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Abstract 
Initial test and maintenance solutions that are deployed to 
support new complex systems are generally imperfect and 
are initially liable to contribute substantially to system 
ownership costs. This is because development of effective 
health management solutions requires prediction of complex 
systemic interactions and the effect of presupposed external 
stimuli. It is nearly always the case that unforeseen 
emergent behavior (those that result from unpredicted 
system interactions) of fielded systems within their 
operational context create deviations from anticipated health 
management system performance. This suggests a need for 
processes and tools to monitor the effectiveness of product 
health management solutions in their application domains, 
collect data that validates and documents system 
performance, and pinpoint and analyze relevant patterns that 
can help mitigate the issues that arise. The process of 
identifying and implementing corrective actions as required 
to satisfy customer support requirements is known as 
diagnostic maturation and often draws on techniques from 
data mining and knowledge discovery. 

Most current approaches to data mining involve 
analyzing low-level data elements to attempt to induce 
previously unknown relationships among those data 
elements. Techniques such as clustering, association rule 
learning, feature extraction, and classification pervade the 
data mining literature. Unfortunately, most data mining 
implementations are either “blind” in that they consider all 
available data, or they depend on a human expert to identify 
the types of relationships of interest. Recent developments 
in defining ontologies for a domain provide significant 
potential in data mining in general and diagnostic 
maturation in particular. In this paper, we discuss a 
framework and approach for utilizing health management 
ontologies to guide the maturation process and better 
streamline automatic (or semi-automatic) knowledge 
discovery to improve diagnostics. 

Diagnostic Maturation Process 

Initial test and maintenance solutions that are deployed to 
support new complex systems are generally imperfect and  

 

are initially liable to contribute substantially to system 
ownership costs. This is because development of effective 
health management solutions requires prediction of 
complex systemic interactions and the effect of 
presupposed external stimuli. It is nearly always the case 
that unforeseen emergent behavior (those that result from 
unpredicted system interactions) of fielded systems within 
their operational context create deviations from anticipated 
health management system performance. This suggests a 
need for processes and tools to monitor the effectiveness of 
product health management solutions in their application 
domains, collect data that validates and documents system 
performance, and pinpoint and analyze relevant patterns 
that can help mitigate the issues that arise. The ability to 
mature the effectiveness of fielded system test, diagnostic, 
and maintenance procedures is a critical factor in an 
overall system support posture. The process of identifying 
and implementing corrective actions as required to satisfy 
customer support requirements is known as diagnostic 
maturation.  

 Recognizing that data mining in general and diagnostic 
maturation in particular are difficult, the purpose of this 
paper is to discuss one approach to streamlining the 
process by using domain ontologies. Specifically, in this 
paper, we discuss a framework and approach (one of many 
possible) for utilizing health management ontologies to 
guide the maturation process and better streamline 
automatic (or semi-automatic) knowledge discovery to 
improve diagnostics. The focus is on using the ontology to 
focus data mining and reduce the size of the search space 
to only those portions directly relevant to a specific 
maturation question. 

 The initial frameworks to support health management 
system maturation are put in place in the conceptual design 
stage and should be developed throughout the system life 
cycle. Model-based approaches (e.g., logic models, 
dependency models, qualitative models, and physics-based 



models) provide excellent representational tools for 
developing and documenting system design choices that 
support traceability of design decisions and can be 
refactored during the corrective action analysis and 
development process. When unexpected and unplanned 
system level design interactions, operational and 
environmental stresses, or other influences create a system 
readiness issue or cost of ownership problem, the models 
will be in place to support the remedial actions that must 
be taken. This represents an iterative closed loop process of 
root cause analysis, corrective action deployment and 
reevaluation called a Maturation Cycle, or more formally 
in some circles, the FRACAS (Failure Reporting and 
Corrective Action System) process. In either case, the goal 
is to determine a corrective action that prevents or 
minimizes recurrence of the reported problem in 
subsequent use of the product (Wilmering, 2001).  

Maturation is hard because of two fundamental issues 
(Wilmering, 2003):  

1. While it is generally perceived that data collection is a 
prerequisite for the maturation process, data collection 
is in fact a difficult issue. The product data that is 
typically required for maturation analysis is generally 
stored in disparate heterogeneous data systems - this 
makes access, retrieval, and integration of the requisite 
information a costly and often incomplete process at 
best. 

2. There are several categories of analysis required to 
support maturation: correlation analysis (identifying 
the problem and correlating the data which supports 
and characterizes that identification), root cause 
analysis, and analysis of the support system that 
provides a framework for the processes in question 
and corrective action. At issue is the fact that the data 
required to perform these analyses is scattered among 

many different data sources and systems – pulling it 
all together can be challenging, to say the least. 
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Figure 1. Traditional Knowledge Discovery Process (Han and Kamber, 2006) 

Knowledge Discovery  

We propose that formal Knowledge Discovery techniques 
may offer significant benefit to the diagnostic maturation 
process. Suppose a Maturation Cycle is triggered by some 
event or series of events during the operation of a system. 
Perhaps a repeated test failure is determined to be 
unfounded – this may first be noticed by repeated False 
Alarms or Cannot Duplicates involving a system 
component. An analyst may first characterize the problem 
based on the information as it is initially presented: what is 
the part whose failure is misdiagnosed, what information is 
already available that helps to characterize the problem 
(times, locations, maintenance scenarios, etc). Once the 
initial problem statement is formalized, the Knowledge 
Discovery (KD) process is described in Han and Kamber 
(2006) can begin as follows (Figure 1): 

Data collection and consolidation: Identify relevant data 
and factors, find relevant data sources, locate data in 
sources and formulate queries.  

Prepare Data (Data Integration): Develop data 
correlation keys, retrieve data, integrate data, clean data, 
examine data.  

Data Mining: Data mining is the heart of the KD process. 
Select the appropriate methods for pattern extraction from 
the large data sets collected in the previous step, then apply 
any of numerous classification and pattern matching 
techniques to extract relevant relationships from the data 
sets. 

Interpretation and Evaluation (Analysis of results): 
Interpretation of results may employ further data reduction 
mechanisms, use of visualization techniques, or other 



methods to enhance presentation and interpretation of the 
data for human consumption.  

This may be an iterative process as patterns emerge, facts 
are discovered, or experiments are designed and carried 
out.  

Knowledge discovery is hard for two fundamental reasons: 

1. There is a wide variety of available tools, techniques, 
and representations for data that must be considered 
throughout the knowledge discovery process. 

2. Given the typically large amount of data that must be 
mined, the process of finding interesting relationships 
in a combinatorially large data space is itself 
computationally hard. 

 Given the range of possible tools and techniques 
available, as well as the range of possible combinations of 
data elements to be considered for analysis, the problem of 
knowledge discovery in general (and data mining in 
particular) is difficult. The focus in this paper is providing 
an approach to reduce the scope of the search required in 
knowledge discovery by using ontologies. Currently, the 
common approaches to data mining include (among 
others). 

• On Line Analytical Processing (OLAP)—A multi-
dimensional analysis technique involving the 
aggregation of “cubes” (actually, hypercubes) of data 
to determine relationships among the data. The 
aggregation process is analogous to marginalization in 
probability theory, except counts are returned rather 
than probabilities. 

• Statistical Analysis—A collection of tools range from 
correlation analysis, to trending, to regression where 
models of data are constructed uses traditional tools 
from statistics. In fact, all of the techniques used in 
data mining can (and often do) benefit from applying 
combinations of statistical tools. 

• Cluster Analysis—An unsupervised learning 
technique where the data is grouped by common 
attributes, often based on a distance function. 
Clustering can be used to identify a set of candidate 
classes for the data that might not have been known 
previously. 

• Association Rule Analysis—An unsupervised learning 
technique where correlations between data elements 
are examined in an attempt to extract logical 
relationships between those attributes. Learning 
association rules is similar to learning decision rules 
using supervised learning techniques such as FOIL 
(Quinlan, 1990). 

• Pattern Classification—A class of algorithms, often 
considered under supervised learning, where data with 
associated classes or labels are used to derive a 
compact model of those classes for future 
classification of new data. 

 As we see, determining which of these tools to apply 
can, itself, be a significant challenge. Interesting work at 
NYU (Bernstein, Hill, and Provost, 2002) is applying an 
ontology of the data mining process itself to guide a miner 
to select approach tools and consider appropriate data 
elements. 

 A second, possibly more significant challenge facing the 
data mining process arises from the so-called “curse of 
dimensionality.” In fact, this is the challenge we attempt to 
address here. While studying control processes, Richard 
Bellman (the inventor of dynamic programming) noted 
that, with the exponential increase in volume of a sample 
space as the number of attributes (or dimensions) 
increases, we are faced with an accompanying requirement 
to have exponentially increasing data to characterize the 
higher dimensional space (Bellman, 1961). In traditional 
data mining problems, the data exists (i.e., there are large 
numbers of data records, even in a high-dimensional 
space), but the challenge comes in analyzing this huge 
amount of data to extract interesting and useful knowledge. 

Mediated Data Collection and Integration 

The diagnostic maturation process requires ready access to 
design, maintenance, and other logistic support information 
sources. Data essential to analysis of maturation issues 
may be generated by system producers (e.g., engineering, 
product support organizations, etc), or by system users 
(maintenance and supply chain data, etc). Each of these 
organizations is also multifaceted in nature. Engineering 
organizations, for example, are composed of sub-
disciplines such as design, reliability and maintainability, 
etc. Compounding the problem is the fact that the data of 
interest resides in multiple systems each with different 
owners where it does exist – and it should be recognized 
that some data that is desirable to have might not be 
captured in data systems at all. The heterogeneous nature 
of these sources present issues having to do with access, 
accuracy, semantic understanding, completeness, and 
correlation of relevant design features with performance 
data, and spans hardware platforms, Data Base 
Management Systems (DBMS), and software standards. 
More specific data structural concerns may include general 
data representation issues (e.g., methodologies, 
hierarchical dominance across systems, uniqueness 
identification, data types) and more specific data format 
disparities (e.g., units of measure, code sets, “intelligent” 
values), and semantic differences in the relationship 
between data labels (terms) and their intended meaning 
(concepts). This heterogeneity occurs quite naturally as 
multiple systems are developed and evolved as a function 
of independent decisions and design within the 
development lifecycle of a system. The physical 
constraints having to do with access are easing, but 
generally accepted approaches to content integration are 
only recently appearing in actual applications.  

 Federated data servers, or query engines, can address 
many of these heterogeneity issues. The goal of a federated 



data server is to provide real-time, integrated access to 
diverse and distributed data as if it were a single source, 
regardless of format, location, or operating environment 
(Hayes and Mattos, 2003). Federated servers address 
differences in DBMS, physical data structure, structured 
vs. semi- or unstructured data, data type casting, and query 
performance across systems. These sort of mechanical or 
structural issues are essential to integration of the 
information required for maturation analysis, but they do 
not address the conceptual issues involving semantic 
heterogeneity.  

 Mediated approaches to semantic integration can help by 
enumerating archetypes of the concepts of interest in the 
domain of interest – in our case health management and 
related maintenance and logistic information – then 
detailing the relationships and constraints between these 
concepts in a unified ontology – thereby reducing 
information requests to operations on a single model of the 
requisite information and mapping those requests between 
the ontology and logical models of the data sources which 
can instantiate the information requests.  

 An inherent advantage of a mediated implementation is 
in the knowledge that can be synthesized from the models 
and mappings. An ontology is developed to explicitly 
represent the semantics of the target information domain, 
then mappings are created to correlate source data with the 
terminology and concept relations in the ontology, 
providing a basic semantic interpretation of the data being 
accessed and its relation and relevancy to the domain of 
interest.  

 The domain ontology subsumes the semantics of the 
data across multiple data systems but is otherwise 
independent of the system data representations. From end 
users’ perspectives, a mediated information integration 
system looks like a single information resource, containing 
all of the available information within a specific domain. 

Ontology-Directed Diagnostic Maturation 

We proceed from the assumption that the diagnostic 
maturation process is fundamentally a data 
mining/knowledge discovery process. Specifically, we 
claim that there are three major types of maturation steps to 
be performed relative to system diagnosis, all with the 
goals of either improving the accuracy of diagnosis or 
improving the efficiency of the diagnostic process. 

Refining cost estimates of actions or tests being 
performed in the maintenance process. These cost 
estimates are used to optimize the maintenance process 
and, if inaccurate, can substantially weaken the benefits 
expected from a strong optimization algorithm. 

Refining the probabilities of occurrence of various 
maintenance events. Again, these probabilities are 
essential to the optimization process since we are 
attempting to minimize expected cost over the system 
being maintained. Inaccurate probabilities can skew the 

process in ways that can yield significant, sub-optimal 
maintenance procedures. 

Correcting errors in an underlying system model. In 
fact, many types of errors can exist in these types of 
models; however, most diagnostic models tend to focus on 
capturing relationships between observable information 
(i.e., tests) and the diagnoses to be drawn (i.e., faults). If 
we restrict ourselves to these types of errors, then our 
concern becomes determining if there are relationships that 
are either missing from the model or if relationships need 
to be added to the model that currently do not exist. A 
variation of these two extremes is the case where 
relationships have qualifying information, and that 
qualifying information is not completely accurate. 

 Historically, refining cost or probability estimates has 
been relatively straightforward, so we focus our discussion 
in this paper on improving the accuracy of the system 
diagnostic models. 

Ontologies for Diagnostic Maturation 
For the following discussion, we draw on the development 
of a standard ontology for diagnostic maturation being 
developed by the Institute of Electrical and Electronics 
Engineers (IEEE), recognizing that alternative ontologies 
are possible. The approach we describe in the following 
should work, in principle, with any of these alternative 
ontologies. 

 Currently, the IEEE Standards Coordinating Committee 
20 (SCC20) of the IEEE Standards Association is 
developing two families of standards that together define 
an ontology of the diagnostics problem domain. IEEE 1232 
Artificial Intelligence Exchange and Service Tie to All 
Test Environments (AI-ESTATE) defines an ontology 
specifically covering the diagnostic process itself (IEEE, 
2007a). Given the fact the intent is to improve diagnostics, 
we need the diagnostic ontology as a framework; however, 
we also need an ontology for the maintenance data 
collection process so we can mediate these processes to 
mature the diagnostics. To support this, IEEE P1636 
Software Interface for Maintenance Information Collection 
and Analysis (SIMICA) is being developed (IEEE, 2007b). 
Currently, SIMICA consists of two “component” 
standards—IEEE P1636.1 Test Results and IEEE P1636.2 
Maintenance Action Information. The Test Results 
standard provides ontological information about the test 
process and provides a framework for capturing specific 
measurements and outcomes of actual tests (IEEE, 2006). 
The Maintenance Action Information standard provides 
ontological information about the maintenance process, 
given supporting components for test and diagnosis (IEEE 
2007c). The combination of the three—test, diagnosis, and 
maintenance—provide an integrated, mediated view of 
information necessary for process improvement and 
maturation. 



 As an example of how the ontology can guide the data 
mining process, we will consider the problem of correcting 
the relationships in a diagnostic model. Currently, AI-
ESTATE defines three different types of diagnostic 
models—the fault tree, the diagnostic inference model, and 
the Bayes model. For our purposes, we will focus on the 
Bayes model. Second, AI-ESTATE includes a Dynamic 
Context Model (DCM), which was designed to provide an 
information interface to a diagnostic reasoner and represent 
historical information captured during an actual diagnostic 
process. All of the entities defined in the DCM are tied 
back to the third type of model in AI-ESTATE. This 
model—the Common Element Model (CEM)—provides a 
top-level ontology for diagnostic information to 
characterize relationships and constraints between different 
elements in the diagnostic domain. In fact, the specific 
diagnostic models are also tied back to the CEM.  

 Figure 2 shows a small portion of the AI-ESTATE CEM 
ontology corresponding to a diagnosis. Of interest here is 
the fact that diagnosis is defined to have a lattice 
organization where a particular diagnosis can have 
multiple children and multiple parents. The parent-child 
relationship is defined here to represent a grouping of 
diagnoses into, for example, replaceable unit groups or 
common functional groups. The diagnosis entity also has 

two attributes of interest to us—mustOccurIn (which is of 
type RepairContext) and atIndentureLevel (which is of 
type Level). A similar structure appears for the Test, 
Action, and Repair entities. In fact, Test and Repair are 
represented as subtypes of Action. 
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Figure 2. AI-ESTATE Ontology Excerpt: Diagnosis 

 Remember that our concern is managing the curse of 
dimensionality. In this case, we can restrict our analysis to 
a set of diagnoses that are at the same level of indenture, 
part of the same repair context, and at the same depth 
within the lattice structure by constructing ontological 
queries against the mediated information, thus restricting 
the information to be limited to the subset of interest. 
Alternatively, we may find that there is a group of 
diagnoses at the same level of indenture and in the same 
repair context but appearing at different depths in the 
lattice structure. We may decide to restrict search to the 
subset of those elements having a common ancestor in the 
structure. One final example arises by noting that there are 
additional entities within the ontology that have attributes 
of type Level and RepairContext. These common attributes 
can be used to consider relationships among entities other 
than tests or diagnoses but appearing within a common 
context.  

 In the following, we will assume we have received a 
data set to be mined corresponding to data collected using 



P1636.1 Test Results coupled with the P1232 Dynamic 
Context Model (for diagnostic history) and P1636.2 
Maintenance Action Information (for actual repair 
information). Using our ontology, we restrict analysis to 
the set of test results, diagnoses, and repairs occurring at a 
particular level of indenture with a common repair context 
that have been verified through the repair certification 
process.  

Guided Association Rule Mining 
Given the now restricted set of data to consider, we start by 
deriving association rules from the data (Agrawal and 
Srikant, 1994). An association rule is a rule written as in 
implication of the form  where X is the conjunction 
of a set of variables and Y is the conjunction of a different 
set of variables. Given an association rule and a training 
data set, we say that the support s of the rule is the 
percentage of examples in the training set for which the 
conjunction 

X Y⇒

X Y∧  holds, and the confidence c of the rule 
is the percentage of those examples for which X holds 
where also holds (i.e., X Y∧ /X Y X∧ ). Note that 
support can be interpreted as “coverage” (i.e., the number 
of examples that match all of the variables in the rule) and 
confidence can be interpreted as “accuracy” (i.e., the 
percentage of examples for which the X Y⇒  holds). 

 Agrawal and Srikant provide an algorithm, called 
Apriori, with an efficient variant, called AprioriHybrid for 
finding association rules in a data set. Both algorithms 
require that minimum support and confidence thresholds 
be set by the user. The algorithm finds so-called “large 
itemsets” which are sets of variables for which the 
minimum support has been obtained. We refer to a large 
itemset with k variables to be a k-itemset. A basic version 
of the Apriori algorithm can be found in Figure 3. In this 
algorithm, let Lk be the set of large k-itemsets, Ck be the set 
of candidate k-itemsets, d is some subset of “literals” or 
“items” in the data (called transactions in the original), and 
s be the user-specified minimal percent of transactions 
containing some candidate itemset c. This algorithm then 

finds the itemsets of various sizes meeting the minimum 
support threshold. Once the itemsets are found, it is a 
simple matter to construct the rules where the left hand 
sides are itemsets that are subsets of itemsets covering the 
entire rule. 

function Apriori(D, s)
L1 ← set of large 1-itemsets
k ← 2

while Lk–1 not empty do
Ck ← select(Lk–1) // candidate itemset
for all d in D do

Cd ← subset(Ck, d) // candidate contained in data
for all c in Ct do

count[c] ← count[c] + 1
Lk ← {c ∈ Ck | count[c] ≥ s} // test for minimal support
k ← k + 1

return ∪k Lk  
Figure 3. Apriori Algorithm for Finding Large Itemsets (Agrawal and Srikant, 1994) 

 The AprioriHybrid algorithm implements the Apriori 
algorithm more efficiently. Specifically, by using breadth-
first search and a hash tree, the itemsets exceeding the 
minimum support threshold (and subsequent association 
rules satisfying the minimum confidence threshold) can be 
found in time linear in the number of examples. Given the 
AprioriHybrid algorithm, diagnostic maturation proceeds 
by applying the algorithm to the data set that has been 
restricted according to our ontology. Association rules can 
be constructed relating tests to one another, tests and 
diagnoses, or even tests/diagnoses with other factors in the 
maintenance process (such as a repair action). While the 
general AprioriHybrid algorithm permits construction of 
rules of the form P1 ∧ … Pn ⇒ Q1 ∧ … ∧ Qm, we will 
restrict the rules of interest to use to those containing only 
one consequent. These association rules can then be ranked 
by their confidence and used to refine the diagnostic model 
as long as the addition of such rules improve the accuracy 
of diagnosis. 

Augmenting Bayesian Classifiers for Diagnosis 
Consider a specific case where we have a Bayesian 
diagnostic model as defined in (IEEE, 2007a). Previous 
work by Sheppard et al. has demonstrated that naïve 
Bayesian classifiers can provide a relatively simple method 
for capturing diagnostic relationships that also yields 
relatively accurate diagnostics (Sheppard, Butcher, 
Kaufman and MacDougall, 2006). However, naïve Bayes 
models are only capable of representing linearly separable 
concepts, and even then, only a subset of all linearly 
separable concepts can be represented (Zhang, Ling, and 
Zhao, 2004). It is also interesting to note that the popular 
D-matrix of model-based diagnosis suffers from the same 
problem (Sheppard and Butcher, 2007). 



 Formally, the naïve Bayes network finds the class label 
(i.e., diagnosis) that maximizes the a posteriori probability 
of the specific class given the set of observations (i.e. 
tests): 
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where di is the ith diagnosis, Tj is the jth test, and o(Tj) is 
the observed outcome for Tj. But we have a problem that 
the joint distribution over the tests is exponential in the 
number of tests. The naïve Bayes assumption states that we 
can treat each of these observations as if they are 
conditionally independent given the diagnosis, and this 
leads to the classification rule: 
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 Given a set of training data mapping test results 
(outcomes) to actual faults repaired, we can “learn” the 
naïve Bayes network by observing that P(di) is simply the 
frequency of occurrence of a particular fault in the data set 
and similarly, P(o(Tj) | di) is the frequency of test outcome 
o(Tj) considering only the particular diagnosis di. 

 We proceed under the assumption the initial diagnostic 
model that has been deployed is a naïve Bayes network. 
This is reasonable for an initial deployment given 
empirical evidence of frequent effectiveness of such a 
model; however, the theoretical limitations indicate that the 
model can be improved as data is collected. One of the 
primary methods for improving naïve Bayes networks is by 
“augmenting” the networks with additional conditional 
dependence relationship that had previously been assumed 
away. 

 One popular approach augmenting naïve Bayes 
networks is through the tree-augmented naïve Bayes 
(TAN) algorithm (Friedman, Geiger, and Goldszmidt, 
1997) Empirical evidence has shown that the 
improvements from TAN can be substantial; however, the 
experiments in (Sheppard, J., Butcher, S., Kaufman, M., 
and MacDougall C. 2006) suggest that such improvements 
may, on average, be marginal. We hypothesize that one 
reason for such marginal improvement is the fact that the 
augmentation algorithm can still miss important 
dependencies while including lesser dependencies that can 
actually deceive the classifier. This hypothesis is being 
explored in separate work. 

Proceeding from the above hypothesis, we further 
hypothesize that using association rules can provide a 
better indication of needed augmentations for the network. 
The task then becomes, for a particular association rule, 
how do we incorporate that rule into the current diagnostic 
model? Specifically, for an association rule of the form P1 
∧ … Pn ⇒ Q, we include (or update) the probability table 

corresponding to P(Q | P1,…,Pn). There are three cases to 
consider. 

Case 1—A new association rule relating tests and 
diagnoses: This case is the simplest of the three since it 
simply revises an existing conditional probability table in 
the current network. Specifically, if we have a rule D ⇒ T, 
we modify the conditional probabilities for P(o(T) | D) 
according to the data in the training set. Note that, if we 
have the opposite rule of T ⇒ D, then we can consider the 
contrapositive and model ¬D ⇒ ¬T, which still leads to a 
simple update of the current conditional probability table. 

Suppose we have a more complex rule of the type Di ∧ Dj 
⇒ T. This, in fact, corresponds to a multiple fault, which 
can now be added to the model by including the 
conditional probability table for P(o(T) | Di, Dj). This 
constitutes an augmentation to the network. 

Case 2—A new association rule relating multiple tests: 
In this case, any rule identified, whether Ti ⇒ Tj or the 
more general T1 ∧ … ∧ Tm ⇒ Tj results in an augmentation 
of the network because we now must add a new 
conditional probability table to the network. Note that this 
can be done directly by following the template of P(Tj | 
T1,…,Tm). Note, however, that the actual probability tables 
would correspond to P(Tj | T1,…,Tm,Dk) for all diagnoses 
Dk because the information needs to be merged with the 
existing model. 

Case 3—A new association rule relating a test or 
diagnosis to some other variable: Finally, this case is 
interesting because it not only augments the network with 
an additional conditional probability table, but it 
incorporates an additional random variable into the 
network. The new random variable corresponds to the 
factor not currently captured by the set of tests or 
diagnoses, such as an in-process repair action. The first 
step, then, is to add the new variable to the network and 
then add the associated probability table. 

 In considering the above approach, there are several 
computational issues to be considered. First, as 
augmentations are included in the network, the size of the 
corresponding conditional probability tables grows 
exponentially. This is one of the reasons for selecting the 
minimum support and confidence values carefully. Second, 
even controlling the number of augmentations, the 
computational expense of processing augmenting networks 
also grows exponentially. Therefore, utilizing resulting 
networks may require alternative processing approaches 
such as conversion to join trees, Monte Carlo simulation, 
or some alternative form of network transformation. Third, 
collecting further historical information may determine that 
a previously learned association rule does not, in reality, 
apply. At such time, the rule and associated portions of the 
probability tables affected should be removed. 

Future Directions 

The presented algorithm is an initial approach to maturing 
diagnostic models based on an associated ontology for the 



test, diagnostic, and maintenance process. This approach is 
work in progress, and the first step is to run several 
experiments to validate the approach. It is reasonable to 
expect the model to perform relatively well given that it 
proceeds from an existing model and only modifies the 
model based on statistical information collected in the 
field. The key advantage to the approach is that it provides 
a directed strategy for using the ontology to guide the 
maturation process. Additional future work would include 
extending the idea to other parts of the maintenance 
process and other parts of the ontology. 

 In addition to augmented Bayes learning, there are many 
machine learning methods available for creating and 
revising classification models. These methods apply 
directly to the problem of maturing diagnostic models, 
which are also classification models. Therefore, a rich area 
of related research is to use the ontology to direct learning 
and revision of models such as decision trees (P1232 fault 
tree model), rule sets (P1232 diagnostic logic model) or 
companion models such as neural networks, support vector 
machines, or even hidden Markov models (for system 
prognosis). 

 Another interesting question is whether the approach can 
be used from an alternative perspective where the ontology 
directs search in areas where no relationships in the 
ontology itself exist. The purpose here would be to 
determine if there are correlations from the data indicating 
a previously unknown relationship, thus permitted 
maturation of the ontology itself. Specifically, the KD 
process might identify a useful relationship that was not 
explicitly modeled in the original ontology. 

 Finally, one of the authors is exploring the utility of 
constructing separate system-level diagnostic models 
corresponding to specific or subsets of a fleet of systems 
given empirical evidence to show that such models can 
yield more accurate diagnosis than a single model covering 
all instances of a given system. Based on contextual 
information (which is included in the ontologies), work is 
ongoing to utilize this contextual information to better 
determine what historical data to apply to mature or 
develop a given model. 

Conclusion 

The purpose of this paper was to present a framework for 
utilizing ontologies combined with machine learning to 
mature diagnostic models. The approach focuses on using 
the ontologies to restrict data sets in a meaningful way to 
manage the curse of dimensionality and still yield useful 
model revisions. While the research is still too early to 
report experimental results, theoretical analysis suggests 
the approach has promise. 
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