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Abstract

Obtaining high certainty in predictive models is crucial for
making informed and trustworthy decisions in many scien-
tific and engineering domains. However, extensive experi-
mentation required for model accuracy can be both costly and
time-consuming. This paper presents an adaptive sampling
approach designed to reduce epistemic uncertainty in predic-
tive models. Our primary contribution is the development of a
metric that estimates potential epistemic uncertainty leverag-
ing prediction interval-generation neural networks. This es-
timation relies on the distance between the predicted upper
and lower bounds and the observed data at the tested posi-
tions and their neighboring points. Our second contribution is
the proposal of a batch sampling strategy based on Gaussian
processes (GPs). A GP is used as a surrogate model of the
networks trained at each iteration of the adaptive sampling
process. Using this GP, we design an acquisition function
that selects a combination of sampling locations to maximize
the reduction of epistemic uncertainty across the domain. We
test our approach on three unidimensional synthetic problems
and a multi-dimensional dataset based on an agricultural field
for selecting experimental fertilizer rates. The results demon-
strate that our method consistently converges faster to mini-
mum epistemic uncertainty levels compared to Normalizing
Flows Ensembles, MC-Dropout, and simple GPs.

Code — https://github.com/NISL-MSU/AdaptiveSampling

Introduction
In various scientific and engineering fields, the development
of accurate predictive models frequently relies on experi-
mentation. Conducting these experiments can be costly and
time-consuming, making it important to adopt strategies that
extract the most valuable information from each experiment.
One notable example is precision agriculture (PA) where ex-
perimental results may require an entire growing season to
manifest, and only a portion of the field is allocated for such
trials (Lawrence, Rew, and Maxwell 2015). This is exacer-
bated by the fact data can often only be collected every other
year, due to crop rotation.

Adaptive sampling (AS) techniques offer a promising
solution by selecting samples intelligently that contribute
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most to improving model accuracy and reducing uncer-
tainty (Di Fiore, Nardelli, and Mainini 2024). This work
focuses on sampling techniques designed to reduce uncer-
tainty in the prediction models across the entire input do-
main. Such techniques are essential for enhancing trust in
decision-making systems whose optimization processes rely
on accurate prediction models. For instance, in PA, deter-
mining optimal fertilizer rates depends on the shape of esti-
mated nitrogen-yield response (N-response) curves (Bullock
and Bullock (1994), Morales and Sheppard (2023a)). These
curves represent the estimated crop yield values at specific
field sites in response to all admissible fertilizer rates. Un-
certainty across the domain can severely affect the survey
shapes, leading to unreliable recommended fertilizer rates.

We note a distinction between two types of uncertainty:
epistemic and aleatoric. Epistemic uncertainty represents the
portion of total uncertainty that can be reduced by gathering
more information or improving the prediction model. On
the other hand, aleatoric uncertainty is the inherent and ir-
reducible component of uncertainty due to the random na-
ture of the data itself (Hüllermeier and Waegeman 2021;
Nguyen, Shaker, and Hüllermeier 2022). The total uncer-
tainty associated with a prediction (σ2

y) encapsulates both
the aleatoric (σ2

a) and epistemic (σ2
e ) components; i.e., σ2

y =

σ2
a + σ2

e . Prediction intervals (PIs) offer a comprehensive
representation of this total uncertainty by estimating the up-
per and lower bounds within which a prediction is expected
to fall with a given probability (Khosravi et al. 2011).

Several methods have been proposed to reduce uncer-
tainty through iterative sampling. However, the majority of
these methods have been developed within the framework of
active learning (AL) (Nguyen, Destercke, and Hüllermeier
2019; Berry and Meger 2023) or in contexts where the pri-
mary objective is to identify the location of local or global
optima (Hennig and Schuler 2012; Nguyen et al. 2019).

It is important to note that AS and AL fields do not com-
pletely overlap (Di Fiore, Nardelli, and Mainini 2024). In
AL, the objective is to select training data within a limited
budget to maximize model performance. AL can be catego-
rized into population-based AL, where the test input distri-
bution is known, and pool-based AL, where a pool of unla-
beled samples is provided. Our problem configuration does
not align with those categories as it is not limited to pre-
defined data pools or known distributions. Instead, it aims
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to sample from an open domain continuously, focusing on
reducing epistemic uncertainty across the entire input space.

We propose a method to reduce epistemic uncertainty
through adaptive sampling using PIs generated by neu-
ral networks (NNs). Our method, Adaptive Sampling with
Prediction-Interval Neural Networks (ASPINN), uses a dual
NN architecture comprising a target-estimation network and
a PI-generation network. The objective of such NNs is to
produce high-quality PIs that reflect both aleatoric and epis-
temic uncertainties. Our specific contributions are:
1. We introduce a novel metric based on NN-generated PIs

to quantify potential levels of epistemic uncertainty.
2. We present an AS method called ASPINN. At each iter-

ation, it builds a Gaussian Process (GP) from calculated
potential epistemic uncertainty levels. The GP, a surro-
gate for the NN models, estimates potential epistemic un-
certainty changes across the domain after sampling spe-
cific locations. An acquisition function then uses the GP
to select sampling locations, aiming to minimize global
epistemic uncertainty throughout the input domain.

3. We tackle a real-world application and present an AS
benchmark problem that focuses on reducing the epis-
temic uncertainty of an agricultural field site.

4. Our method is shown to converge faster to minimum
epistemic uncertainty levels than the compared methods.

Related Work
The problem addressed in this work shares similarities with
Bayesian Optimization (BO), where at each iteration, data
points are sampled at locations expected to yield significant
improvements in the objective function according to a spec-
ified acquisition function. BO methods build a probabilistic
model of the objective function, often a GP, to select the
most promising points for evaluation (Garnett 2023).

Traditional BO methods explore the domain space se-
quentially; however, Gonzalez et al. (2016) proposed a batch
sampling strategy for BO that accounts for the interactions
between different evaluations in the batch using a penalized
acquisition function. Some BO strategies focus on maximiz-
ing information gain. For instance, Wang and Jegelka (2017)
introduced an acquisition function called max-value entropy
search (MES), which balances exploration of areas with
higher uncertainty in the surrogate model and exploitation
towards the believed optimum. In addition, Nguyen et al.
(2019) presented the predictive variance reduction search
(PVRS) strategy, which reduces uncertainty at perceived op-
timal locations, leading to convergence when uncertainty at
all perceived optimal locations is minimized.

In typical BO applications, the objective is to identify a
single location that corresponds to the local or global op-
timum of an objective function (argmax f(x)). In contrast,
the solution to our problem consists of an augmented dataset
that yields minimum epistemic uncertainty across the entire
input space. In the fertilizer rate optimization problem dis-
cussed in the previous section, finding the rate that produces
the higher estimated yield value does not necessarily coin-
cide with the economic optimum nitrogen rate (EONR). The
EONR is the N rate beyond which there is no actual profit

for the farmers and its calculation depends on the shape of
the N-response curves (Bullock and Bullock 1994). There-
fore, the epistemic uncertainty across all admissible N rates
should be reduced to provide reliable EONR recommenda-
tions for future growing seasons.

Similarly, active learning is closely related to this work.
The primary distinction is that AL, given known in-
put distributions (population-based AL) or a set of unla-
beled points (pool-based AL), aims to select the minimum
number of training examples to maximize model perfor-
mance (Di Fiore, Nardelli, and Mainini 2024). In contrast,
our approach is agnostic of the input distribution and is not
restricted to a fixed pool of training candidates. Further-
more, our focus being on reducing uncertainty only consid-
ers model prediction improvement as a side-effect. What is
more, it allows for repetitive sampling at a single location.

Despite the distinction above, some AL techniques can
be adapted to our problem. In particular, we are interested
in methods that decompose uncertainty into its aleatoric
and epistemic components. A common approach is to
use Monte-Carlo Dropout (MC-Dropout) (Gal and Ghahra-
mani 2016) to quantify epistemic uncertainty in NNs. MC-
Dropout uses dropout repeatedly to select random subsam-
ples of active nodes in the network, turning a single net-
work into an ensemble. Hence, epistemic uncertainty is rep-
resented by the sample variance of the ensemble predictions.

Furthermore, Valdenegro-Toro and Mori (2022) used a
variance attenuation (VA) loss function to disentangle the
epistemic and aleatoric components from the outputs of en-
semble models. However, Zhang et al. (2024) pointed out
that VA-based methods overestimate aleatoric uncertainty.
In response, they presented a denoising approach that in-
volves incorporating a variance approximation module into
a trained prediction model to identify the aleatoric uncer-
tainty. Finally, Berry and Meger (2023) proposed using an
ensemble of normalizing flows (NFs), created using dropout
masks, to estimate both aleatoric and epistemic uncertainty.
To demonstrate their results, they suggested an AL frame-
work that compares various uncertainty estimation methods.
These methods are used to sample multiple-point candidates
and select those with the highest epistemic uncertainty.

Proposed Method
In this work, we examine a system defined by an input vector
x ∈ Rd and a scalar response y ∈ R. The system’s under-
lying function f : X → Y maps the input value space and
the response value space such that y = f(x)+ εa(x), where
εa(x) is a random variable representing the error term that
is a function of the system’s aleatoric uncertainty, σ2

a(x).
Let Dt = (X

(t)
obs,Y

(t)
obs) represent the dataset available

at iteration t consisting of nt observations, where X
(t)
obs =

{x1, . . . ,xnt} and Y
(t)
obs = {y1, . . . , ynt}. A prediction

model f̂t : X → Y with parameters θf is trained by mini-
mizing the mean squared error of the estimation:

min
θf

1

nt

∑
(xi,yi)∈Dt

(f̂t(xi)− yi)
2.
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Figure 1: Epistemic uncertainty minimization through AS.

We aim to identify a batch X
(t)
acq = {xt,1, . . . ,xt,B} of

B recommended sampling locations for the next iteration.
These locations are chosen to minimize the epistemic uncer-
tainty across the entire input space given a model f̂t trained
on Dt. The epistemic uncertainty, σ2

e(xp), arises from the
lack of knowledge about f and is due to the limitations of
the prediction model trained on the observed dataset.

Preferences over potential sampling locations are encoded
by an acquisition function αt(x). Suppose J(Dt) is a func-
tion that reflects the total potential epistemic uncertainty
across the domain. Then αt(x) is designed to reflect the ex-
pected decrease in epistemic uncertainty E[J(Dt)− J(Dt ∪
(x, y))] after making an observation at location x. Fig. 1 de-
picts an instance of our problem. Here, x∗ represents the
selected sampling position at each iteration (i.e., B = 1).
For the general case where B > 1, the decision on where to
sample the k-th element of the batch, xt,k, depends on the
estimated effect of the previous k − 1 samples of the same
batch. This requires a batch sampling strategy, which will be
explored in this paper.

In the following, we describe the components of our AS-
PINN method. We lay out the steps to derive a metric that
reflects the epistemic uncertainty associated with an input
value based on PIs. The metric is then used to design an
acquisition function that allows for the selection of a batch
of sampling locations, which are expected to minimize the
global epistemic uncertainty during the next AS iteration.

Prediction Interval Generation
We generate PIs for quantifying the total uncertainty associ-
ated with a given sample, thus accounting for both aleatoric
and epistemic uncertainty. We employ an NN-based PI gen-
eration method called DualAQD (Morales and Sheppard
2023b). This method uses two companion NNs: a target-
estimation NN and a PI-generation NN, whose computed
functions are denoted as f̂t(·) and ĝt(·), respectively. Net-
work f̂t(·) is trained on Dt to minimize the target estimation
error so that ŷ = f̂t(x) and ŷ ≈ y. Network ĝt(·) produces
two outputs [ŷℓ, ŷu] = ĝt(x), which correspond to the PI
lower and upper bounds. Note that ĝt(x) makes no assump-
tions about the underlying uncertainty distribution.

Network ĝt(·) is trained using the DualAQD loss function

to produce high-quality PIs that are as narrow as possible
while capturing some specified proportion of the predicted
data points (e.g., 95%). However, the model should produce
wider PIs for out-of-distribution (OOD) samples since these
samples are not well-represented in the training set, leading
to higher associated epistemic uncertainty. To address this,
the bias weights of ĝt(·) are initialized to generate wide PIs,
similar to the approach proposed by Liu et al. (2022). The ra-
tionale is that these bias weights will decrease during train-
ing for in-distribution samples, resulting in narrower PIs, but
will remain high for OOD samples, ensuring appropriately
wider PIs to reflect the increased uncertainty.

Potential Epistemic Uncertainty
Let σ2

e(xp) represent the epistemic uncertainty at a certain
location xp ∈ X . The PI lower and upper bounds gener-
ated by NN ĝt(·) at xp are denoted as ŷℓt (xp) and ŷut (xp),
respectively. We claim that using PIs alone does not provide
sufficient information to determine σ2

e(xp). Consider xp as
an OOD sample. We may state that the total uncertainty as-
sociated with xp is primarily due to epistemic uncertainty
given the lack of knowledge of the prediction model about
the system’s behavior in this region of the input domain.

However, we cannot estimate the aleatoric uncertainty
around xp until we gather observations in such domain re-
gion. Alternative methods can be used but they require mak-
ing assumptions about the noise distribution (Seitzer et al.
2022), training an ensemble of models (Berry and Meger
2023), or using additional trainable modules (Zhang et al.
2024). Therefore, the total uncertainty conveyed by the inter-
val [ŷℓt (xp), ŷ

u
t (xp)] cannot be split effectively into its epis-

temic and aleatoric components without further information.
Instead of attempting to provide a metric that accurately

estimates σ2
e(xp) directly, we propose a metric that reflects

the potential levels of epistemic uncertainty. Let N (xp) =

{x ∈ X
(t)
obs| ∥x − xp∥2 ≤ θ} denote a neighborhood that

considers all samples whose Euclidian distance to xp is
less than a hyperparameter threshold θ. We create the set
of input–response pairs R(N (xp)) = {(x, y) | (x, y) ∈
Dt,x ∈ N (xp), ŷ

ℓ(x) ≤ y ≤ ŷu(x)} using the samples in
N (xp) whose response values fall within their correspond-
ing PI. Thus, we present the metric Qt(xp), defined as:

Qt(xp)=


min

(x,y)∈R(N (xp))
(ŷu(x)−y)+

min
(x,y)∈R(N (xp))

(y−ŷℓ(x))
if N (xp) ̸=∅

ŷut (xp)− ŷℓt (xp) if N (xp)=∅

(1)

The local neighborhood of xp may contain important
contextual information that an analysis at a single location
xp cannot capture. For instance, Fig.2a illustrates an inter-
val PI(xp) = [ŷℓt (xp), ŷ

u
t (xp)] generated at a single loca-

tion. Suppose Qt(xp) is calculated using PI(xp) only (i.e.,
θ = 0). Since a single point lies within the interval, Qt(xp)
is equal to the PI width, indicating that the epistemic uncer-
tainty at xp can potentially be completely reduced. Fig.2b
depicts a case in which the PI shown in Fig.2a is located in
a region of the domain with low data density. As such, there
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Figure 2: PIs generated at location xp. (a) Data points lo-
cated at xp only. (b) PI width is affected by epistemic uncer-
tainty. (b) PI width is mainly due to aleatoric uncertainty.

exists an epistemic component that entails that the PI width
could be reduced by acquiring more data in this region.

Conversely, Fig.2c shows a similar PI in a high data den-
sity context. Here, a reduction in PI(xp) will also lead to
a decrease in the PI widths of adjacent locations, provided
that the uncertainty at xp is not independent of its surround-
ings. However, model ĝt(·) is trained to produce narrow PIs
while maintaining a nominal coverage (e.g., 95%). Thus, it
will not reduce PI(xp) if this reduction would result in sev-
eral samples near the PI bounds being excluded from their
intervals. Notice that if θ > 0, then Qt(xp) ≈ 0, indicating
minimal potential epistemic uncertainty around xp.

Batch Sampling
When multiple locations are sampled at each iteration, de-
cisions for the entire batch are made based on the current
model without observing any data from the batch until the
next iteration. Hence, it is necessary to simulate the deci-
sions that would be made under the equivalent sequential
policy (i.e., when B = 1) (Gonzalez et al. 2016). In other
words, the decision of selecting the k-th element of the t-
th batch, xt,k, should incorporate the estimates of change in
uncertainty after sampling at locations xt,1, . . . ,xt,k−1 (i.e.,
xt,1:k−1). Following a greedy sampling strategy, we have:

xt,k = argmax
xp∈X

αt(xp |xt,1:k−1). (2)

We consider an acquisition function that estimates the re-
duction in the total potential epistemic uncertainty across the
domain when making an observation at a given location xp:

αt(xp |xt,1:k−1) = J (Dt,k−1)−J(Dt,k−1∪ (xp, f̂t(xp))).

Dt,k−1 is the dataset Dt augmented with the first k− 1 sam-
ples of the batch and their corresponding estimated response
values. The potential epistemic uncertainty at x during the
t-iteration after sampling the first k elements of the batch is
denoted as Qt,k(x). Thus, the total potential epistemic un-
certainty is calculated as J(Dt,k) =

∑
x∈X Qt,k(x), where

J(Dt,0) = J(Dt) and Qt,0(x) = Qt(x).
Thus, J(Dt) is computed based on Qt(x), which is de-

rived from the outputs produced by NNs f̂t(·) and ĝt(·)
(Eq. 1), trained on Dt. To calculate J(Dt,k−1∪(xp, f̂t(xp)))
in a similar manner, it is necessary to train both NNs on
the augmented dataset Dt,k−1 ∪ (xp, f̂t(xp)). According to
Eq. 2, this operation would need to be repeated ∀xp ∈ X and

∀k ∈ [1, . . . , B] and, as such, becomes impractical. There-
fore, motivated by most BO-based approaches, we use a GP
as a surrogate model. The objective is to simulate, with low
computational cost, how the potential epistemic uncertainty
would be affected throughout the entire domain after observ-
ing a sample at a given position.

Let us define a GP p(f̂t) = GP(µt,Kt) that serves as
a surrogate model for f̂t(·) and its associated epistemic un-
certainty during the t-th iteration. This GP is characterized
by the mean function µt and the positive-definite covariance
matrix Kt. Functions µt and Kt are initialized based on the
estimations generated by f̂t(·) and ĝt(·), trained on Dt.

For the mean function, we consider µt(x) = f̂t(x). On
the other hand, the diagonal elements of Kt reflect the uncer-
tainty in the predictions f̂t(x) due to epistemic uncertainty.
Since this uncertainty varies across the domain, it represents
heteroscedastic noise. Considering that the uncertainty at
a given position may be correlated with nearby positions,
Kt is structured as a matrix with non-zero off-diagonal el-
ements. Thus, the scale of Kt depends on location and is
calculated according to the potential epistemic uncertainty:

Kt(x,x
′) =

{
Qt(x), if x = x′

ρ(x,x′)
√

Qt(x)Qt(x′), otherwise,

where ρ(x,x′) indicates the correlation between positions
x and x′. We use the radial basis function (RBF) such that

ρ(x,x′) = e−
∥x−x′∥2

2r2 , where r is a tunable hyperparameter.
Given we want to assess the impact of observ-

ing a data point at a given position xp, we condi-
tion the GP on the data point (xp, f̂t(xp)), resulting in
a GP posterior p(f̂t|(xp, f̂t(xp))) whose covariate ma-
trix is denoted as Kt(x,x

′ |xp). In general, the co-
variance matrix when sampling the k-th element of the
batch is denoted as Kt(x,x

′ |xt,1, . . . ,xt,k) and Qt,k =
diag (Kt(x,x

′ |xt,1, . . . ,xt,k)).
Given xp, the covariance matrix is updated as follows:

Kt(x,x
′ |xp) =Kt(x,x

′)−
Kt(x,xp)Kt(xp,xp)

−1Kt(xp,x
′).

Hence, the updated GP variance at xp collapses to zero after
observing a data point at that position. Note that this would
only happen when Qt(xp) reflects the level of epistemic un-
certainty exclusively. In practice, this assumption may not
hold. Nevertheless, it allows us to construct a heuristic that
guides the search toward locations where new observations
would potentially cause the greatest uncertainty reduction.
The next sampling location is selected using Eq. 2 based
on the total potential epistemic uncertainty after observing a
data point at xp, which is given by:

J
(
Dt ∪ (xp, f̂t(xp))

)
=

∑
diag (Kt(x,x

′ |xp)) .

Experimental Results
We compared ASPINN to three methods adapted for AS:
Normalizing flows ensembles (NF-Ensemble) (Berry and
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Name Function f(x) Noise εa(x)

cos 10 + 5 cos(x+ 2) N (0, 2 + 2 cos(1.2x))

hetero 7 sin(x) N (0, 3 cos(x/2))

cosqr 10 + 5 cos(x
2

5
) N (0, 1

2
(1− x2

100
))

Table 1: Functions and noise terms of the 1-D problems.

Figure 3: Initial cos, hetero, and cosqr datasets and the
ideal 95% PIs calculated from εa(x) across the domain.

Meger 2023), a standard GP (Gardner et al. 2018), and MC-
Dropout (Gal and Ghahramani 2016). For our experiments,
we considered three synthetic one-dimensional (1-D) regres-
sion problems and one multidimensional regression problem
based on a real-world problem. We used synthetic problems
given that, in AS, we are required to sample at locations with
high uncertainty that could not have been observed previ-
ously. By utilizing problems with known underlying target
and noise functions, which are unknown to the AS methods,
we can simulate and evaluate accurately the performance
improvements resulting from the decisions made by each
method in previous iterations.

Experiments with One-Dimensional Data
We considered three 1-D problems: cos (Morales and Shep-
pard 2023b), hetero (Depeweg et al. 2018), and cosqr.
All three problems are affected by heteroscedastic noise, and
their function equations are shown in Table 1. Unlike most
AL and AS approaches, we do not initiate the experiments
from empty datasets. For each case, we generated incom-
plete datasets as initial states, as shown in Fig. 3. The mo-
tivation for this is to produce areas with low data density,
which entails high epistemic uncertainty. Thus, methods that
estimate potential epistemic uncertainty more accurately and
select sampling locations designed to reduce such uncer-
tainty should require fewer AS iterations to approximate the
ground-truth distribution of the problem. Additional imple-
mentation details are provided in the Appendix.

For ASPINN, we trained feed-forward NNs with varying
depths: two hidden layers with 100 units for problems cos
and hetero; and three hidden layers with 500, 100, and
50 units, respectively, for cosqr. The networks f̂t and ĝt
share the same architecture except for the last layer, as f̂t
uses one output, while ĝt uses two outputs. Furthermore,
ASPINN uses two hyperparameters: the neighbor distance
threshold θ and the kernel length r. We performed a grid
search with the values θ = [0.1, 0.15, 0.2, 0.25] and r =
[0.1, 0.15, 0.2, 0.25], and selected θ = 0.25 and r = 0.15
for all experiments. DualAQD, the PI-generation method
used by ASPINN, uses a hyperparameter η as a scale fac-
tor to adapt the coefficient that balances the two objectives

of the DualAQD loss function. We chose a scale factor η =
0.1. Other η values (i.e., {0.001, 0.005, 0.01, 0.05, 0.1})
achieved similar results but with slower convergence rates.

For MC-Dropout, we used the same architecture as the
target-estimation NN in ASPINN. For NF-Ensemble, we
used flows with 200 hidden units for problems cos and
hetero and 300 hidden units for problem cosqr. We
employed ensembles consisting of five models trained dur-
ing 30,000 epochs. For the standard GP, we used the same
RBF kernel used by ASPINN. We utilized an inference im-
plementation based on black-box matrix-matrix multiplica-
tion (Gardner et al. 2018) that uses 3000 training epochs.

Our objective is to reduce the epistemic uncertainty with
as few AS iterations as possible. We define the performance
metric PI

(t)
δ to quantify epistemic uncertainty relative to the

ground truth at the t-th iteration:

PI
(t)
δ =

1

|X |
∑
x∈X

(
|yu(x)− ŷut (x)|+ |yℓ(x)− ŷℓt (x)|

)
.

Here, yℓ(x) and yu(x) represent the ideal lower and up-
per PI bounds, respectively, calculated from the aleatoric
noise function: yu(x) = f(x) + 1.96 εa(x) and yℓ(x) =
f(x) − 1.96 εa(x). This metric is applicable to problems
with normally distributed aleatoric noise, which is the case
for the problems evaluated in this work. However, none of
the tested methods make assumptions about the noise distri-
bution. Note that if PI

(t)
δ = 0, the estimated PIs match the

ideal intervals, implying that the model’s epistemic uncer-
tainty has been minimized, and the total uncertainty is purely
aleatoric. A non-zero PI

(t)
δ indicates a discrepancy between

the estimated and ideal PIs, suggesting the presence of epis-
temic uncertainty. The greater the PI

(t)
δ , the higher the

epistemic uncertainty. To ensure fairness, ŷℓt (x) and ŷut (x)
are generated by an independent NN, ĝt(·), trained on the
dataset Dt produced by each compared method at each iter-
ation. Regardless of the uncertainty estimation model used
by each method, we trained an additional PI-generation NN
using the DualAQD loss to maintain a consistent uncertainty
metric across all comparisons.

It is worth mentioning that other works have used differ-
ent evaluation approaches. For instance, Berry and Meger
(2023) employed an approach where they sampled 50 ran-
dom locations from the domain. For each location, they
generated 1000 samples using the ground-truth distribution
and 1000 samples using the distribution predicted by each
method. They then calculated the Kullback-Leibler diver-
gence between the ground truth and the model-generated
distributions. However, we believe this approach does not
provide a consistent basis for evaluation, as each method
employs different mechanisms for estimating uncertainty.

For our experiments, the AS process was executed for
each problem for 50 iterations. This process is repeated 10
times, initializing the problems with a different seed each
time. Figure 4 depicts an initial state of problem cos along
with the augmented datasets during iterations t = 7, 40.
The figure also displays the corresponding calculated poten-
tial epistemic uncertainty for all values of the input domain.
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Figure 4: Example of the adaptive sampling process using
ASPINN on the cos problem.

Figure 5: Evolution of the mean PI
(t)
δ value and its corre-

sponding standard deviation for the 1-D problems.

Figure 5 shows the evolution of the mean PI
(t)
δ value and its

corresponding standard deviation, calculated across the val-
ues obtained from the 10 repetitions at each t. In addition,
we calculated the area under the uncertainty curve (AUUC)
for each learning curve. For each problem, Table 2 gives the
average AUUC for the four methods and corresponding stan-
dard deviations. The bold entries indicate the method that
achieved the lowest average AUUC value and that its differ-
ence with respect to the values obtained by the other meth-
ods is statistically significant according to a paired t-test per-
formed at the 0.05 significance level.

Experiments with Simulated Field Data
In this section, we present a multi-dimensional problem that
simulates a real-world agricultural field site. A field site is
defined as a specific area within a larger field (e.g., a 10 ×
10m). It is used for precise monitoring and management to
address local variations in soil and crop conditions.

Note that actual real-world data cannot be considered for
a comparative AS study. There are multiple reasons for this.
First, a given field site receives a single experimental rate
during the fertilization stage and its effects are observed dur-
ing the harvest season (e.g., five months for winter wheat).
Second, additional samples at the same site require collect-
ing data over multiple years. Third, when comparing dif-
ferent AS methods, they may produce different experimen-
tal rates, which cannot be implemented simultaneously in
a single season. Fourth, real-world conditions, such as un-

Problem MCDropout GP NF-Ensemble ASPINN
cos 112.57±24.20 123.87±26.22 113.39±19.49 97.26±7.87

hetero 113.80±13.38 110.21±13.59 106.44±16.26 85.95±9.11
cosqr 30.39±3.56 23.12±5.55 25.60±2.67 17.13±1.42

Table 2: AUUC comparison for the 1-D problems

foreseen environmental factors and concept drift, introduce
additional complexity, making it difficult to isolate the AS
strategies’ effects. Therefore, simulations based on the prop-
erties of a real field provide a controlled environment where
different AS methods can be evaluated under identical con-
ditions, allowing for a fair comparison.

In previous work, we derived the functional form of N-
response curves of different management zones (MZs) from
an actual winter wheat field as symbolic skeleton expres-
sions using a Multi-Set Transformer (Morales and Sheppard
2024). An MZ is defined as a distinct sub-region that encom-
passes sites with relative homogeneity and, thus, similar fer-
tilizer responsivity (i.e., similar response to varying fertilizer
rates). A symbolic skeleton expression is a representation of
a mathematical expression that captures its structural form
without setting specific numerical values. For instance, the
relationship between yield, y, and N rate, xNr, at a given
site is given by the skeleton y = c1+c2 tanh(c3+c4 x

Nr),
where c1–c4 are placeholder constants. In this work, we pro-
pose to use a simulated field site from an MZ whose under-
lying function is based on the previous skeleton.

In particular, we consider the following yield function:

y = f(x) =
xP

15
+

(
xA

π
+ 1

)
tanh

(
0.1xNr

3xV H + 2

)
+εa(x),

where x = [xP ,xA,xV H ,xNr] comprises the following
site-specific covariates: annual precipitation (mm), terrain
aspect (radians), Sentinel-1 backscattering coefficient from
the Vertical Transmit-Horizontal Receive Polarization band,
and applied N rate (lbs/ac), respectively. The aleatoric noise
is modeled as εa(x) = N (0, (xP + xNr)/150). Further de-
tails on the selection of these underlying and noise functions
are available in the Appendix.

While this yield regression problem considers four ex-
planatory variables, the only one that farmers can control
is xNr. Therefore, the AS search is focused along the xNr

axis to determine the best experimental N rate for reducing
epistemic uncertainty. A field site receives a single fertilizer
treatment; thus, we consider B = 1. The AS process was
conducted over 50 iterations, with each iteration represent-
ing a different year or growing season, corresponding to a
randomly generated precipitation value xP ∼ U(75, 150).
All compared methods used the same sequence of precipi-
tation values throughout the AS process. xA describes topo-
graphic information of the field so it is assumed to remain
constant throughout all iterations. In contrast, xV H , associ-
ated with soil moisture, was modeled as a function of pre-
cipitation and topographic aspect. Additional details on data
generation are provided in the Appendix.

We applied the AS process ten times. At each iteration, we
used a unique initialization seed and evaluated the epistemic
uncertainty along the allowed N rates (i.e., 0, 30, 60, 90, 120,
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MCDropout GP NF-Ensemble ASPINN
614.68± 112.48 593.54± 107.42 730.80± 74.63 496.85±71.65

Table 3: AUUC comparison for the simulated field site

Figure 6: Evolution of the mean PI
(t)
δ value and its corre-

sponding standard deviation for the simulated field site.

and 150 lbs/ac) under the current field conditions. Table 3
presents the average AUUC values and corresponding stan-
dard deviations, highlighting the best-performing method in
bold. Figure 6 depicts the evolution of the mean PI

(t)
δ val-

ues, calculated based on the results from the ten repetitions.

Discussion
The ASPINN method involves training a PI-generation NN,
which is used to design a novel potential epistemic uncer-
tainty metric. This metric is then used in our batch sam-
pling strategy to determine the sequence of sampling loca-
tions most likely to reduce epistemic uncertainty the greatest
across the input domain.

When evaluating ASPINN on the tested 1-D problems,
as shown in Fig. 5, we observed that it produced learn-
ing curves with faster convergence rates and lower standard
deviation than the other methods. Although the confidence
bands exhibit some overlap, this is attributed to outliers with
high PI

(t)
δ values generated by other methods (e.g., GP),

which increase the variance. Nevertheless, it is important to
note that the learning curves for ASPINN consistently re-
main below those of the other methods across all iterations
and have narrower confidence bands. Thus, the difference
in AUUC values is shown to be statistically significant ac-
cording to the t-test, as shown in Table 2. Also from Fig. 5,
we notice that ASPINN generated constantly decreasing and
smoother learning curves. Conversely, other methods, such
as MC-Dropout, tend to oversample certain regions of the
input domain, leading to imbalanced datasets. This oversam-
pling results in overfitting in those regions while causing a
poor fit in others, producing unstable learning curves.

Furthermore, the experiments conducted on the simulated
field data exhibit consistent behavior with the results from
the 1-D problems In particular, Table 3 demonstrates that
ASPINN achieves the lowest AUUC values, and the differ-
ences between ASPINN and the compared methods are sta-
tistically significant. Given that the precipitation values vary
at each iteration, the resulting learning curves are expected
to exhibit multiple peaks and valleys rather than a smooth,
consistently decreasing trend, as observed in Fig 6. This

variability arises because higher precipitation values are as-
sociated with increased uncertainty levels, leading to more
pronounced fluctuations in the learning curves. Considering
that the sequence of precipitation values is not the same for
all AS repetitions, Fig 6 reports only the mean curve and
not the confidence bands. This is because the PI

(t)
δ values

obtained by a method across different iterations are gener-
ated from contexts that could correspond to extreme oppo-
sites, leading to high variance values that do not necessar-
ily reflect the method’s performance. Despite this behavior,
we observed that ASPINN consistently produced learning
curves that remained below those of the compared methods.

One limitation of our approach is that it does not handle
multi-modal aleatoric noise inherently. Multi-modal noise
indicates that the data variability comes from different un-
derlying sources, each contributing to a different mode in
the noise distribution. In such cases, it would be necessary
to use a PI-generation method capable of producing multi-
ple upper and lower bounds based on the identified number
of modes. Note, however, that the contributions proposed in
this paper are not reliant on a specific PI-generation method.
In the presence of multiple PIs, we would need to adapt the
epistemic uncertainty metric accordingly and execute the re-
maining steps similarly. Another limitation, which also ap-
plies to the compared methods, is the computational cost
when dealing with high-dimensional problems due to the
need to evaluate all potential locations in the input space.
We plan to address this limitation in future work.

Conclusion
Accurate predictive modeling is essential in many scientific
and engineering disciplines, where decisions often rely on
data gathered from costly and time-consuming experiments.
This is especially true in fields like precision agriculture,
where data collection is limited by factors such as growing
seasons and crop rotation. In such contexts, reducing uncer-
tainty in prediction models is necessary for optimizing out-
comes and ensuring reliable decision-making. Addressing
this challenge, our work focuses on minimizing epistemic
uncertainty through adaptive sampling techniques.

We introduced ASPINN, an adaptive sampling technique
designed to reduce epistemic uncertainty across an input
domain using prediction intervals generated by neural net-
works. The novel potential epistemic uncertainty metric,
central to ASPINN, provided a robust basis for guiding
the sampling process. The effectiveness of our approach
was demonstrated through its consistent ability to achieve
faster convergence rates with lower and more stable learn-
ing curves compared to other methods. This was observed
across all tested scenarios, including 1-D synthetic problems
and a multi-dimensional problem that simulates an agricul-
tural field site based on real-world winter wheat data.

In the future, we plan on adapting ASPINN for problems
affected by both heteroskedastic and multi-modal noise. In
particular, this would involve integrating PI-generation tech-
niques capable of addressing multi-modal noise functions
and refining the potential epistemic uncertainty metric to ac-
count for multiple PIs at a single location.
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