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Abstract—Problems in accuracy and effectiveness in system 
diagnosis and prognosis arise from constructing models 
from design data that do not match implementation, failing 
to account for inherent uncertainty in test data, and failing 
to account for characteristics unique to specific units due to 
variations in usage, environment, or other factors. Large 
sums of money have been expended by owners of these 
systems, but little improvement in measures such as retest-
OK rate and cannot duplicate rate has been reported. In fact, 
simply losing track of where specific units are located has 
resulted in substantial losses of money. In this paper, we 
study the problem of performing diagnosis and prognosis on 
systems and describe an approach to building models based 
on data collected about specific units. We rely on the 
emerging Department of Defense (DoD) Unique 
Identification (UID) program that is focusing on obtaining 
this data and apply Bayesian methods for constructing such 
diagnostic models. Specifically, we discuss an alternative 
class of Bayesian model that we call the "not-so-naive" 
Bayesian network (NBN). We also discuss the concept of 
the NBN in the context of the UID program as a means of 
tracking and deriving probabilities for creating the network. 
Finally, we focus on the specific problems encountered and 
lessons learned from working with a large, real-world 
database for the US Navy's STANDARD Missile.   
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1. INTRODUCTION 

Department of Defense inventories of weapon systems, 
support systems, parts, and supplies are massive. Much of 
the logistics process is devoted to planning for distribution 
and sparing of the assets contained in these inventories to 
maximize mission readiness. Unfortunately, the task of 
tracking each of these assets to ensure the right people are 
getting needed assets and the right people can locate those 
assets is monumental. The DoD has recognized the 
importance of improving approaches to asset management 
and has created Unique Identification numbers (UIDs) to 
improve the situation. UIDs will be used to track financial 
and contract records and obtain location and status 
information about parts in DoD inventory. UIDs will also 
support data collection for weapon systems from build, test, 
operations, maintenance, repair, and overhaul histories. In 
addition to improving the overall logistics process, UIDs 
offer an opportunity to utilize asset-specific data to improve 
system maintenance and support as well. This paper 
discusses the initial results of an Office of the Secretary of 
Defense (OSD) Pilot Project to implement UID on the 
STANDARD missile in the context of maintenance and 
support. In particular, it discusses the opportunities 
presented by the use of UID in the context of system 
diagnosis and prognosis. 

Recent advances in applying Bayesian methods to system 
diagnosis have indicated the potential to extend these results 
to system prognosis as well. So called “dynamic Bayesian 
networks” (DBN) enable modeling system behavior by 
tracking faulty and fault-free conditions through time. The 
primary disadvantage to applying Bayesian techniques is the 
computational complexity associated with inferring results 
from evidence. For complex weapon systems, a simple 
Bayesian network can require several hundreds or even 
thousands of nodes. However, DBNs replicate these nodes 
over various time steps making inference much more 
complex. Even “simple” bipartite networks, such as those 
used in the “Quick Medical Reference-Decision Theoretic” 
(QMR-DT) system [1], require time that is exponential in 
the number of nodes to draw an exact inference. 



One common approach to handling such computational 
complexity is through the application of naïve Bayesian 
classification. Naïve Bayesian classification constructs a 
network by assuming away joint dependencies in the model. 
The advantage of this approach is that the computational 
complexity of exact inference on general Bayesian networks 
(which is NP-hard, meaning no efficient algorithm is known 
to exist) reduces to polynomial time. The disadvantage is 
that one would expect such a strong independence 
assumption to limit performance. Surprisingly, this is often 
not the case. Several sources, including results reported 
herein, demonstrate the naïve Bayesian classifier to perform 
very well. Nevertheless, we contend potential accuracy is 
lost and can be recovered by identifying some of these 
dependencies. 
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One of the goals of our research is to investigate possible 
improvements to the naïve Bayesian approach by using an 
alternative class of Bayesian model we call the “not-so-
naïve” Bayesian network (NBN). The NBN starts out as a 
naïve Bayesian network by assuming evidence nodes are 
conditionally independent given the class nodes. The NBN 
breaks with the naïve Bayes model by adding highly 
dependent relationships back with the goal of improving 
accuracy of classification. At the extremes, NBNs range 
from simple, canonical naïve Bayes classifiers to complete 
bipartite Bayes networks. Any particular NBN’s position on 
that spectrum can be tuned according to the level of 
accuracy required and the computational cost that can be 
afforded. We discuss the application of the NBN approach 
in the context of the DoD’s UID program, and the data 
available through that program, as a means of deriving 
probabilities for creating Bayesian networks for system 
diagnosis and prognosis. 

2. DIAGNOSIS/PROGNOSIS AND UID 

The DoD has a significant concern about the tracking and 
support of individual systems within their inventory. After 
Desert Storm, 35,000 shipping containers of supplies went 
unused and now needed to be redeployed. The task of 
returning these containers (and their contents) to the supply 
system or redeploying them to other theaters was 
monumental. The GAO concluded that visibility and 
accountability over the $3.4 billion of material was lost [2]. 
Incomplete tracking of DoD hardware location and history 
was the primary reason for the loss of accountability. In 
addition, valuable location, maintenance, reliability, and 
diagnostic information was not properly obtained, analyzed, 
or retained. The inability to access and use this information 
presented a significant obstacle to making effective program 
decisions, reducing maintenance and support costs, and 
enabling next-generation approaches to system support (e.g. 
advance diagnostics, reliability centered maintenance, and 
prognostics). 

The DoD began several initiatives to get more effective 
control over its logistics. Two of these initiatives, Unique 
Identification (UID) [3] and Radio Frequency Identification 
(RFID) [4] are of interest in this paper. Both UID and RFID 
are DoD requirements [5],[6]. In short, between these two 
initiatives the location and history of individual items will 
be tracked worldwide. 

 

 
 

Figure 1–Sample UID data matrix providing specific 
identification information for a US Navy unit. The data 
matrix is analogous to a two-dimensional bar code. 

RFID uses Radio Frequency tags on pallets, shipping 
containers, etc. to track a unique number. That number is in 
the supply database and is linked to the contents, 
destination, and origin of the package. UID uses the data 
matrix (which is not RF) illustrated in Figure 1 to identify 
individual items. The data matrix is similar to a two-
dimensional representation of a bar code, is scalable, can 
range in size from a few tenths of an inch to up to 14 inches, 
and can represent up to 2,000 characters. A crucial part of 
UID is the unique number – the Unique Item Identifier 
(UII). The UII is not just assigned by the manufacturer or 
depot. There is a protocol followed to generate the UII 
[7],[8]. The number is then uploaded to a DoD registry 
where it is checked for uniqueness and logged into the 
system. The UID that encodes the UII is then linked to a 
particular part for the lifetime of the part. UIDs can be 
applied as labels, plates, laser etched directly, and a through 
variety of other techniques [9]. Proper identification of an 
asset is essential to correlating pedigree and reliability 
prediction of the asset as well as enabling reliability 
centered maintenance, advanced diagnostics and 
prognostics.  

Tracking serialized items is a significant challenge. Serial 
numbers and even part numbers are often “recycled” by 
manufacturers. Rebuilding an item from one configuration 
to another adds further confusion. The application of UID 
will make serialized item tracking easier and more effective. 
There are a number of databases that have track-serialized 
item’s history, but they are limited to a single program. UID 
will enable the large-scale accumulation of failure, repair 
and maintenance data on a wide variety of systems. 



Each time a maintenance action is executed that installs, 
removes, inspects, tests, or services a missile, section or 
major component, the part number, serial number, and in 
some cases manufacturer lot must be manually entered into 
a computer. This manual key entry is time consuming and 
error prone, which causes inventory inaccuracies. These 
discrepancies require quality checks to ensure the errors are 
caught and corrected. Correcting problem assets in many 
cases delays data from entering the system. In addition, part 
number and serial number errors prevent the linking of data 
from various data sources, for example, linking inventory 
with reliability prediction tools. 

The GAO has frequently pointed out the Federal 
Government’s inability to track assets, the large amount of 
waste associated with this inability, and the necessity of 
tracking assets for sound financial management. In the long 
term, utilizing UID, the DoD will be able to make more 
informed decisions on missions by having the ability to 
consistently locate, control and evaluate assets. The UID 
will also establish a common interface across all 
organizational boundaries. 

One of the principal criticisms of current approaches to 
system prognosis is that these approaches rely on “statistic” 
properties collected over populations of systems. Yet it is 
well known that while one can reasonably expect average 
behavior to conform to these statistics (assuming the 
collected statistics actually relate to that specific class of 
system) individual members of the population can exhibit 
significant variation from the expected value. Even most 
diagnostic systems work with “representative models” of 
the system being tests and rarely account for unique 
characteristics of the particular system. 

Within the context of this work, creating specialized models 
by specific asset can support the UID program. This has the 
advantage of incorporating operating and environmental 
conditions for the specific asset into the model and tracking 
the behavior of that specific model over time. The UID 
program permits tracking to occur at the specific system 
(and even component) level, thus providing a much finer 
grained view into the past performance of the system. This 
permits more focused analysis to improve predictions on 
future performance and future failure as well. 

3. DIAGNOSTIC BAYESIAN NETWORKS 

Developing system models for diagnosis is complex and 
often depends on a detailed understanding of system 
performance and test engineering. Learning diagnostic 
models from field maintenance data offers considerable 
potential to develop or refine diagnostics for fielded 
systems. Simulation can also be used to generate data for 
purposes of learning. Several approaches exist for learning 
such models including case based reasoning, decision tree 

induction, neural networks, and Bayesian methods. We 
suggest applying Bayesian methods to diagnosis because 
they derive classification “rules” based on sound 
mathematical principles (namely, probability theory), they 
can adapt easily as more data is obtained, and they have 
been demonstrated empirically to perform well on a broad 
range of classification problems. 

Previously, we provided a detailed derivation of a simple 
model for Bayesian diagnosis [2],[11]. Here we summarize 
those results by pointing to two specific issues in Bayesian 
networks. First, determining the appropriate structure of the 
network can be difficult in that it requires a detailed 
understanding of the random variables of the problem to be 
solved and the conditional probability relationships between 
those random variables. In fault diagnosis, the first step of 
identifying the random variables is relatively 
straightforward because the random variables correspond to 
the tests and diagnoses. 

Determining the appropriate relationships between the 
random variables and their conditional probabilities is more 
problematic. Initially, we assume we are able to determine 
which fault is detected by which test and that the tests were 
designed with such detection in mind. Thus we do not need 
to determine the actual relationships. We only need to 
consider the probabilities on those relationships. An 
approach based on instrument uncertainty was provided in 
[11], but in this paper, we derive the probabilities from a set 
of training data corresponding to actual test results and 
associated diagnoses. 

The second issue to be addressed is the computation 
required for performing diagnosis with these networks. In 
general, exact inference in Bayesian networks is NP-hard. 
However, we propose a specific architecture for the network 
that reduces the computational problem to one with 
polynomial complexity. Specifically, we assume the random 
variables in D (i.e., the diagnoses) are independent, as are 
the random variables in T (i.e., the tests). Now the 
characteristics of conditional independence allow for simple 
propagation of the probabilities from the tests to the 
diagnoses.  

Given the conditional independence of the diagnoses, we 
can then compute the posterior probabilities of each of the 
diagnoses given the test results as follows. First, we will 
assume that we are using the network form presented in 
Figure 2 and partition the random variables into three sets: 
D (the diagnoses), T (the true test states), and O (the test 
observations). The evidence variables will be restricted to 
O. 
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Here, α is a normalizer over the set D, equal to  

∑ ∑
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Assuming we are able to generate the probability 
distributions for nominal and faulty behavior, we consider 
the effects of locating the decision boundaries. For this 
discussion, we will draw on results from Bayes decision 
theory and its derivative, signal detection theory [12]. In 
particular, we consider each diagnosis to be a separate 
classification. In this case, diagnosis reduces to assigning 
the class label corresponding to the maximum a posteriori 
probability. More formally, 

)]Pr()|Pr([maxarg ωωλω
ω

xhMAP
Ω∈

=  

where ω represents the “actual state” of the unit being tested 
and λω is the loss associated with ω being the incorrect 
classification. The resulting classification is referred to as 
the maximum a posteriori hypothesis. In other words, the 
diagnosis yielding the highest posterior probability is pro-
posed as the most probable fault. 

Observe that Pr(o(Tj) | Di) ∈ {0, 1} as described earlier, so 
the members of the sum are restricted only to those tests that 
observe Di. Then we only need to consider Pr(Di), which 
corresponds to the prior probability for Di based on failure 
rate, and Pr(o(Tj) | Tj), which corresponds to the confidence 
value assigned to the observed test result. Using the Bayes’ 
maximum a posteriori hypothesis, we determine the most 
likely diagnosis simply as 

)}|{Pr(maxarg O
D

i
D

MAP DD
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In other words, we provide the most probable diagnosis as a 
means of minimizing expected error (i.e., risk or loss) in the 
diagnostic process. 
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Figure 2–Diagnostic Bayesian network structure where 
test measurements are shown to depend only on 
diagnoses, and test observations (i.e., outcomes) depend 
on test measurements. Outcomes are conditionally 
independent of diagnoses given the test measurements. 

4. DBNS AND PROGNOSIS 

The traditional approach to fault diagnosis assumes tests are 
applied at a specific point in time from which one can infer 
the condition of the system under test and make a diagnosis. 
The problem of prognosis, while essentially an extension of 
diagnosis, is complicated by the fact that time becomes a 
significant factor in the analysis. In fact, one can represent 
the prognosis problem as a time series prediction problem in 
which one attempts to infer a future state from some 
sequence of past states. 

It turns out that the Bayesian approach to diagnosis can be 
generalized in a straightforward way to address prognosis as 
well. In the most basic case, consider the state of the system 
as if it can be represented at some time t as a single random 
variable st. Assume, further, that the state at time t + 1 
depends only upon the system state at time t. Then we can 
represent the time series corresponding to the system state 
progression as a first-order Markov chain. 

Missing in our model is the fact that we do not have direct 
knowledge of the underlying state of the system. 
Specifically, we perform tests to observe conditions of the 
system, from which we infer the system state. 
Consequently, the basic Markov chain is not sufficient for 
our purpose—we need to differentiate between observable 
random variables and “hidden” (or unobservable) random 
variables. This leads to the concept of a Hidden Markov 
Model (HMM) [13]. 

Formally, an HMM = 〈N, M, A, Bj, π〉, where N is the 
number of states in the model (denote the states as S = {s1, 
…, sN}), M is the number of distinct observation symbols 
per state (denote the symbols as V = {v1, …, vM}), A is the 
state transition probability distribution A = {aij} = Pr(qt+1 = 
sj | qt = si), Bj is the observation probability distribution in 
state sj, Bj = bj(k) = Pr(vk at t | qt = sj), and π is the initial 
state distribution, π = {πi} = Pr(q0 = si) [13]. 

The Markov chain and the HMM can be formulated as 
special cases of a graphical model first formalized by T. 
Dean and K. Kanazawa called the “dynamic Bayesian 
network” [14]. DBNs have been studied further by Kevin 
Murphy who provided alternatives for representation, 
inference, and learning [15]. The purpose of a DBN is to 
model probability distributions over semi-infinite 
collections of random variables, Zi, that progress according 
to some temporal model. Typically, the random variables 
are partitioned into three subsets indexed by time—Zt = (Ut, 
Xt, Yt) where Ut is the set of inputs at time t, Xt is the set of 
hidden (i.e., unobservable) variables at time t, and Yt is the 



set of outputs at time t. Then, given the set Z, a DBN is 
defined to be a pair 〈B1,B→〉, where B1 is a Bayesian 
network defining the prior distribution Pr(Z1), and B→ is a 
“two-slice” temporal Bayesian network defining the 
distribution Pr(Zt | Zt–1) such that 
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To put this definition in the context of prognosis, we can 
construct a DBN for prognosis by “chaining” successive 
BBNs together. Under the first-order Markov assumption, 
we only need to represent two slices of the DBN and then 
“unroll” as necessary in processing the model. For example, 
Figure 3 shows how to link the BBNs in sequence. Note 
that only the diagnoses are linked through time since they 
change state directly. Changes in observation state are 
derived from the underlying state changes in the system. 
This approach is distinct from the HMM that links 
observations together. 

To perform inference with the DBN (and thereby predict 
future states), first, infer the current state (i.e., the state in 
the current time slice) from the test observations. Next, 

“unroll” the DBN to the desired number of time slices 
(assuming the state progressions occur in discrete time 
steps—DBNs can handle continuous time, but the 
computation is more complex). Then, propagate beliefs 
through time by observing that  
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Figure 3–Dynamic Bayesian network for prognosis. The DBN is represented as a sequence of traditional diagnostic 
Bayesian networks where each diagnosis depends only upon itself in the previous time step. Test measurements are 
assumed to be conditionally independent of corresponding measurements in the previous time step given the diagnoses 
they detect. Such conditional independence holds for test outcomes as well. 
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In fact, given the assumption that only diagnoses progress 
in state through time and that a diagnosis only depends 
upon itself in the previous time step, this part of the model 
reduces to a simple Markov chain, which can be either 
discrete time or continuous time. 

Key to constructing the DBN is defining the temporal 
transition probabilities. In the simplest case, failure 
probabilities estimated from the failure rates can be used. 
When better information is available (e.g., based on 
historical data as is to be provided by the UID program), 
probabilities derived from this information can be used. The 
point is that the DBN is fully general and can be adapted to 
available knowledge about the system being analyzed. 
Theoretically, causal relationships between faults (i.e., a 
fault at time step t causes another fault to occur at time step 
t + 1) can be represented directly with the DBN as well 
(even though such models are rarely useful). 

5. LEARNING BAYESIAN NETWORKS 

The Bayesian network shown in Figure 2 presents a 
substantial improvement over past efforts at creating 
diagnostic networks; however, several issues remain. First, 
we often do not have direct access to measurement data or 
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the relationship between measurements and outcomes. 
Thus, we must map outcomes directly back to diagnoses. 
This can be handled with a “simple” bipartite Bayesian 
network such as the one shown in Figure 4. Second, having 
reduced the structure of the network to represent 
dependencies between outcomes and diagnosis (which were 
originally assumed to be conditionally independent given 
the measurement), we must determine appropriate 
probabilities for the conditional probability tables. We have 
lost the ability to derive these probabilities directly from 
measurement uncertainty because we no longer have the 
measured values represented. Third, even with these 
“simplified” networks, the conditional probability tables 
associated with each of the test results grows exponentially 
in the number of diagnosis (or faults) detected. These latter 
two issues are the focus of work reported in this paper. 

To address both the network architecture and probability 
table issues, we will discuss methods of “learning” Bayesian 
networks from data. First, we will focus on a simple 
Bayesian model called the naïve Bayesian network. Then, 
given some of the deficiencies of the naïve Bayes model, we 
will consider approaches, again based on machine learning, 
to reduce the impacts of these deficiencies leading to our so-
called “not-so-naïve” Bayesian networks. We hypothesize 
that, a) the naïve Bayesian network will provide 
“reasonable” performance in diagnosis, even with its strong 
assumptions and that b) the non-so-naïve Bayesian network 
will provide some level of improvement (perhaps 
significant) in diagnostic accuracy over the strictly naïve 
Bayesian network. 

5.1 Naïve Bayesian Networks 

The primary assumption for naïve Bayesian networks is that 
the evidence variables in the network (i.e., the tests) are 
conditionally independent of each other given the class (i.e., 
diagnosis). To start our discussion on the implications of 
this assumption, let us define our diagnostic networks as if 
they contain only one diagnosis variable with n possible 

values (corresponding to each of the diagnostic conclusions 
Di). Thus, the structure of our networks reduces to the form 
shown in Figure 5. Note that the structure from Figure 4 can 
be retained if we construct so-called naïve Bayes “multi-
nets” [16]. 

Under the naïve Bayes model, we still consider the 
diagnosis problem as finding the class label (i.e., diagnosis) 
that maximizes the a posteriori probability of the specific 
class given the set of observations: 
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But the problem remains that the joint distribution over the 
tests is exponential in the number of tests. The naïve Bayes 
assumption states that we can treat each of these 
observations as if they are conditionally independent given 
the diagnosis, and this leads to the classification rule: 
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Given a set of training data mapping test results (outcomes) 
to actual faults repaired, we can “learn” the naïve Bayes 
network by observing that Pr(di) is simply the frequency of 
occurrence of a particular fault in the data set and similarly, 
Pr(o(Tj) | di) is the frequency of test outcome o(Tj) 
considering only the particular diagnosis di. 

In considering the complexity of naïve Bayes networks, we 
must account for the complexity to learn the models as well 
as to use the models for diagnosis. The complexity of 
learning depends on deriving the probability estimates for 
Pr(di) and Pr(o(Tj) | di). Let n = the number of examples, δ = 
|D|, and τ = |T|. It is reasonable to assume δ < n. Then the 
complexity for deriving Pr(di) for all di ∈ D is O(n + δ) = 

 

D1 Di Dn

o(T1) o(Tj) o(Tm)

… …

… …

D1 Di Dn

o(T1) o(Tj) o(Tm)

… …

… …
 

 

Figure 4–Simplified diagnostic Bayesian network where 
the test measurements are “abstracted” out of the model. 
This is done as a convenience since typically raw test 
measurements are not used in fault diagnosis. 

 

D

o(T1) o(Tj) o(Tm)… …
 

 

Figure 5–Naïve Bayes diagnostic network. Using this 
structure assumes all test outcomes depend upon a single 
diagnosis variable where the set of values for D 
corresponds to the set of possible diagnoses. The structure 
also enforces independence of the diagnoses so that 
modeling Pr(o(Tj) | d1 … dm) becomes unnecessary. 



O(n), and the complexity for deriving Pr(o(Tj) | Di) for all Tj 
and di is O(τ × n + τ × δ) = O(τ × n ). Classification 
involves multiplying τ + 1 probabilities for each diagnosis 
and maximizing, so the complexity of classification is O(τ × 
δ). 

5.2 Tree-Augmented Naïve Bayesian Networks 

While simple to construct, the naïve Bayes network imposes 
a strong independence assumption on the network structure 
and hence the diagnostic model. In diagnosis, it is rarely the 
case that test results are conditionally independent given the 
diagnosis. In fact, in many cases, we find that tests are 
highly dependent given the diagnosis they are intended to 
detect. One approach to handling such dependencies 
without enumerating the full joint distribution over the tests 
is to re-insert dependence relationships as indicated by the 
model. At least three methods for implementing this 
approach have been proposed in the literature—the semi-
naïve Bayesian network (SNBN) [17], the tree-augmented 
Bayesian network (TAN) [16], and the Bayesian network 
augmented naïve Bayesian network (BAN) [18]. 

In the SNBN, a naïve Bayesian network is constructed to 
start, and then the conditional entropy is computed between 
pairs of test attributes in the network. This is compared to 
the entropy of the network as a whole. Combining a pair of 
nodes into a composite node (represented by the pair’s joint 
probability distribution) changes the entropy of the network. 
Constructing the SNBN then consists of incrementally 
combining the pairs of nodes that decrease entropy the most 
until some threshold is reached. Note that this can lead to 
very large composite nodes, so alternatives have been 
suggested where the size of the composites are constrained 
to consist of no more than k simple nodes. This leads to so-
called k-dependent semi-naïve Bayesian networks (k-
SNBN) [19]. 

In the BAN, rather than attempt to construct sets of joint 
distributions, the observation that a general Bayesian 
network can be used to model such joint distributions is 
used to construct the network. In this case, a general 
Bayesian network is learned while ignoring the presence of 
the class node D. The Bayesian network is learned using a 
scoring metric such as the Bayes information criterion 
(BIC) or the minimum description length (MDL). After 
constructing the Bayesian network, the class node is 
reinserted and conditionally independent probabilities 
associated with that node. 

In this paper, we consider a third approach as a 
“compromise” position that has been demonstrated to work 
well on other classification tasks—the tree-augmented 
Bayesian network. In the TAN, the process of determining 
the dependencies between test nodes is similar to the BAN 
in that a Bayesian network is constructed while ignoring the 
class label D. After constructing the network, the class label 
is then added back in with the conditionally independent 

probabilities derived for a naïve Bayes network. The 
difference is that it is assumed we can construct a separate 
Bayesian network among the attributes, and that network 
corresponds to a tree structure. The advantages of this 
assumption are that a) the tree structure can be learned very 
quickly, and b) inference with the resulting network is very 
fast because each node has at most two parents (one of 
which is the class label). 

In general, the approach to constructing the TAN is as 
follows. First, we will construct a complete graph among 
the test nodes in the network. This graph will be undirected 
to start. Second, we will associate a weight to each edge in 
the network. The specific weight chosen will be discussed 
below, but we will choose a weight such that a higher value 
is more desirable. Third, we will find the “maximum-
weight” spanning tree of the graph using these assigned 
weights to drive the search. Fourth, we will pick one of the 
attributes at random and designate it to be the “root” of the 
tree. Fifth, we will derive a rooted tree structure by 
traversing the spanning tree from the root node and making 
all traversed edges directed, pointing away from the root. 
Sixth, we will reinsert the class node into the network and 
make it a parent of every test node. Finally, having 
identified dependencies between a child node o(Ti) and its 
parent node o(Tj), we will derive the conditional 
probabilities Pr(o(Ti) | o(Ti), D) from the training data. 

Key to constructing the TAN is the derivation of the 
weights associated with a pair of test nodes. The approach 
suggested by Friedman, Geiger, and Goldszmidt [16] is to 
use the conditional mutual information of the nodes. 
Specifically, we consider the mutual information of a pair of 
test nodes given the diagnosis node. This can be computed 
for every pair of test nodes as follows: 

.
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Similar to the approach used to build SNBNs, the 
conditional mutual information provides a measure of how 
much one can reduce the entropy (or uncertainty) of the 
network by adding the indicated dependence relationship. In 
fact, it can be shown easily that if o(Ti) and o(Tj) are 
conditionally independent given D, I(o(Ti),o(Tj)|D) = 0 and 
that the greater the dependence relationship, the higher the 
value of I. 

The complexity of learning TAN’s has the complexity of 
learning NB as its lower bound. The difference in 
complexity comes from calculating the conditional mutual 
information between all of the tests and then deriving the 
spanning tree. Friedman et al. showed that the complexity 
of calculating I(o(Ti),o(Tj)|D) is O(τ2 × n),  and the 
complexity of finding the maximum weight spanning tree is 
O(τ2 lg τ). Thus the overall complexity for learning a TAN 
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Table 1. Diagnostic data sets from the STANDARD Missile and the UCI Machine Learning Repository. All test sets
corresponding to “diagnostic” problems. Nominal tests are analogous to test outcomes o(Tj) while continuous tests are 
analogous to the test measurements Tj. The “Missing Values” column indicates if data is missing for one or more of the 
attributes in the data set. The “Ljubljana” data sets correspond to data available for academic use only. 

 

Dataset Instance
s 

Diagnose
s 

Tests 
(nominal) 

Tests 
(continuous) 

Missing 
Values? 

STANDARD Missile 217 12 321 0 Yes 
Breast Cancer (Ljubljana) 286 2 9 0 Yes 
Breast Cancer (Wisconsin) 699 2 9 0 Yes 
Dermatology 366 6 33 1 Yes 
Heart spectrograph 267 2 22 0 No 
Hepatitis 155 2 19 0 Yes 
Lymphography (Ljubljana) 148 4 18 0 No 
Postoperative Patient 90 3 8 0 Yes 
Primary Tumor (Ljubljana) 339 20 17 0 Yes 
Soybean 683 19 35 0 Yes 
8

 dominated by calculating I(o(Ti),o(Tj)|D). Classification 
ith TAN is still O(τ × δ) since all we have done is double 
e number of probabilities stored. 

.3 Bayesian Multinets 

iven the basic formulation of the diagnostic Bayesian 
etwork as represented in Figure 4, we would like to restore 
e naïve Bayes network and the TAN network to reflect 
is structure. To accomplish this, we will also consider the 
ultinet classifier where n = |D| separate classifiers will be 

onstructed, treating each potential value of D as a separate 
inary classification problem [16]. This has the advantage 
f enabling us to combine the results of the classifier either 
y selecting the class with the maximum posterior 
robability or to treat the classifiers in a combined sense to 
onsider the possibility of multiple faults. For comparison 
urposes, however, we will evaluate the multinets according 
 the first option, which enforces the single fault 

ssumption. We note that the complexity does not change 
r learning multinets when compared to their single-

etwork counterparts. 

6. EXPERIMENTAL APPROACH 

iven the goals of the DoD UID program, our objective 
as to evaluate various Bayesian methods for diagnosis and 
rognosis. Because the results in this paper focus on the 
pplicability of “not-so-naïve” approaches to constructing 
ayesian classifiers, we concentrated on the accuracy of 
ese algorithms for diagnosis. We claim that, assuming the 

vailability of test data captured over time, we can construct 
milar prognostic Bayesian networks simply by deriving 
r(Dt | Dt–1) from the training data like any other conditional 
ependence relationship in the data. We are in the process 
f testing this hypothesis and plan to provide the results in a 
ture publication. 

Since the purpose of this research is to explore the 
applicability of Bayesian models to fault diagnosis and 
prognosis under the UID program, we sought data from the 
US Navy to support this research but also used several data 
sets from the UCI Machine Learning Repository [20]. The 
specific databases are described in Table 1. Each of the UCI 
data sets, while medical in nature, reflects data collected on 
real diagnostic problems. The US Navy provided a subset of 
data on the STANDARD Missile corresponding to test and 
maintenance data collected on real missile systems. Below, 
we provide initial results with this data and discuss some of 
the difficulties associated with preparing the data for 
analysis. 

 

Each of the algorithms was run on each data set using a 
hold-out method where 66% of the data was used for 
training and 34% was used for testing. Thirty replications of 
the hold-out experiments were run, randomizing the data 
before each run, to calculate confidence intervals at the 95% 
level. These were used to determine if there were any 
significant differences in performance based on a paired t-
test. When only two classes existed in the data, the 
experiments included naïve Bayes (NB-S) and TAN (TAN-
S). When the data had more than two classes, four 
algorithms were tested—single naïve Bayes (NB-S), naïve 
Bayes multi-nets (NB-M), single TAN (TAN-S), and TAN 
multi-nets (TAN-M). The Waikato Environment for 
Knowledge Analysis (WEKA) was used to test the 
algorithms [21]. WEKA’s multi-class classifier was used to 
implement both NB-M and TAN-M.  

By default, WEKA fills in missing data based on the mode 
of the attribute values. We were concerned this would skew 
the results, so all of the datasets were pre-processed to 
estimate missing values using the probability distributions 
for each attribute in the dataset. Since the lack of test data 
can itself, provide information, missing attribute values for 
the STANDARD Missile were handled differently. 



Table 2. Experimental results (accuracy with 95% confidence interval). NB-S corresponds to the simple naïve Bayes 
network, TAN-S to the simple TAN network, NB-M to the naïve Bayes multinet, and TAN-M to the TAN multi-net. All 
experiments were run with 30 hold-out trials to determine statistical significance. Entries indicated by “—” correspond 
to cases not run because the diagnosis problem had only two classes. 

 
Dataset NB-S TAN-S NB-M TAN-M 
STANDARD Missile 33.99±3.61 43.27±3.74 34.22±3.53 43.14±3.65 
Breast Cancer (Ljubljana) 72.61±4.02 68.42±3.19 — — 
Breast Cancer (Wisconsin) 97.16±0.74 95.24±1.32 — — 
Dermatology 97.80±1.27 93.02±2.27 97.72±1.39 97.05±1.27 
Heart spectrograph 78.00±3.84 80.42±4.10 — — 
Hepatitis 85.06±4.11 84.49±4.64 — — 
Lymphography (Ljubljana) 84.16±3.59 80.63±4.77 84.49±3.52 82.42±3.97 
Postoperative Patient 66.92±4.71 63.52±6.57 66.26±4.54 63.53±6.31 
Primary Tumor (Ljubljana) 52.02±3.36 48.73±3.09 53.12±3.22 50.62±3.01 
Soybean 92.12±1.50 93.62±1.59 91.80±1.39 93.06±1.42 
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Specifically, all attributes corresponding to test (or 
parameter) codes either passed, failed, or were not tested. 
Therefore, all “missing” attributes were, assigned a “not-
tested” value. Given the structure of the WEKA tool set and 
the pre-processing performed on the data, no user-defined 
parameters were required to be set. 

One issue common to Bayesian methods is how to handle 
cases where, for a particular class, no data exists for the 
various attribute values. The usual approach to handling this 
problem is to apply the so-called m-estimate (based on the 
concept of Dirichlet smoothing, which is a generalization of 
Laplace smoothing) to approximate the probabilities. In this 
case, probabilities are approximated as  

mn
mpn

DTo c
ji +

+
=)|)(Pr(  

where nc is the number of instances in the data pairing 
particular values for o(Ti) and Dj, n is the total number of 
instances in the data corresponding to diagnosis Dj, p is a 
prior estimate for the probability, and m is the number of 
“virtual” examples in the data. 

The usual approach to applying the m-estimate is to estimate 
the probabilities during training on the training set. The 
current implementation of WEKA does not provide the m-
estimate but estimates missing data using the mean or the 
mode of the data over the entire data set. We decided to use 
the m-estimate over the entire data set as a pre-processing 
step to define a probability distribution over the attribute 
values and then select values according to that distribution. 
We recognize that this approach violates the assumption 
that test data and training data are generated independently 
but used the approach as a matter of convenience rather than 
attempting to rewrite the WEKA code. This issue will be 
resolved in future experiments. For our preprocessor, we 
used a simplified m-estimate equal to 1 + nc / n. 

Table 3. Pair-wise comparison of algorithms. Values in a 
cell indicate the number of times the algorithm indicated 
by the column heading outperforms the algorithm 
indicated by the row heading. The value in parentheses 
indicates the number of times the difference recorded is 
significant at the 95% level. 

 
 NB-

S 
TAN-

S 
NB-M TAN-

M 
NB-S — 3 (1) 3 2 (1) 

TAN-S 7 (2) — 4 (1) 4 (1) 
NB-M 3 2 (1) — 2 (1) 

TAB-M 4 2 4 — 

Table 4. Identification of pairs of algorithms yielding 
significant differences in performance at the 95% level and 
the data sets that yielded the performance difference.  
 

 
Dataset Better Worse 

TAN-S NB-S, NB-M STANDARD Missile 
TAN-M NB-S, NB-M 

NB-S TAN-S 
NB-M TAN-S 

Dermatology 

TAN-M TAN-S 
Wisconsin Breast Cancer NB-S TAN-S 

 

7. RESULTS 

The results of the experiments are shown in Table 2. Table 
3 then shows a pair-wise comparison of the algorithms 
across all data sets. Each cell in this table shows the number 
of times the algorithm listed in the column heading beats the 
algorithm listed in the row heading. For example, this table 
shows that NB-S beats TAN-S seven out of ten times. 
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Of particular interest in these results is the fact that NB 
(both varieties) beats TAN more often than not. Of course, 
the results also show that the differences are statistically 
significant at the 95% level on only 11 out of the 40 
comparisons (indicated by the number in parentheses in the 
appropriate cells in Table 3). If we adjust the significant test 
to the 90% level (a relatively low confidence level), only 
one additional significant difference arises. Table 4 lists the 
pairs of algorithms with significant differences in 
performance and the data sets where the differences were 
observed. It is interesting that all significant differences 
were observed on the dermatology, Wisconsin breast 
cancer, and STANDARD Missile data sets only. 

Since our focus is on the STANDARD Missile, it is also 
interesting to note that the differences in performance are 
closer to what was originally expected. Specifically, we 
note that, while the individual accuracies are low (34–43%), 
the differences in performance favor the “not-so-naïve” 
networks. This provides a clear example of the need to 
model interdependencies of test results to improve overall 
accuracy of diagnosis. 

8. DISCUSSION 

We first note that our initial hypothesis is confirmed in that 
both versions of the networks (NB and TAN) performed 
very well. In fact, their performances on the UCI data sets 
were comparable to the best results reported in the 
literature. Our disappointment comes in that a) few of the 
differences in performance were significant at the 95% 
confidence level, and b) the raw differences observed 
actually seemed to favor the naïve Bayes versions. This was 
contrary to our expectations when beginning the 
experiment. The one exception to this observation—
performance on STANDARD Missile data—was 
encouraging. Here we see a “real-world” data set for a 
complex system, and the advantages of the “not-so-naïve” 
model become evident. 

So why were these results observed? We believe the answer 
is based on how the additional dependencies are included in 
the TAN network. Specifically, TAN inserts dependencies 
according to the maximum-weight spanning tree algorithm. 
Suppose a high-weight edge is being considered for 
addition, but addition of that edge would create a cycle. 
Then, even though the conditional mutual information 
calculation has determined there is a dependency between 
the associated attributes, this dependency will not be 
included in the Bayesian network. Furthermore, the 
algorithm could lead to the addition of several low-
dependency relations in the network just because they do 
not create cycles in the spanning tree.  

As future work, we plan to test this hypothesis by 
considering alternative approaches to creating the 

augmentations. Specifically, we will explore general 
Bayesian network learning, k-dependent Bayesian network 
learning, and “forest-augmented” naïve Bayes (FAN) 
learning. We are also exploring an approach to deriving 
naïve Bayes multi-nets where the set of attributes contained 
in each naïve Bayes network will be derived from the set of 
non-redundant attributes for the given class label. This 
approach is based on prior work in logical dependency 
modeling [22] where subsumption of test-to-diagnosis 
dependency sets is used to determine inter-test dependency. 

LDN64267AMIS124647| 
8/11/1995 7:54:00 AM| 
GS|5959014-009|861525| 
11/17/1995 11:50:00 PM| 

SSLO IS SWEEPING. R&R PLT 1.| 
10300|0|1| 

21030|0|-0.53| 
21010|0|1| 
21430|0|1| 
21440|0|1| 
21450|0|1| 
21460|0|1| 
18010|0|3.4| 
21040|1|-1| 

... 
 

Figure 6–Sample STANDARD Missile data record 
containing the UID, the repair date, the test date, the 
diagnostic text, and a sequence of parameter codes with 
measurements and pass/fail outcomes. 

9. ANALYSIS OF STANDARD MISSILE DATA 

One of the goals of this research was to evaluate various 
NBN architectures on a real diagnostic data set. The US 
Navy provided warranty data from the STANDARD 
Missile for this purpose. Each record of the data file 
consists of the UID for the unit under test1, the repair date, 
an indication that the section of the missile2, the part 
number, the serial number, the test date, diagnostic text, and 
a sequence of “parameter codes.” The parameter codes 
correspond to the tests performed leading to the associated 
diagnosis, and the data provides a triple of values for each 
parameter: 

〈parameter code, pass/fail code, raw measurement〉 

An excerpt of a record from the STANDARD Missile 
Guidance Set is provided in Figure 6. (The actual example 
contains 155 parameter codes, and this is typical of most of 
the examples in the data set.) In this example, all fields are 
delimited by the “|” character. 

 
1 Actually, this is a “virtual” UID that was developed as part of a Navy 
maintenance tracking database prior to initiation of the UID program. 
2 In this case, GS indicates the guidance section. 
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When examining the data in Figure 6, note that the 
diagnosis is identified as a remove and replace action 
(indicated by “R&R”) on plate 1 resulting from sweeping 
on the solid-state local oscillator (SSLO). One issue that 
needed to be resolved was correlating and reducing the 
diagnoses to a set appropriate for the level of maintenance. 
For example, one level could be defined corresponding to 
the plates within the guidance set, in which case, this 
example would diagnosis to Plate 1. On the other hand, the 
diagnosis could move down a level of indenture to the 
SSLO. If required, we could even isolate to the specific 
cause (SSLO sweeping). 

Unfortunately, all of the examples provided identify the 
diagnosis through the diagnosis text field. This field is 
entered manually by a test technician and follows no 
specific standard. Thus the issue of determining the set of 
diagnoses is complicated by the fact the data may contain 
identical diagnoses that are worded slightly differently. For 
this data set, a domain expert at NSWC Corona examined 
each of the instances and categorized each instance as one 
of 12 diagnostic conclusions. 

The next step required in preparing the data for processing 
is converting the data records into a form compatible for 
processing by a feature-based classifier such as NB or TAN. 
For training purposes, all records must identify values for 
each of the available attributes in a composite feature vector 
over the data set. Thus, the set of parameter codes was 
compiled and compared against the data to create a matrix 
correlating tests and diagnoses. The data set provided 
contained 217 records (i.e., examples), 12 distinct diagnoses 
(after a domain expert examined the specific examples), and 
321 parameters.  

We ran all four algorithms on the data provided and had 
apparently disappointing results. As shown in Table 2, we 
had accuracies ranging from 34% to 43%, which is 
significantly lower than the accuracies obtained from the 
other data sets. Note, however, that these accuracies are 
substantially higher than “chance” (~8%), indicating that 
the networks were able to discern valuable diagnostic 
information in the data. This poor performance can be 
explained by observing that several of the examples only 
had single tests indicting the corresponding failures. Even 
applying the m-estimate will not compensate for such tight 
coupling of test results to diagnoses. 

Manual analysis of large data sets, such as was performed 
for the experiments described here, is not feasible in 
general. Fundamentally, the following issues need to be 
resolved for automating the processing of the STANDARD 
Missile data: 

(1) Descriptions of the diagnostic classes need to be 
normalized to eliminate the issue of identical 
diagnoses being considered as unique, simply because 
of slight wording variations. 

(2) Diagnostic classes either need to be reduced or more 
data obtained to provide a reasonable sample from 
which prior probabilities Pr(Di) can be derived. 

(3) The feature set (i.e., set of parameter codes) need to be 
reduced to a set of essential features. This 
accomplishes two things: First it reduces the size of 
the exemplar matrix to a more manageable size, and 
second it reduces the sparseness problem within the 
data set itself. 

10. FUTURE WORK 

The data collected during maintenance of the STANDARD 
Missile illustrates the type of data that is well suited to 
meeting UID-based diagnostic requirements with Bayesian 
analysis. Data is collected by unit and identified by the UID 
of that unit. This permits data to be collected specific to the 
unit tracked and permits construction of appropriate 
diagnostic models for that unit. The data also provides date-
time groups for test and repair that permit correlation of 
maintenance over an extended time frame. Ultimately, this 
will facilitate creating unit-specific prognostic models as 
well. 

Key to fulfilling the vision of UID in the context of system 
diagnosis and prognosis is cleaning and preparing the data 
for subsequent analysis. Since the UID program is relatively 
new for the STANDARD Missile, the data does not yet 
exist in the appropriate form needed to facilitate automated 
Bayesian analysis. Therefore, the near term work for 
advancing this technology will be on applying data cleaning 
techniques as a pre-processing step. 

In addition to addressing data cleaning/preparation, future 
research will focus on analyzing the reasons for the 
behavior seen in comparing naïve Bayes classification and 
not-so-naïve Bayes classification. One approach under 
consideration is simultaneously a) to relax the spanning tree 
requirement for adding links, and b) to apply concepts from 
forest augmented naïve Bayes networks (FAN) to prevent 
insertion of low-dependency links just because they are 
required to create a full tree. A second approach under 
consideration is applying techniques from model-based 
reasoning for deriving test-to-test dependencies from the D-
matrix as a starting point for defining the architecture of the 
not-so-naïve Bayesian network. 

11. CONCLUSION 

In this paper, we provided a proposal for considering an 
alternative form for Bayesian reasoning in a system 
diagnostics environment. We compared four different 
algorithms that have been published previously in the 
machine learning community to diagnostic data sets from 
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the UCI Machine Learning Repository and considered 
requirements for applying these algorithms to a real-world 
diagnostic problem. We also applied algorithms to real-
world data collected on the US Navy’s STANDARD 
Missile. Results from the initial experiments were somewhat 
surprising in that they demonstrated naïve Bayes 
classification outperforming not-so-naïve Bayes 
classification (contrary to our hypothesis). We believe this 
can be explained by the preference bias inherent in the TAN 
algorithm and plan to explore alternative methods for 
augmenting the naïve Bayes network. Finally, we 
encountered several real-world problems with the 
STANDARD Missile data and suggested steps required to 
prepare the data for subsequent analysis. Even so, we were 
able to complete some preliminary experiments. The results 
on the STANDARD Missile data differed from the UCI 
data sets; however, in that NBNs were shown to be of 
significant benefit on this data. 
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