embedded in
one decision support system. When one validates each compo-
nent separately, however, the interactions of the components
and evolutionary behavior of the full system are not known.
When testing of components is the only option, it is important
to acknowledge this shortcoming. Often, when separate com-
ponents of a system are validated, it can be argued that this
is a form of system verification, as described by Rusu
(2003) (see test 6A in Table 1).

4. An example: decision support system
for trumpeter swan management

4.1. Background

A multiagent system of interacting intelligent agents
(Weiss, 1999) was developed as a queuing system (Dshalalow,
1995; Hillier and Lieberman, 1995) to provide decision sup-
port to waterfowl managers, allowing them to simulate the
effect of management actions on swan distributions (Sojda,
2002). DECAF software [Distributed Environment Centered
Agent Framework] (Graham and Decker, 2000; Graham,
2001) was used to construct the agents, allow for their interac-
tion, and to handle user I/O. As a multiagent system, the
agents wait and listen for changes in certain parameters and
databases, and they may request additional information to up-
date their beliefs (Rao and Georgeff, 1991, 1995). The system
functions as a deterministic queuing model to simulate the dis-
tribution of swans geographically and temporally. The actual
simulation is handled by one particular agent which has the
distribution simulator code embedded within itself. The queu-
ing system utilizes output from expert systems related to eco-
logical aspects of the flyway management of migratory birds,
especially trumpeter swans and manipulation of their habitat.
These expert systems were developed separately but used
as part of the overall decision support system (Sojda and
Howe, 1999). They can be considered inputs to the overall
multiagent system. Through the use of a configuration file, the
decision support system is directed to use or ignore various com-
ponents and parameters. Thus, the system can run scenarios
as experiments, and this is discussed further in Section 4.4.

This decision support system was evaluated at three levels:
(1) verification of individual components, as well as the over-
all system, (2) soft validation (i.e., individual user anecdotes)
of the expert systems, and (3) validation of the whole system.
It was decided not to evaluate the system against a team with
expertise in flyway management of swans, primarily because it
was not feasible to assemble such a panel that was indepen-
dent of the people used in knowledge engineering. This was
true for two related reasons. First, the total number of workers

in the domain is small. Second, the cadre of such workers is
closely interrelated institutionally and academically.

4.2. Verification of components and the completed
systems

A key part of designing the individual expert systems was
developing flowcharts of the ecological logic and using them
to consult with experts for changes and refinement. Similarly,
the “planeditor” facility in the multiagent software, DECAF,
allowed me to develop graphical representations of the logic un-
derlying each agent and consult with specialists in multiagent
system design. When running the multiagent system, DECAF
provided information about how each agent was functioning
and about failed communications among agents. This type of
scrutiny addresses the need to debug logical errors as part of
verification as described for expert systems by O’Keefe et al.
(1987) and for models by Mihram (1972) and Rykiel (1996).

Utilities within the expert system development shell were
used for verification of logical consistency of each expert sys-
tem, including a static check for problems such as incomplete
rules and trees, rules that logically cannot fire, and input that
never results in calls to any rules. For example, an error would
be detected if more than one rule tried to set a value for a sin-
gle-valued variable, or if the consequent portion of a produc-
tion rule was inadvertently not provided. The utilities also
dynamically checked the system with stochastic runs, and
the final expert systems were each checked for internal logical
consistency using 500,000 such simulated runs with no prob-
lems detected. Each expert system had large numbers of rules,
157 in the breeding habitat system, 165 in the flyway manage-
ment system, and 1882 in the wetland management system.
By testing them with large amounts of random inputs, the
software establishes (although does absolutely guarantee)
that internal, logical consistency exists.

4.3. Soft validation of the expert system components

Demonstrations of each expert system were made to water-
fowl managers, biologists, and researchers. This involved
meetings and telephone consultations where individuals ran ac-
tual scenarios (usually via the World Wide Web) and provided
comments in response to my specific requests. In addition, the
expert systems were available to anonymous users in stand-
alone fashion on the web, both in prototype and final versions.
Both types of such validation targeted the underlying ontolo-
gies, knowledge, and problem solving logic, but were not
empirical. I did not tally web usage, but did occasionally
note web server log files. From this, I qualitatively estimate
that usage was in the magnitude of hundreds of individuals
during the testing phase, mostly by users unknown to me. I
did respond whenever people provided comments via email
or telephone, but only several did. In all cases of soft evalua-
tion, iterative expert system development was done, and poten-
tial end users’ requirements and suggestions about the
underlying ecological principles or management actions
were accommodated. I discontinued further soft validation
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once experts collaborating in the knowledge engineering
phase, and once key personnel representing the seven refuges
in the queuing system, provided no further suggestions for
changes. This was an arbitrary end point.

4.4. Validation using an historic data set

4.4.1. Conceptual framework and data source
for swan numbers

Based on queuing theory (Dshalalow, 1995; Hillier and
Lieberman, 1995), the decision support system begins by using
an observed number of swans at each of 27 geographic areas
for the breeding season of one year, and then simulates the
number at each of those areas for the four subsequent seasons,
concluding with a simulated number for the breeding season
of the subsequent year. The system simulates breeding swan
numbers in one year increments. It was a comparison of the
simulated number for the subsequent year versus the observed
number for that same year that was the basis of my empirical
testing. Such an approach follows that recommended by
Rykiel (1996) for ecological modelling; although, he does
not discuss decision support systems. An observed number
of swans was available only for the breeding season, and not
the other seasons, so analysis was limited to data for that sea-
son. Comparisons of simulated and observed data could be
made for 13 years, 1988—2000. Observed numbers were those
collected by the member agencies of the Pacific Flyway Coun-
cil and reported by the United States Fish and Wildlife Service
on an annual basis (e.g., Reed, 2000).

It was the existence of such a long term, quality data set
that allowed me to do the empirical evaluation that I did. Un-
covering such data sets, although key, is often most difficult.
In much of the Northern Hemisphere, long term survey and
banding (ringing) records of migratory birds, especially water-
fowl, may be one good source of such data.

4.4.2. Data analysis

My decision support system provides output as a 27 column
by 13 row matrix of numbers of swans. Columns represent
each geographic area; these areas are the servers from the per-
spective of the queuing system terminology. Rows represent
individual years. This matrix was compared statistically to
a corresponding matrix of observed numbers of swans com-
piled from the Pacific Flyway Council’s surveys.

Although all 27 areas were always used in the queuing sys-
tem, swans had never been observed in seven areas during the
breeding season and those areas were excluded from statistical
analysis. In all such cases, the system did not simulate swans
in those areas. By excluding these areas, I ensured that the
consistent simulation of no swans where none were expected
did not artificially inflate the evaluated accuracy and precision
of the system.

Thirty-four black-box experiments were conducted to em-
pirically validate the decision support system’s ability to predict
swan distributions in the flyway (Sojda, 2002). A configuration
file is used automatically by the various agents to set system pa-
rameters regarding how the queuing system, itself, will be run.

For example, the configuration, as built by the user, sets values
that the system uses to determine whether breeding habitat is
adequate for a particular refuge (server) to accept swans.
Also, through the configuration file, one can choose to either ig-
nore or use the information generated by the individual expert
systems for all active refuge agents. Therefore, the multiagent
system can be used in an experimental fashion testing various
ecological conditions for migrating swans.

My first experiment was to test the predicted numbers of
swans for 20 areas from the base system against observed
numbers for a series of 13 years. The base system was the
full multiagent-based queuing system run with a configuration
that did not allow the expert systems to affect the use of serv-
ers by swans, essentially ignoring the three expert systems.
The second experiment compared the predicted numbers of
swans from running the system with its default configuration
against actual observed numbers. The default configuration
allowed all three expert systems to affect the availability of
seven refuges to simulated migrating swans. Other experi-
ments that I ran included varying the number of refuges in
the system, varying the number of expert systems in use,
and choosing alternate ways to assign the number of swans
in the starting queue. In my statistical analyses, two subse-
quent years are treated as a pair, and output from each of
the servers treated as a response. The first of the pair is simu-
lated data; the second is either observed data or simulated data
from a run of the system with a different configuration. The
results from four of my experiments are provided in Table 1.
For example, based on test 3A, I concluded that the complete
decision support system simulated distributions of swans over
time (13 years) and space that were similar to the numbers ac-
tually observed for the same 20 areas. The full complement of
experiments can be found in Sojda (2002).

Multivariate matched-pairs permutation test (MVPTMP)
statistical procedures (Mielke and Berry, 2001) were used
for the statistical analyses. These are nonparametric methods
based on Euclidean distance functions, sampled permutations,
and moment approximation approaches. In the analyses,
a small p-value is evidence of similarity of distributions of
swans over both space and time between the two groups of
data forming a pair. Statistical analyses such as provided by
MVPTMP provide a mathematical representation of a multi-
variate comparison, but it is difficult to graphically depict
comparisons of such spatial data over time because of the in-
herent multidimensional structure. As a simplistic graphical
alternative, and communication tool, the departure of the ex-
perimental data from the observed data can be plotted as has
been done for numbers of swans in Fig. 1. Additional such vis-
ualizations can be found in Sojda (2002).

5. Discussion and conclusions

The ecological domain of migratory waterfowl in which I
have worked seems to be a particularly productive, yet un-
tapped, one in which to encourage decision support system de-
velopment. First, the needs are great. Relating population
phenomena to habitat change is an area of deep interest to
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Fig. 1. An example of visualizing the departure of the simulated number from a model to the observed number is shown, in this case for trumpeter swans.
Depictions close to zero would indicate strong similarity between predicted and observed numbers. Here, a server refers to the queuing system component

that represents geographic areas important to trumpeter swans (Sojda, 2002).

wildlife managers, especially where decision support can pro-
vide a test bed for simulating habitat and population manage-
ment activities. Mathevet et al. (2003) provide one example
for ducks in the Camargue (France) using agent-based simula-
tions. Second, many species are not within desired population
levels, either being too numerous or too few. Third, because
waterfowl, particularly hunted species, have been of human
and government agency interest for so long, data sets are avail-
able for use in empirical evaluation. These include survey of
actual numbers over time and space as well as banding (ring-
ing) studies. As with many ecological questions, however, the
theory of how to relate cause—effect relationships across spa-
tial and temporal scales is yet to be fully developed. And, the
visualization of multivariate response models is complex.
Finally, missing data are always problematic. Nonetheless,
development of such environmental decision support systems
should be pursued, and their empirical testing encouraged.

Validation is the process of determining whether the stated
purpose of the system was achieved. The purpose of my deci-
sion support system was to allow swan managers the ability to
evaluate different management actions and the effect on swan
distribution. I conclude that a multiagent system was an effec-
tive way to do this by simulating movement of waterfowl in
a flyway and by incorporating expert systems related to man-
agement actions. The suite of management actions developed
in this system were limited to breeding habitat assessment,
water level management in wetlands, and implementing prin-
ciples of flyway management at the local level. However, these
are key waterfowl management issues. Empirical validation of
the multiagent system demonstrates the effectiveness of my
approach to integrating the management of seven refuges
and simulating their effects on a total of 20 geographic areas
over time. I have no empirical evidence to suggest whether
this system could be applied to other areas, although my judg-
ment tells me the underlying processes related to trumpeter
swan ecology and management would make such application
possible. To broaden it to other species would require develop-
ment of different knowledge bases.

Because models are abstractions of reality, it is inherent
that they will have shortcomings from not being able to accu-
rately represent all knowledge, logical relationships, and prob-
abilistic intricacies. This does not lessen their value, but makes
empirical evaluation essential. Overall, the evidence was
strong that the base system (in the decision support system
for trumpeter swan management) mimicked the observed pat-
tern of swan distributions over time, as does the system run
with the default configuration. Almost all experimental runs
of the decision support system showed the same pattern.
From the evaluation in its entirety (i.e., verification and valida-
tion), it seems reasonable to conclude that correct underlying
causal relationships are represented in the individual expert
systems, in the queuing model, and in their integration within
the multiagent framework. Verification was completed on both
components and the full system. Soft validation was completed
on components. Validation with an historic data set on the full
system was also accomplished.

It seems irresponsible to deliver a decision support system that
has not been adequately evaluated, including both verification
and validation. Empirical evaluation in some form is critical,
and can range from experiments run against a preselected gold
standard to more simple testing of system components. It is imper-
ative to understand, from an experimental and logical perspective,
to what extent inferences can be made as a result of the validation.
In the end, the question to answer is: Was the system successful at
addressing its intended purpose? Often, searching for the right
database for empirical evaluation can be as important as adequate
decision support system development, itself. Otherwise, one has
no scientific reference by which to judge the adequacy, perfor-
mance, and fundamental credibility of the system.
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