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Abstract 
Inspired by the impending availability of asset specific data 
on several US Department of Defense programs, in a 
previous paper we looked at the possibility that a set of 
Bayesian diagnostic models constructed from asset specific 
data would outperform a single Bayesian diagnostic model 
constructed from all of the data. There were situations 
where a set of asset-specific classifiers was superior to a 
single composite classifier but it wasn’t universally the case. 
The hypothesis in this paper is that a blended classifier can 
be constructed to take advantage of the best of both worlds: 
have a composite classifier’s accuracy when its individual 
accuracy was greater and have an asset specific classifier’s 
accuracy when its accuracy was greater. Our experiments 
suggest that a split classifier—one that uses asset-specific 
data to estimate priors and composite data to estimate the 
likelihoods—can more correctly represent the distributions 
in the underlying diagnostic problem. 

Introduction  

In a previous paper, we investigated the possible 
advantages and disadvantages of creating asset specific 
diagnostic models instead of a single diagnostic model 
covering all assets (Butcher et al. 2006). The theoretical 
impetus was the general observation that when 
constructing any classifier, the more closely the 
distribution of the sample data matches the distribution of 
the target population, the more accurate the model will be. 
In terms of Bayesian diagnostics, this suggested that if 
assets or groups of assets experienced distinct failure 
patterns, a set of diagnostic models tuned to the individual 
assets should be more accurate than a single diagnostic 
model covering all assets. However, such an approach 
requires that test and maintenance data be tagged with 
unique identifying information. 
 The practical impetus for the paper was the incipient 
availability of the required asset specific data through the 
Department of Defense’s Item Unique Identification 
(IUID) numbers. When DoD’s IUID program is fully 
implemented, maintenance and testing data that is tracked 

to specific assets will be readily available, which is exactly 
what this approach would require. 
 To test our hypothesis, we performed experiments 
comparing the accuracy of a single classifier against a set 
of asset specific classifiers over ranges of data sizes and 
levels of noise in the data. The main result was that a set of 
asset-specific classifiers was often better than a single 
composite classifier especially when noise levels were high 
and data was sparse. Unfortunately, the hypothesis was not 
supported universally. Moving in the direction of less 
noise, it was often the case that asset-specific classifiers 
were less accurate overall than the composite classifier. 
There was also a broad middle ground where they were 
both equally accurate.  
 The purpose of this paper is to answer a question left 
previously unanswered: if a set of asset specific classifiers 
is sometimes better and sometimes worse than a single 
classifier but just as good the rest of the time, when should 
each be used? 
 While the patterns in our results suggested that 
weighting the two classifiers might be the solution, we 
rejected applying a simple ensemble approach. Instead we 
hypothesized that we could blend the probabilities within 
each classifier of the set and be as accurate as either of the 
original approaches, thus attaining the best results of each. 
Surprisingly, our results show that a set of classifiers using 
blended probabilities was able to outperform both the 
original asset specific set and the composite classifiers. 
This result led us to identify a simpler blending scheme for 
the constituent probabilities based on the structure of the 
problem. We leave for future work problems that may 
require the more complicated blending scheme. 
 The plan of the paper is as follows. The first section will 
give some background on the Bayesian approach to 
diagnostics. The second section will discuss some related 
work in ensemble methods. The third section describes the 
experimental design. The fourth section reviews the results 
of our previous experiments.  In the fifth section we look at 
our current results. In the final section we summarize our 
findings and make suggestions for future work. 



Bayesian Approaches to Diagnostics 
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Figure 1. Bayesian diagnostic model 

Developing system models for diagnosis is complex and 
often depends on a detailed understanding of system 
performance and test engineering. Learning diagnostic 
models from field maintenance data offers considerable 
potential to develop or refine diagnostics for fielded 
systems. Simulation can also be used to generate data for 
purposes of learning. Several approaches exist for learning 
such models including case based reasoning, decision tree 
induction, neural networks, and Bayesian methods. In 
previous work, we showed how diagnosis and 
classification are related through the D-Matrix Model 
(Sheppard and Butcher 2007). We decided to investigate 
Bayesian methods to diagnosis because they derive models 
based on sound mathematical principles, they can adapt 
easily as more data is obtained, and they have been 
demonstrated empirically to perform well on a broad range 
of classification problems.  
 Previously, Sheppard and Kaufman (2005) provided a 
detailed derivation of a simple model for Bayesian 
diagnosis. We have also demonstrated how both the Naïve 
Bayes Classified (NBC) and the Tree-Augmented Bayesian 
network (TAN) perform on a small sample of IUID-
enabled data for a US Navy weapon system (Sheppard et 
al. 2006). For the purposes of this paper, the NBC will be 
sufficient for the experiments we are going to perform. 
 The primary assumption for NBC is that the evidence 
variables in the network (i.e., the tests) are conditionally 
independent of each other given the class (i.e., diagnosis). 
Let us define our diagnostic networks as if they contain 
only one diagnosis variable with n possible values 
(corresponding to each of the diagnostic conclusions Di). 
Thus, we will apply a simple network structure 
corresponding to the form shown in Figure 1. Note that this 
structure can be modified where there is a separate 
Boolean node Di for each diagnosis rather than a single 
composite diagnosis node. This leads to the so-called naïve 
Bayes “multi-net” (Friedman et al. 1997; Duda et al. 
2001). 
 Under the naïve Bayes model, we attempt to find the 
specific diagnosis that maximizes the a posteriori 
probability of the diagnosis given the set of observations 
(i.e., test results). Let o(Ti) be the discrete outcome (e.g., 
PASS or FAIL) for some test Ti). Then 
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Unfortunately, the problem remains that the size of the 
joint distribution over the tests is exponential in the 
number of tests. But under the naïve Bayes assumption, we 
can simplify the classification rule to the following: 
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 Given a set of training data mapping test results to faults 
detected, we can “learn” and NBC by observing that P(Di) 
is the frequency of occurrence of a particular fault in the 
data set. Similarly, P(o(Tj) | Di) is the frequency of test 
outcome o(Tj) considering only the particular diagnosis Di. 
What is remarkable about this simple model is the 
considerable effectiveness it has demonstrated in numerous 
experiments and implementations (Langley et al. 1992). 
 An important ramification of the NBC rule is that if any 
P(o(Tj) | Di) should happen to be zero then the entire value 
of the expression for that particular Di zeroes out. This is 
not generally what we want, especially if we have learned 
our network from sparse training data. To prevent the 
classification rule from “breaking”, the typical solution is 
to use a default estimate of the likelihoods. Although we 
will have more to say about this later, the approach we use 
is an m-estimate calculated as follows (Mitchell 1997): 
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where nc is the number of instances in the data pairing 
particular values for o(Ti) and Dj, n is the total number of 
instances in the data corresponding to diagnosis Dj, p is a 
prior estimate for the probability, and m is the number of 
“virtual” examples in the data. 
 In spite of the relative accuracy of NBC, we note that a 
simple trained classifier is unlikely to be sufficient by itself 
to accurately diagnose faults. Accurate diagnosis generally 
requires a model created initially by experts and matured 
as more data is acquired. The full diagnostic problem will 
probably only be solved using classifiers with other types 
of diagnostic models (Wilmering and Sheppard 2007). 

Related Work 

One approach to combining models to improve diagnostic 
accuracy is through the use of “ensemble methods.” 
Ensemble methods seek to improve accuracy by combining 
recommendations from multiple classifiers (Polikar 2006). 
Ensemble methods vary widely and include, for example, 
examples bagging, boosting, and mixtures of experts. 
 Bagging normally involves the creation a set of 
classifiers by using bootstrapping to resample the available 



data. Boosting involves creating successive classifiers 
trained on the mistakes of the previous classifier. Both 
approaches have been used in classifiers used for 
diagnostics (Hu et al. 2004; Li et al. 2005). Mixtures of 
experts create a meta-classifier that combines the results of 
simpler classifiers and have been successfully used with 
Bayesian approaches to classification (Titsias and Likas 
2000; Bishop and Svensen 2003). 
 Our research differs from typical ensemble methods in a 
number of ways. First, while we create a set of classifiers, 
each classifier is tied to a specific asset. There is no voting 
because the correct classifier can be determined by context. 
Second, when creating the classifiers, we apply “blending” 
at a lower level of abstraction than at the level of the 
classification results. Although we emphasize the goal of 
obtaining the best accuracy of either the asset-specific or 
composite classifiers, we seek to achieve this by 
combining asset-specific and composite data to estimate 
the probabilities for each asset-specific classifier. 

Experimental Design 

To test our hypotheses, we first generated synthetic data. 
We use a hypothetical system consisting of eight 
components that can be arranged in various ways. Each 
component is subject to failure and that failure is detected 
by a combination of eight tests that can either pass or fail. 
Depending on how the components are arranged, the 
diagnostic characteristics of each system are captured by a 
corresponding D-Matrix (Simpson and Sheppard 1994). 
Figure 2 shows the arrangement of components and the 
corresponding D-Matrix for the system used as a basis to 
generate the data for the experiments in this paper. Each di 
corresponds to a component that can fail and each tj 
corresponds to a test. In the case of failure, then di 
corresponds to the diagnosis. Each row in the D-Matrix is a 
signature relating expected test outcomes (PASS = 0 or FAIL  
= 1 for each test) to a particular diagnosis. 
 Because the main purpose of the experiments is to test 
hypotheses related to how asset specific data might be used 
to improve diagnostic accuracy, the data needs to be 
different for different assets. One way to introduce the 
required differences is to associate a different component 
failure distribution with each asset. For example, “Asset 
A” might always have trouble with component 3 (d3). In 
this case, the probability of d3 failing will be relatively 
higher than the probability of d0–d2 and d4–d7 failing. For 
these experiments, we created ten such hypothetical failure 
distributions each expressing a different behavioral 
property. The actual distributions used and the properties 
they represent are described in Butcher et al. (2006). 
 The D-Matrix (system) and component failure 
distributions (assets) form the foundation for generating 
the synthetic data. For each data set, N data points are 
generated for each asset using the D-Matrix and a 
particular fault distribution. For example, if N = 100, 
creating data for “Asset A” (described above) involves 
creating data that includes seven each of signatures d0–d2 
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Figure 2. Logic model and D-matrix 
nd d4–d7 but 53 of signature d3. This process is repeated 
r each asset and each N value: 25, 50, 100, 250, 500, 

000, 2500 and 5000. 
At this point, we have a collection of data sets that 
present the D-matrix perfectly. However, in the real 
orld, our test results are not likely to originate from clean 
ASS or FAIL test readings, nor are they always perfect. 
he actual measurements are subject to varying levels of 
oise. We also note that an NBC can easily learn the 
iagnostic concept represented by any D-matrix to 100% 
ccuracy as long as each row in the matrix corresponds to a 
nique diagnosis because the concept represented is 
nearly separable (Sheppard and Butcher 2007). In the 
resent case, this will happen whether the data is 
egregated or aggregated but for these experiments we 
quire at least the possibility that these diverge. So to both 
ject a degree of realism into the data and to prevent the 

roblem from becoming trivial, we add noise to the data.  
Assume we have determined typical “raw” values for a 

st passing and failing for a specific system and use those 
alues as the means of a Gaussian distribution of equal 
ariance (since we would be using the same measurement 
evice). Based on Bayes decision theory, assuming equal 
ss, the optimal decision threshold is midway between the 
o means (Duda et al., 2001). Using different variances, 

e introduce noise into the data in the following manner. 
hen a test signature is copied into the data set, each test 

 examined. A random value is generated with the 
orresponding PASS or FAIL distribution, and the result is 
ompared to the decision threshold1. The outcome is then 
etermined based on where the value falls with respect to 
is threshold. For example, if the result of a particular test 
 supposed to indicate a PASS (a “0” in the data), a random 
alue is generated with the passing mean and the specified 
ariance. If the resulting value is within the nominal limits, 
                                               
For these experiments, we assume only a single test limit is 
pplied to determine PASS or FAIL. In fact, this is easily extended 
 the more realistic case but was deemed unnecessary for these 

xperiments. 



the test outcome is kept as a PASS. If it is lower than the 
nominal limit, the test result is changed to FAIL. Standard 
deviations (rather than variances) of 0.00 to 0.1 in 0.01 
increments are used for a total of 11 different noise 
distributions. 
 In Butcher et al. (2006), we ran experiments on three 
systems, ten assets, eight data set sizes, and 11 noise levels 
for a total of 2,640 data sets. Using this data, NBCs were 
created for each of ten assets using asset-specific data for a 
particular system, data set size (N), and noise level as well 
as a composite NBC using aggregated data. Thus the 
composite NBC was trained and tested with 10N data 
examples whereas the asset-specific classifiers were each 
trained with N examples. This comports well with real 
world experience—if one had data for ten assets and had 
the option of creating ten classifiers or one aggregate 
classifier, one would not throw 90% of the data away. 
 For all experiments, the NBC learning algorithm was 
repeated with 30 trials using 66% of the data to train the 
NBC and 34% of the data to test the NBC during each trial. 
New data was generated for each trial. All random 
selection was stratified first by system (if necessary) and 
then by diagnosis (class). The m-estimate was set with p = 
0.001% and m = 1. The value of p was set low to make 
sure that the classification rule doesn’t degenerate on the 
one hand but, on the other hand, the classification is not 
influenced. Choosing a diagnosis at random breaks all 
classification ties. 

Previous Results 

In Butcher et al. (2006), we hypothesized that a set of asset 
specific classifiers where each classifier was trained with 
its own data would be more accurate overall than a single 
composite classifier trained using all of the data. However, 
we didn’t necessarily expect this to be true for all N and 
noise levels. Although the NBC has been shown to train 
well on relatively few examples (Langley et al. 1992), 
consider an aggregated data set of N = 100 samples. If 
there are ten assets, this leaves, on average, only ten 
instances per asset. If there are ten possible diagnoses, this 
leaves, on average, only one diagnosis per asset. At this 
point, we may not even be able to determine if assets 
actually have substantially different fault distributions. 
Thus we were really addressing two questions: should we 
segregate the data and when should we segregate it. 
 While considering the first question of should we 
segregate, we observed patterns suggesting an answer to 
the second question of when. During the present round of 
experiments we validated our previous findings and the 
results at noise levels 0.0, 0.05 and 0.1 are presented in 
Table 1. The table shows the number of asset-specific 
classifiers that were at least as accurate as the composite 
classifier based on a t-test for the difference of means (α = 
0.05). 
 This pattern was typical of results reported by Butcher et 
al. (2006). At low noise levels, both approaches were 
equally accurate, and this was generally true in the noise 

range of 0.0 to 0.03. After 0.03, there was a transitional 
period where some asset-specific classifiers were more 
accurate than the composite classifier and some were less 
accurate than the composite classifier. However, once a 
high enough noise level was reached, usually about 0.06, 
the accuracy of asset-specific classifiers began to increase 
relative to the composite classifier. This trend was 
accelerated when the samples were smaller and the noise 
levels higher. 

Table 1. Asset-specific classifiers vs. composite classifier. 

 Noise Level (Std. Dev.) 
N 0 0.05 0.1 
25 10 7 7 
50 10 5 4 
100 10 5 8 
250 10 0 10 
500 10 1 10 
1000 10 2 10 
2500 10 8 10 
5000 10 8 10 

 
  These results were encouraging for asset-specific 
classifiers in general but because the asset-specific 
classifiers were not universally superior, we needed a way 
to decide when to use each approach. However, because 
the pattern was fairly regular, this suggested that there 
might be a way to get the best of both worlds: get the 
accuracy of composite classifiers when they are more 
accurate and get the accuracy of asset-specific classifiers 
when they are more accurate. Nevertheless, we were intent 
on finding an approach that was not ad hoc. 

New Results 

Based on the patterns observed in our prior results, we 
hypothesized that a data-driven blended classifier built 
from both composite and specific data might achieve a 
higher level of overall accuracy than either previous 
approach taken singly. Formally, if C(N,σ) is classifier 
accuracy as a function of data set size and noise, then we 
sought an approach with the following as the best case 
scenario: 
 

Cb (N,σ ) = max{Cc (N,σ ),Cu(N,σ )} 
 
where b is blended asset-specific, c is composite and u is 
unblended asset-specific. As previously discussed, this is 
not an ensemble approach. There is still a set of asset-
specific classifiers being trained, one for each asset. 
Instead each classifier uses probabilities learned from both 
asset-specific data and combined data for all assets. The 
open question was how to blend these two data sources 
within each asset-specific classifier to achieve the best case 
scenario. 
  As previously described, naïve Bayesian classification 
proceeds by choosing the class that maximizes the product 
of the prior probability of the diagnosis, P(Di), and the 
likelihoods over the tests given the diagnosis, P(o(Tj) | Di). 



When determining each probability, the m-estimate is used 
to adjust the calculation as described above. The key 
components of the m-estimate are the values of m and p, 
the number of virtual examples and the Bayesian 
probability estimate of that likelihood. In the absence of 
better information (which is usually lacking), the m-
estimate of the likelihood is assumed to take on a constant 
uniform distribution. 
 Our approach to blending the data sources leverages the 
m-estimate. We still create a set of asset specific classifiers 
where each classifier is calculated from asset specific data. 
The blending comes from applying a modified m-estimate 
calculated using the composite data, p = P(o(Tj) | Di). 
Additionally, we change the weight of the Bayesian 
estimate as data set size and noise vary with the aim of 
matching the patterns we observed in our previous results. 
Instead of using m = 1, we used an m that was proportional 
to N and the noise level: 
 

m =
k

var(o(Ti ),Dj ) Nq
+1 

 
where k and q are user defined constants. This formula was 
based on our observation that, keeping noise constant, as N 
increased, we wanted to weight towards the probability 
calculated from asset specific data and away from the 
probability calculated from composite data represented by 
the m-estimate. This formula reduces the number of virtual 
examples, m, representing the composite based 
probabilities as N increases. With N held constant and the 
noise level increasing, we also wanted to weight more 
towards the probability calculated from asset specific data 
and away from the probability calculated from composite 
data. The formula above fills both requirements, and Table 
2 shows some sample calculations of m for various N and 
noise levels. In practice, m was calculated based on the 
actual data because the specific noisiness of the data is 
generally not known a priori. As a result, every probability 
is calculated with its own m value. When the variance was 
zero, it was simply omitted from the formula.  
 Probabilities calculated from composite data were 
calculated in the usual fashion and used an m-estimate with 
m = 1 and p = 0.001%. 
 

Table 2. Example values of m 

 Noise Level (Std. Dev.) 
N 0 0.05 0.1 
25 68400.0 2737.0 685.0 
50 38388.7 1536.5 384.9 
100 21545.3 862.8 216.4 
250 10040.6 402.6 101.4 
500 5636.5 226.4 57.3 
1000 3163.3 127.5 32.6 
2500 1474.6 59.9 15.7 
5000 828.0 34.1 9.3 

 

Table 3. Asset specific classifiers vs. composite classifier 

 Noise Level (Std. Dev.) 
N 0 0.05 0.1 
25 10 5 10 
50 10 7 10 
100 10 8 10 
250 10 9 10 
500 10 9 10 
1000 10 9 10 
2500 10 9 10 
5000 10 8 10 

 

Table 4. Comparing asset-specific classifier accuracies 

N 
Blended better 

than Unblended 
Blended worse 

than Unblended 
Blended same 
as Unblended 

25 3 0 7 
50 10 0 0 
100 10 0 0 
250 5 0 5 
500 0 0 10 
1000 0 0 10 
2500 0 0 10 
5000 0 0 10 
 
 To test our hypothesis, we constructed a composite 
classifier (“composite”), a set of asset-specific classifiers 
(“unblended specific”), and a set of blended asset-specific 
classifiers (“blended specific”) by training and testing them 
as described in the experimental design section. We used k 
= 100 and q = 1.2 in our formula for m. The results are 
shown in Table 3 at noise levels 0.0, 0.05 and 0.1. Similar 
to Table 1, Table 3 shows the number of blended 
classifiers out of ten that were at least as accurate as the 
composite classifier. Cross-referencing with Table 1, we 
can see that the blended specific classifiers achieved a 
higher overall level of accuracy as compared to the 
unblended specific classifiers when compared to the 
composite classifier. For example, at noise level 0.05 and 
N = 250, no unblended specific classifier was at least as 
accurate as the composite. However, we can see that nine 
out of ten blended specific classifiers were at least as 
accurate as the composite. 
 Table 4 compares unblended specific and blended 
specific directly against each other for noise level 0.1. The 
table shows that at low N, the blended specific classifiers 
were more accurate than the unblended specific classifiers 
whereas at higher N, they have the same accuracy. 
 These results validated our hypothesis. However, as we 
looked at the results from a different perspective, we 
noticed something surprising. Because of how the blended 
specific classifiers were constructed, we did not 
contemplate in our hypothesis that they might be more 
accurate than either the composite classifier or unblended 
specific classifiers in some cases. As previous stated, we 
supposed that the bounds of accuracy for the blended 
classifier would be the accuracies of the composite 
classifier and the appropriate unblended asset-specific 
classifier. This didn’t turn out to be the case. Instead, the 



blended classifier was more accurate than either classifier 
in several cases. Table 5 shows the results for noise level 
0.1. There is clearly a pattern, especially at smaller N, 
showing the blended classifier was more accurate on 
average. This advantage declined as N increased. 

Table 5. Average accuracies for the classifiers 

 Average Percent Accuracy 
N Composite Blended Specific Unblended Specific 

25 60.4% 68.6% 62.3% 
50 63.4% 68.5% 55.7% 
100 64.9% 70.4% 63.0% 
250 65.4% 70.6% 68.4% 
500 64.9% 70.4% 69.9% 
1000 65.4% 70.9% 70.9% 
2500 65.5% 71.2% 71.2% 
5000 65.4% 71.3% 71.3% 

 
Despite the surprise, we were able to hypothesize an 
explanation for these results after considering the 
relationship between the data and the Bayesian model more 
closely. For a given system, the data reflected two things, 
different noise levels and different failure distributions—
one for each asset. However because the noise level and 
test signatures where the same for all assets, each classifier 
was trying to estimate the same likelihoods—no matter if it 
was the composite or one of the unblended asset-specific 
classifiers. Generally because the composite classifier had 
10 times the data, at low N, it was better at estimating these 
likelihoods. 
 However, the asset-specific classifiers were better at 
estimating the prior probabilities because these depended 
solely on the failure distributions and each asset had a 
different and distinctive failure distribution. Whether or not 
the composite or asset-specific classifier was more 
accurate depended directly on whether, depending on the 
noise level and N, the prior probabilities or likelihoods 
were more important for classifier accuracy. 
 To test this hypothesis, we created a third type of asset-
specific classifier, a split asset-specific classifier (“split 
specific”). Each split specific classifier used data for that 
asset alone to calculate the prior probabilities and used data 
aggregated over all assets to calculate the likelihoods. 
 Comparing the number of split specifics that are as good 
or better than the composite we find that the split specifics 
are as good as or better than the composite classifier in the 
majority of cases. If we compare these results to those we 
obtained in previous experiments for the unsplit (original) 
specifics we see that the split specifics out perform the 
unsplit specifics. As expected, when compared to the 
blended specifics, the results are comparable (Table 6). 
 As a result of these three sets of experiments, we are 
able to answer each of our questions. First, sets of asset 
specific classifiers can be more accurate than a single 
composite classifier if the failure distributions are 
significantly different for the specific assets. However, 
because of how noise and data sizes interact, it isn’t always 
clear when to use the composite classifier versus the asset 
specific classifier. Second, the experiments in this paper 

show that we can construct asset specific classifiers using 
blended probabilities that do obtain the best of both worlds.  
 Finally, we also demonstrate in the second set of 
experiments that if it is the case that the difference between 
the assets exists solely in their failure distributions, we can 
create a set of asset specific split classifiers that use asset 
specific data to estimate the priors and the aggregated data 
to estimate the likelihoods of the Bayesian model. Looking 
at the specific noise level of 0.1, we find a similar pattern 
of split specifics being at least as accurate or more accurate 
than the unsplit specifics (Table 7). When we compare the 
accuracies of blended and split specific classifiers directly, 
we find almost no difference in accuracy at all. 

Table 6. Split-specific classifiers vs. composite classifier 

 Noise Level (Std. Dev.) 
N 0 0.05 0.1 

25 10 5 8 
50 10 6 9 
100 10 7 9 
250 10 9 9 
500 10 9 9 
1000 10 9 9 
2500 10 9 9 
5000 10 9 9 

  

Table 7. Comparing unsplit and split probabilities 

N 
Split better 

than Unsplit 
Split worse 

than Unsplit 
Split the same 

as Unsplit 
25 1 2 7 
50 1 1 8 
100 1 0 9 
250 10 0 0 
500 10 0 0 
1000 10 0 0 
2500 7 0 10 
5000 0 0 10 
 
 It should be noted that although our original research 
was inspired by the IUID system of the Department of 
Defense, the approach is valid any time the population of 
assets can be split into subsets with different failure 
distributions. For example, different runs or lots of assets 
may have different failure distributions. As maintenance 
actions are taken on a population of assets, especially over 
a protracted period of time, some parts may go out of 
production to be replaced by components with a different 
manufacturer. The systems may appear to be the same at 
the test level but the differing parts may give rise to 
different failure rates. In short, whenever subsets of a 
system population begin to exhibit different failure 
distributions, the accuracy of Bayesian diagnostic models 
can be improved by using subset (possibly asset) specific 
data to construct the prior probabilities and aggregate data 
to construct the likelihoods. 
 Fortunately, the MTBF for modern systems is generally 
high. Unfortunately for those attempting to construct 
diagnostic models, this means failure data is not going to 



come all at once or even frequently except for the largest 
asset populations. It follows that such identifying data 
should be collected at the start of a program because these 
differences may not become apparent until much later. 

Future Work 

The results in this paper were largely driven by our 
assumptions about what form asset specific behavior might 
take, how it might show up in the data, and how it could 
affect building Bayesian diagnostic models. We assumed 
that asset specific behavior took the form of different 
failure distributions, and because of the way Bayesian 
models are built, this affected only a certain part of the 
model, the prior probabilities. 
 However, this isn’t the only way that asset specific 
behavior might manifest. From the point of view of 
Bayesian diagnostics, under what conditions might the 
likelihood distributions be affected? The likelihoods are 
the probability of a test result given a particular diagnosis. 
This would imply that data contain a mixing of asset 
behavior and testing. How might this come about?  
 As an example, consider a situation where diagnostic 
procedures are being prepared for a GPS system that will 
be installed on a wide variety of aircraft, and that GPS 
system has a built in health monitor. For example, it could 
be installed on a C-17 used for long-haul transport with 
little chance of requiring any extreme maneuvering where 
we might expect the equipment to function, and fail, as 
planned. Suppose, however, that the same model GPS 
system is installed on an F/A-18 that is flying maneuvers in 
hostile territory. Then more extreme maneuvers may be 
required, and this could lead to stresses on health 
monitoring equipment such that the test likelihoods need to 
shift to reflect greater sensitivity. Finally, consider a GPS 
system of the same model installed on a high-altitude 
trainer (e.g., a 747 used by NASA for astronaut training) 
where it is likely the aircraft will undergo frequent 
negative G-force maneuvers. A completely different set of 
test likelihood distributions might appear because of how 
the measurements are taken. 
 As a practical illustration of how this might affect 
learning a Bayesian diagnostic model, consider the D-
Matrix for the functional system. Assume that we have 
three assets operating in environmental conditions such 
that a health monitor records the following data. For the 
first asset, data is recorded exactly as would be expected 
by the D-Matrix (Figure 2). For the second asset, the third 
test consistently gives the wrong reading. If the expected 
reading for diagnosis i was PASS, then would it read FAIL; 
FAIL, then PASS. For the third asset, one test in each 
signature consistently reads falsely in five of the eight test 
signatures (see Figure 3 for illustrative D-Matrices). In 
addition to these systematic differences, all readings are 
subject to varying levels of Gaussian noise (as before). 
 Because all of this data comes from the same system, the 
temptation is to aggregate all of the data together to arrive 
at the best possible model. Assuming a uniform 
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Figure 3. Environment-dependent D-Matrices 
distribution of failures for all three assets, it can easily be 
shown that aggregation in this case actually harms overall 
classifier accuracy. In fact, even with no noise, a composite 
classifier built from equal data from all three assets is only 
87.5% accurate compared to 100.0% for the asset-specific 
classifiers—whether N is 25 or 5000. 
 As the noise level increases, accuracy for every 
classifier begins to fall but asset-specific classifiers still 
remain more accurate than the composite classifier.  
However, after a certain point, around noise level 0.08, 
there are more ties between the composite classifier and 
the asset-specific classifiers, especially at low N. For 
example, after running some preliminary experiments with 
noise level 0.08 and N = 50, the accuracy of the composite 
classifier was 51.5% but the accuracies of the asset-
specific classifier for asset No. 1 was 48.4%; No. 2, 52.9%; 
and No. 3, 53.8%. In addition, none of the differences are 
statistically significant. Not until N = 250 are all of the 
asset-specific classifiers more accurate than the composite 
classifier (with statistically significant differences). 
 This small experiment suggests a number of things. 
First, in situations where the likelihoods are asset specific, 
we may have to reverse the “split” classifier so that the 
priors are estimated from composite data and likelihoods 
are estimated from asset-specific data. Second, where there 
are asset specificities arising both from differing failure 
distributions and test patterns, we may be required to blend 
probabilities as we did in the first experiment in this paper. 
 Third, test noise has a completely different effect on 
asset-specific classifiers when the specificity derives from 
testing than when the specificity derives from failure 
distributions. In the latter case, asset specific classifiers 
were more accurate at high noise and low N. In the former 
case, asset specific classifiers are less accurate at high 
noise and low N. This suggests that the blending will have 
to happen differently for prior probabilities than for the 
likelihoods. Finally, constructing, applying and 
maintaining multiple diagnostic models is relatively more 
expensive than doing the same for just one. We need to be 
able find ways to detect the condition and estimate the 
expected payoff from increased accuracy. We plan to 
explore all of these subtleties in future research on this 
topic.  



Conclusions 

We built on previous work that demonstrated under certain 
conditions that a set of asset specific classifiers can be 
more accurate than a composite classifier built from the 
aggregated data. However, asset specific classifiers were 
not universally more accurate and this left open the 
question of when to build a set of asset specific classifiers 
and when to build a composite classifier. 
 In this paper, we presented experimental results 
supporting our hypothesis that a blended approach could 
improve diagnostic accuracy. The blended approach—
while not an ensemble approach—uses aggregated data to 
create the m-estimates and then weights each by a number 
of virtual examples calculated as a function of both N and 
the level of noise. Although there were still some user-
defined variables involved, this avoided an ad hoc 
approach to picking and choosing asset specific classifiers 
or composite classifiers. 
 We also showed that because of the structure of the 
Bayesian model and the kind of asset specificity we were 
considering, a simpler “split” classifier could be 
constructed by using asset-specific data to estimate the 
priors and composite data to estimate the likelihoods. 
 Finally, we looked briefly into situations where the asset 
specificity of the data might also affect test signatures in 
the field and in turn would affect the estimated likelihoods. 
In this case, we hypothesized that a similar “split” 
classifier would need to be created for maximal accuracy. 
We also hypothesized that in the presence of both kinds of 
asset specificity, we would need to return to the blended 
approach. All of these problems are left for future work 
including how we might identify these non-homogeneous 
situations. 
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