Assignment 6
IFE Cycle Trace
Due in class on Wednesday, September 23

This assignment is given on four pages. This first page contains the assignment directions. The second page provides the IFE cycle. The third page is a listing of assembly language instructions in main memory to be used in the assignment. The fourth page is a page you are to complete. You must turn in pages 3 and 4 in class on Monday, September 25.

On page 4 you are to do a trace of the execution of the instructions found on page 3.

1. Page 4 has current values for the registers for starting the trace at the top. There are numbered blank lines below the registers. The numbers represent the current pass through the IFE cycle.

2. You must fill in each line with the values that would be in the registers after the pass through the IFE cycle corresponding to the line number, just before the IFE cycle would continue back to the fetch phase, as marked on the IFE diagram on page 2.

3. If any address location in memory changes value, record that change at the proper address on the memory sheet, page 3.

4. Instructions and data are assumed to take up 4 bytes each, so memory is only listed at 4-byte boundary values.

5. PC is the program counter register. When the PC is updated, it should be updated by 4, as all instructions are 4 bytes long.

6. IR is the instruction register.

7. r0 and r1 are general purpose registers.

8. PS is the program status register.

9. SP is the stack pointer register.

10. cp is a special register used by the operating system to hold the address of the PCB of the currently running process.

11. rdy is a special register used by the operating system to hold the address of the PCB at the front of the ready to run queue.

12. The PS (status) register contains only two bits. The first is the user/supervisor bit; 0 indicates user mode and 1 indicates supervisor mode. The second bit is a compare bit; it is set to 1 by hardware if the effect of executing a compare instruction is true, and 0 otherwise.

13. The SP (stack pointer) register points to the top (first non-used element) of the currently running user process stack.

14. If a clock interrupt occurs the hardware will always place address 300 into the PC as part of its interrupt circuitry.

15. If the PC is saved by the IFE cycle, it is pushed onto the stack of the currently running process.

16. A clock interrupt is detected on the 6th pass through the IFE cycle.

Fill in lines until it is impossible to continue (e.g., because the address needed is not in memory). Explain why you stop where you do. ONLY FILL IN VALUES ON THE TRACE SHEET THAT CHANGE.
When the computer is first turned on, run Power On Startup Tests (POST). Allow time for circuits to stabilize. Set all registers to specified initial values. Set PC to contain the first address of the ROM portion of memory that holds the permanent startup code (often referred to as the BIOS).

Fetch instruction from memory whose address is in the PC register and put that instruction into the IR register.

Add the length of the fetched instruction to the address in the PC so that the PC now contains the address of the next instruction in sequence in memory.

Decode and execute the instruction in IR.

- No exception happens during execution
- Exception happens during execution

Push PC and PS to memory location in SP (increase SP by 4 afterwards). Set the user/supervisor mode bit to supervisor. Load the PC with a predetermined address (of exception handler section of the OS).

Push PC and PS to memory location in SP (increase SP by 4 afterwards). Set the user/supervisor mode bit to supervisor. Load the PC with a predetermined address (of interrupt handler section of the OS).
Main Memory

Name __________________________

0000 --- start of OS in memory

--- begin of clock interrupt/process switch in OS
0300 store r0, 8(cp) -- store contents of r0 into memory location 8+cp
0304 store r1, 12(cp) -- store contents of r1 into memory location 12+cp
0308 pop 4(cp) -- pop the contents of memory location referred to by SP into
 -- memory location 4+cp; decrement SP by 4
0312 load cp, rdy -- copy value in register rdy into register cp
0316 load r0, 8(cp) -- load r0 with contents of memory location 8+cp
0320 load r1, 12(cp) -- load r1 with contents of memory location 12+cp
0324 setTimer #100 -- set the timer to 100 microseconds (timer not on trace sheet)
0328 setUSbit #0 -- set the US bit in the PS register to 0
0332 load pc, 4(cp) -- load the pc register with contents of memory location 4+cp
0336 load r1, #30 -- load r1 with the constant 30

--- more of OS

1080 680
1084 860
1088 860
1092 1000
1096 1800

1200 600
1204 2980
1208 2509
1212 300
1216 95

1890 - end of OS in memory

--- start of process 35 in memory

2000 --- load r0, #4 -- load r0 with the constant 4
2404 --- add r0, r1, r1 -- add r0 to r1 and store the result in r1
2408 --- sub r0, #1, r0 -- subtract 1 from the contents of r0 and store the result in r0
2412 --- cmpge r0, #0 -- set PS compare bit to 1 (true) if r0 >= 0; 0 otherwise
2416 --- jt 2404 -- jump true (if PS compare bit is 1) to memory location 2404
2420 --- load r0, #5 -- load r0 with constant 5

--- more of process 35

2600 --- 500
2604 --- 501

2800 --- end of process 35 in memory

2890 --- start of process 65 in memory

2980 --- load r0, #15 -- load r0 with constant 15

3800 --- end of process 65 in memory

9999 --- end of memory
<table>
<thead>
<tr>
<th>PC</th>
<th>IR</th>
<th>r0</th>
<th>r1</th>
<th>PS</th>
<th>SP</th>
<th>cp</th>
<th>rdy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>sub r0,#1</td>
<td>58</td>
<td>0</td>
<td>00</td>
<td>2600</td>
<td></td>
<td>1200</td>
</tr>
</tbody>
</table>

1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							

Name: ___________________