

 1

Demonstrating Semantic Interoperability of
Diagnostic Models via AI-ESTATE

John W. Sheppard, Stephyn G. W. Butcher, Patrick J. Donnelly, Benjamin R. Mitchell
Department of Computer Science, The Johns Hopkins University

3400 North Charles Street
Baltimore, MD 21218

410-516-6115
jsheppa2@jhu.edu

Abstract—The Institute for Electrical and Electronics
Engineers (IEEE), through its Standards Coordinating
Committee 20 (SCC20), is developing interface standards
focusing on Automatic Test System-related elements in
cooperation with a Department of Defense (DoD) initiative
to define, demonstrate, and mandate such standards. One of
these standards—IEEE Std 1232-2002 Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE)—has been chosen for
demonstration prior to mandate. In this paper, we discuss
the results of the first phase of the AI-ESTATE
demonstration, focusing on semantic interoperability of
diagnostic models. The results of this demonstration
successfully showed the effectiveness of semantic modeling
in information exchange. In addition, the engineering
burden was demonstrated to be manageable: all applications
were constructed in less than four months by three graduate
students working part time.1,2

TABLE OF CONTENTS

1. INTRODUCTION...1
2. DEMONSTRATING AI-ESTATE.......................................2
3. INFORMATION MODELING IN AI-ESTATE3
4. DEMONSTRATION PLAN ...5
5. SCHEMA DEVELOPMENT..6
6. APPLICATION DEVELOPMENT ...7
7. THE DEMONSTRATION ...9
8. CONCLUSIONS ..12
ACKNOWLEDGMENTS ..12
REFERENCES ..12
BIOGRAPHIES ...13

1. INTRODUCTION
The Department of Defense (DoD) has established a
partnership between government, industry and academia to
address architectural design and standardization issues for
automatic test systems (ATS). This DoD ATS Framework
Working Group is focusing on defining an information
framework and identifying standards for next-generation
ATS. The principal requirement to be satisfied by the
framework and associated standards is providing an open
architecture for ATS to reduce overall cost of development
and ownership for resulting families of standards. Based on

1
1 978-1-4244-2622-5/09/$25.00 © 2009 IEEE
2 IEEEAC Paper #1570, Version 10, Updated November 26, 2008

work in the 1990s when the ATS Research and
Development Integrated Product Team defined a set of
“critical interfaces” for ATS, the current working group has
been selecting, supporting the development of, and
demonstrating commercial standards to be used in ATS with
the intent of, ultimately, mandating these standards in future
ATS procurement programs. The current ATS Framework,
identifying relevant standards, is shown in Figure 1.

Of specific interest in the work reported here are the DIAD
(diagnostic data) and DIAS (diagnostic service) interfaces.
Currently, these interfaces are defined as follows:

• Diagnostic Data is that information which supports the
investigation and analysis of the cause or nature of a
condition, situation, or problem through all phases of
the system life cycle.

• Diagnostic Services are those standardized interfaces
that facilitate transmission, conversion, and retrieval of
diagnostic data for utilization in the maintenance
process. These services link results obtained from the
execution of a test with a diagnostic process that
utilizes these results and suggests conclusions or
additional actions that are required.

In 1976, the IEEE established the Standards Coordinating
Committee 20 (SCC20) for purposes of standardizing on the
Abbreviated Test Language for All Systems (ATLAS).
Since then, SCC20 has expanded its scope to develop
standards for larger system-level test and diagnostic related
systems. In 1989, the IEEE approved a project authorization
request (PAR) for SCC20 to develop a new standard
focusing on diagnostic systems that use techniques from the
maturing field of artificial intelligence—the Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE) standard under project P1232.
In 1995, SCC20 approved and published the AI-ESTATE
standard, IEEE Std 1232-1995, and in 2002, the standard
was updated [1].

The AI-ESTATE is undergoing a major revision to update
several standard diagnostic models and to define data and
software interfaces consistent with modern software
architectures [2]. Prior to mandating the revised AI-
ESTATE standard, several demonstrations are being
performed to show that the standard is capable of meeting

 2

relevant DoD requirements for fault diagnostics. The
purpose of this paper is to present the results of the first of
these demonstrations.

2. DEMONSTRATING AI-ESTATE
The AI-ESTATE interoperability demonstration consists of
three phases, where the first phase (now complete) focused
on seamlessly exchanging diagnostic models between
applications. The emerging revision of AI-ESTATE
includes six schemata defining the semantics of the domain
of system-level diagnosis using the ISO 10303-11
EXPRESS language [3]. Phase two will use standard
services to interact with diagnostic reasoners, and phase
three will integrate an AI-ESTATE conformant reasoner
into an automatic test system. This paper focuses on the
results of the first phase.

The principal requirement of the first phase of this
demonstration was to show that models can be created and
exchanged between independently developed reasoner
applications and to assess the extent to which the semantic
definition of the models minimized modification/adaptation
of models when imported by another reasoner. To
accomplish this, XML schemata were derived from the
EXPRESS models for the AI-ESTATE Fault Tree Model
and the AI-ESTATE Bayesian Model using ISO 10303-28
[4]. Diagnostic reasoners were developed by two

independent teams where each team developed a fault-tree
reasoner and a Bayesian reasoner as well as import and
export functions based on the XML and EXPRESS
schemata. The demonstration process considered the impact
on exchanging semantically valid models using the
information from the XML schema alone and from the
XML and EXPRESS schemata combined. The development
process was also monitored to determine the engineering
burden to develop an application based on AI-ESTATE
conformant models.

As we will describe below, the results of this demonstration
successfully showed the effectiveness of semantic modeling
in information exchange. All applications successfully
created, exported, and imported semantically valid models
from the other compatible applications (i.e., fault tree
reasoner to fault tree reasoner and Bayesian reasoner to
Bayesian reasoner) and rejected semantically invalid
models. Exchange based on the XML schemata alone, on
the other hand, resulted in accepting semantically invalid
models. In addition, by using the EXPRESS schemata, no
modifications of imported models were required to make
import succeed. Finally, the engineering burden was
demonstrated to be manageable: all four applications were
constructed in less than four months by three graduate
students working part time.

Executive

Diagnostics

C
TI

IEEE
1505.1

IEEE 1232 Services

UUTITAInstruments

R
TS

A
TM

L1671

Signal
Models

IEEE 1641

Test Adapter
ATML 1671.5

Instrument
Description

ATML 1671.2

Test Station
ATML 1671.6

Test Description
ATML 1671.1

Test Results
IEEE 1636.1

UUT
Description

ATML 1671.3

MAI
IEEE 1636.2

Master Conformance Index ATML 1671.4

AI-ESTATE
IEEE 1232

InstrumentsInstrumentsInstruments

VISA

Test
Program

Note: ATML are IEEE
Standards

DTIF
IEEE 1445

Boundary Scan
IEEE 1149

IVI

ATE

OutcomeTest Reference

Figure 1. Simplified ATS Framework Architecture

 3

3. INFORMATION MODELING IN AI-ESTATE
The purpose of an information model is to specify clearly
the objects in a domain of discourse (e.g., diagnostics) to
enable precise and unambiguous communication about that
domain. Such a model consists of one or more schemata
each of which comprise objects or entities, relationships
between those objects, and constraints on the objects and
their relationships. When taken together, these elements of
an information model provide a complete, unambiguous,
formal specification of the domain of discourse. In other
words, they provide a formal language for communicating
about the subject of interest or domain.

The IEEE 1232 AI-ESTATE standard [1] was developed
using information modeling practices, resulting in the
definition of five models addressing static and dynamic
aspects of the diagnostic domain. The AI-ESTATE
information models are: the Common Element Model
(CEM), the Bayesian Model (BM), the Fault Tree Model
(FTM), the D-Matrix Inference Model (DIM), the
Diagnostic Logic Model (DLM), and the Dynamic Context
Model (DCM). This standard formally defines a set of
standard software information services to be provided by a
diagnostic reasoner in an open-architecture test
environment.

Based on the formal information models, AI-ESTATE
provides three different mechanisms for exchanging
diagnostic information. The historical approach uses the
STEP Physical File Format defined in ISO 10303-21 [5].
This format specifies a simple ASCII, flat file utilizing
tokens within an attribute-value structure and must be used
in conjunction with the EXPRESS Schema. The Diagnostic
and Maintenance Control subcommittee (DMC) is also in
the process of defining an XML schema consistent with the
information model. Busch describes an approach to using
XML, XSLTs, and Part 21 files to exchange data validated
according to both the XML schema and the original
information model [6]. Since publishing this approach, the
DMC decided to use the ISO standard for generating XML
schemata from the EXPRESS [4]. Finally, the third
approach to exchanging information is through the
specification of a software interface (or application program
interface—API). This API is being developed using the
Web Services Description Language (WSDL) [7], and
implementations using this API will be the focus of
subsequent phases of the demonstration.

A. ISO 10303-11 EXPRESS

The DMC decided to specify the various models within AI-
ESTATE using the EXPRESS information modeling
language [3]. Within EXPRESS, models are defined using a
simple hierarchy partitioned along schemata, entities, and
attributes. Furthermore, legal values of attributes are
defined through constraints on those attributes. The scope of
the language is to define the information to be used or

generated by a system or process and is not intended to
define database formats, file formats, or exchange formats.

In addition to the “lexical” EXPRESS language, ISO
10303-11 provides for presenting EXPRESS models in a
graphical form using EXPRESS-G. Figure 2 is an example
of a portion of an information model in EXPRESS-G. To
read this figure, the solid rectangles correspond to entities
while the dashed rectangles are defined types. The principal
distinction between entities and defined types is that entities
are complex types with “attributes” that relate them to other
entities or types within the model. For example, the entity
“Outcome” has two attributes—confidence and
valueDomain—of type “ConfidenceValue” and
“AssignedValue” respectively. The attributes are shown as
solid lines with small bubbles on the ends. The bubbles
identify the type of the attribute. Defined types, on the other
hand, associate meaningful labels with “base” types such as
strings, integers, or Booleans.

The EXPRESS language incorporates a number of object-
oriented features, such as encapsulation, abstraction, and
inheritance. Encapsulation comes from the specification of
schemata where concepts specific to a domain or subdomain
are contained within a single schema. Concepts from other
schemata can be used through the USE and REFERENCE
interface. Abstraction is supported through the specification
of entity or class hierarchies where specialization occurs
through subtyping. Attributes and constraints defined for a
supertype are inherited by all of the subtypes.

Perhaps the most significant feature of the EXPRESS
language is in the definition of mathematical and logical
constraints. EXPRESS supports defining constraints in two
ways—through rules (which are applied globally in a
schema) and through “where” clauses (which are applied to
attributes of an entity). It is through these constraints that
much of the computer-processable semantics are defined.
By constraining relationships and legal values, often in non-
trivial ways, applications are able to discern if the
information being received satisfies the intended meaning
when it was generated and transmitted. It is this point that
shapes the primary objective of this phase of the AI-
ESTATE demonstration.

B. ISO 1030-28 XML Exchange

The main objective of the phase one demonstration is to
show that AI-ESTATE conformant diagnostic models can
be exchanged between two diagnostic reasoner applications
using XML and validated against the semantics defined in
the associated information models. Although there are
several approaches to exchanging such diagnostic models,
the DMC has decided to use ISO 10303-28 (called Part 28
for convenience) for generating XML Schema Definitions
(XSD) for each of the respective AI-ESTATE models [4].
The advantage to using XML is that it is a widely used data
exchange format. The advantage to using XSDs is that they

 4

provide an added layer of semantic specification, primarily
focusing on legal structural relationships between the data
entities. The advantage to using Part 28 is that the structure
of the XSD is coupled with the structure of the EXPRESS
information model, thus eliminating the potentially labor
intensive problem of verifying that a given XSD
corresponds to the standard specification.

For the standard and this demonstration, we considered the
stated scope from Part 28 [4]:

The following are within the scope of this part of ISO
10303:

⎯ specification of the form of XML documents
containing EXPRESS schemas and data governed
by EXPRESS schemas;

⎯ for an arbitrary EXPRESS schema, specification of
an XML schema that corresponds to the EXPRESS
schema and formally describes the XML
representation of data governed by that schema;

⎯ specification of the representation of values of
EXPRESS data types as XML element content and
as XML attribute values;

⎯ specification of the set of configuration directives
that may be used to specify options for the
structure of the XML representation of data sets
that conform to EXPRESS schemas.

The following are outside the scope of this part of ISO
10303:

⎯ specification of XML Schema declarations or
definitions that depend on the semantic intent, as

distinct from the EXPRESS language statements, of
any particular EXPRESS schema;

⎯ specification of mappings from the XML Schema
language to the EXPRESS language.

⎯ specification of the mapping to an EXPRESS
schema from an XML schema that has been
derived from an EXPRESS schema.

Part 28 requires that at least four XSDs be generated when
mapping from an EXPRESS model. The first XSD is named
in a way that identifies the associated information model
and specifies the structure of the information elements
within that model. Three other XSDs are required to support
Part 28 exchange and are used with all models—cnf.xsd,
doc.xsd, and ex.xsd. The first, cnf.xsd, specifies
configuration information for the main schema. Within Part
28, a configuration language is specified that permits
considerable tailoring of the main XSD and associated
instance documents. For purposes of this demonstration, the
default configuration was used (as specified in Clause 7 of
[4]). The second, doc.xsd, corresponds to the document
schema, as specified in Annex D of [4]. The purpose of the
document schema is to provide a common set of XML
Schema declarations that are to be available and used by
any Part 28-generated XSD. The combined set of element
names, attribute names, and data type names define the
namespace for the schema. Finally, the third schema,
exp.xsd, defines the base schema as specified in Annex C of
[4]. Similar to the document schema, the base schema
defines a set of common definitions and declarations to be
used in all Part 28-conforming instance documents.

As described below, all four XSDs were generated for each
of the demonstration information models. Key to

(Diagnosis.allowedOutcomes)
*(INV) forDiagnosis

3,3 Diagnosis

*DiagnosisOutcome

(ABS)
Outcome

1

*TestOutcome

*qualifier

QualifierType

STRING

(Test.allowedOutcomes)
*(INV) forTest

2,1 Test

(Action.allowedStatus)
*(INV) forAction

2,2 Action

*ActionOutcome

valueDomain
AssignedValue

4,3(2) 4,2(2)

maxConfidence
*ConfidenceValue

REAL

4,1(3)

Figure 2. Sample EXPRESS-G Specification for AI-ESTATE

 5

understanding the role of Part 28 in AI-ESTATE is in the
second two bullets in scope, namely the specification of an
XML schema corresponding to an EXPRESS schema and
the specification of how to represent values of an EXPRESS
data type in XML. Also of note is the first bullet out of
scope. Any resulting XSD is not intended to address all of
the semantic specification that is resident in the associated
EXPRESS schema. Why? Because inherent limitations of
XML Schema make an XSD incapable of representing these
semantic specifications. This motivates the objective in the
phase one demonstration to illustrate where the lack of such
semantic specification in an XSD breaks down and, thereby,
demonstrate the benefit of coupling an EXPRESS
information model with an XSD in performing semantic
validation.

C. Key Information Models

The AI-ESTATE standard defines six information models
that play various roles in the diagnostic process [2]. These
information models are named as follows:

• AI_ESTATE_COMMON_ELEMENT_MODEL
• AI_ESTATE_FAULT_TREE_MODEL
• AI_ESTATE_DMATRIX_INFERENCE_MODEL
• AI_ESTATE_DIAGNOSTIC_LOGIC_MODEL
• AI_ESTATE_BAYES_MODEL
• AI_ESTATE_DYNAMIC_CONTEXT_MODEL

The models are listed above in an order that illustrates the
roles the various models serve.

The Common Element Model (CEM) is intended to capture
the key concepts from system diagnosis that would be used
or made available for any diagnostic system. For example,
entities have been defined for tests, diagnoses, outcomes,
costs, and actions. However, attributes that relate various
outcomes (test, diagnosis, or action) to each other have been
left out of the CEM because those relationships, for
example, the relationship between outcomes and diagnoses,
begin to define a reasoner. Therefore, such relationships are
not included in the CEM but are specified in the models
associated with a particular reasoner type.

The next four models specify information and relationships
between outcomes (test, diagnosis, and action) that would
be used by an associated diagnostic reasoner. So far, the
DMC has specified models for four distinct types of
reasoners: fault trees, D-matrix/associative, logic/rule-
based, and Bayesian. Because AI-ESTATE attempts to
provide a formal semantic foundation for different types of
reasoners, the standard models necessarily omit certain
characteristics that were deemed either not sufficiently
mature or not commonly applied. Here, we will describe
only the two models involved in the demonstration.

The Fault Tree Model (FTM) was specified to support
traditional, legacy diagnostic systems based on a decision

tree. Fault-tree based tools have existed since the 1970s, and
most technical manuals and test programs still follow a
structured decision tree to perform diagnosis. The structure
of a fault tree can be viewed as a decision tree or table. The
nodes in the tree correspond to the different tests to be run
during the fault isolation procedure. Each branch from a
particular node corresponds to one of the possible outcomes
for that test and points either to a follow-on test or to a
diagnosis. AI-ESTATE also adds the ability to associate
intermediate diagnoses in interior nodes of the tree and to
associate confidence information with tests and diagnoses.
These optional extensions provide a means to modernize the
fault tree while still supporting the legacy approach.

The Bayes Model (BM) is the first diagnostic information
model introduced into AI-ESTATE since the 2002 standard
was published. The intent of the BM was to provide an
approach to representing probabilistic models in terms of
relationships between random variables in the test and
diagnosis process. For this model, the random variables are
restricted to tests and diagnoses with the domains of the
variables being the respective sets of outcomes.
Assumptions made with this model include that random
variables corresponding to diagnoses can depend only on
test variables and the probability tables are to be fully
explicated (including closure, i.e., summing to one across
dependent joints). The Bayesian model was added to AI-
ESTATE because many diagnostic reasoning systems are
emerging that make use of Bayesian networks and Bayesian
inference. The intent was to provide a foundation for
exchanging such models.

The final model specified in AI-ESTATE, focuses on
capturing historical information from a diagnostic session.
This model—the Dynamic Context Model (DCM)—
represents the diagnostic process as a sequence of steps
performed where one or more tests are evaluated at each
step. Following the execution of the test(s), the diagnostic
reasoner is invoked to draw inferences from the test results
and update an internal hypothesis of what it believes the
fault state of the system is. Arguably, the DCM could also
be used to manage the state of the reasoner; however, the
DMC decided that standardizing at this level would result in
imposing an implementation approach that violates the
intended role of AI-ESTATE.

4. DEMONSTRATION PLAN
The first phase of the demonstration focused on exchanging
two of these models—the Fault Tree Model and the
Bayesian Model. The rationale for selecting these two
models is discussed in the next section. For this phase of the
demonstration, the following steps were performed:

(1) Each diagnostic approach was implemented twice as a
standalone application. Thus two applications for fault
tree diagnosis and two applications for Bayesian

 6

diagnosis were created. In one case, the fault tree and
Bayesian application were consolidated into a
common tool. Each application was implemented
independently, by two teams of students. One team
completed a web-based application, and the other
completed a desktop application. No code was shared
between the teams, resulting in two implementations
of each approach and associated model type.

(2) The applications for the Fault Tree model were
developed for creating and editing diagnostic fault
trees and performing diagnosis with those fault trees.
For the latter, a simple user interface was developed
whereby test results could be provided to the
application. No actual hardware tests were run.

(3) The applications for the Bayesian model were
developed for creating and editing simple diagnostic
Bayesian networks and performing diagnosis with
those Bayesian networks. For one Bayesian
application, a separate Bayesian network reasoner that
was developed by a fourth student as part of his
masters project was used for the inference engine. For
the second Bayesian application, the University of
Pittsburgh Structural Modeling, Inference, and
Learning Engine (SMILE) was used.

(4) Each application was developed to read and write
models in the XML format according to the AI-
ESTATE XML Schema. All reading was done with a
validating parser using the AI-ESTATE XML
Schema. Additionally, each module was implemented
to perform model validation according to the
EXPRESS information model.

(5) Several test scenarios were constructed to evaluate the
effectiveness of the exchange process. Most were
designed to demonstrate the variety of errors that can
occur and the necessity of both kinds of validation
when exchanging models. Two larger scenarios were
designed to demonstrate the success of the export,
import/export, import sequence between applications.

(6) The demonstration process itself consisted of the
following steps for each of the two applications:

a. Each application was used to develop a Fault Tree
and a diagnostic Bayesian Network. The
diagnostic models were based on a simple model
of a door bell to make them small enough to
explain yet large enough to be “interesting.”

b. Each application was exercised to demonstrate the
ability of that application to use the Fault Tree
and the Bayesian Network for diagnosis.

c. Each application was used to create AI-ESTATE
conformant exchange files for the Fault Tree and
Bayesian Network.

d. The exchange files were passed from the creating
application to the other application, and the
receiving application was used to import and
validate the models, based on both the XSD for
the model and the associated EXPRESS
information model.

e. Each application was exercised to demonstrate the
ability of that application to use the received Fault
Tree and diagnostic Bayesian Network to perform
diagnosis.

f. Each of the received diagnostic models were then
modified using the editing features of the
application. Exchange files of the modified
models were created, and the exchange files were
subsequently passed back to the original
applications. These applications were then
exercised to demonstrate that they could process
the received, modified models.

In addition to the basic process described above, additional
tests were performed to show the limitations of XML-based
validation. Specifically, models were created using an
external text editor that violated one or more of the
EXPRESS constraints that cannot be represented in XML
Schema. For example, in the Bayesian network, a
probability table was defined where the probabilities for a
particular variable did not sum to one. The applications then
demonstrated that the resulting model would validate
against the XML validator but fail against the EXPRESS
validator.

5. SCHEMA DEVELOPMENT
For any process based on the exchange of XML files, one of
the most important requirements is to develop a standard
definition of the “vocabulary” to be used for the XML
documents. This enables every party to be confident that
others will be able to read their files and they will be able to
read others’ files. There are currently several specifications
that can be used to create definitions of such a vocabulary
or “schema”. These are DTD, XML Schema Definitions
(XSD), RELAX NG, and Schematron. XSDs have largely
replaced DTDs by providing a language to define XML
schemas in a format that is itself XML-based and are the
most common.

As previously noted, Part 28 defines how to map an
EXPRESS model to an XSD. Although this is a great boon
for facilitating the exchange of such models in XML format,
it is far from a trivial task to convert an arbitrary EXPRESS
model into an XSD. It should also be noted—and this will
be a recurring theme—that the XSD and XSD validation
have weaker semantics than the original EXPRESS model.
Nevertheless, as long as the limitations are recognized,
exchanging EXPRESS models in XML can be very
convenient.

 7

Fortunately, we were able to sidestep the difficulty of
creating a Part 28 compliant XSD from the AI-ESTATE
EXPRESS model specification. Instead of creating the
XSDs by hand, we were able to use a tool called Jen-X that
generates “default” XSDs (where “default” is defined by the
standard) from a long form EXPRESS model [8].

To create the XSDs required for this project, we first took
the simplified AI-ESTATE Fault Tree and Bayes Network
models and created long form versions of them. In other
words, the Common Element Model was physically
imported into each of the models. Second, we ran the
EXPRESS models through the Jen-X tool to generate the
XSDs. These two XSDs were the ones used for the
demonstration project.

One additional tool proved to be very useful for the project.
DocFlex-XML generates HTML documentation (like
JavaDoc) for XSD files. This tool proved invaluable for
documenting the automatically generated XSDs without
resorting to commercial tools such as XMLSpy.

6. APPLICATION DEVELOPMENT
Two separate teams were responsible for application
development. Each team was tasked to independently
implement two applications: a Fault Tree diagnostic
reasoner and a Bayes Network diagnostic reasoner. The
specifications for each application were as follows:

(1) Each application should be able to create, save and
edit the implemented diagnostic reasoning model
(Fault Tree or Bayesian Network).

(2) Each application should be able to use the model for
diagnosis including the recording and display of test
results and ambiguity groups. Display features should
be appropriate to the model implemented.

(3) Each application should be able to validate and import
a model from an XML file. The model should be
validated using both the XSD and those constraints in
the EXPRESS information model that could not be
expressed in the XSD.

(4) Each application should be able to export valid models
with validation including both XSD and EXPRESS
constraint checking.

Programming languages, frameworks and other such
architectural details were left up to the individual teams.
The project leader stood in for the “customer” when
specification and feature questions arose.

A. Team A Application

Team A’s application is written entirely in the Java
programming language. All components were developed

expressly for this application or use standard packages of
the Java 6 API, with the sole exception of the Bayesian
inference engine. This engine, which was created by
another graduate student as an independent project, is also
written in Java.

The application has two distinct modes of operation: the
first for creating, editing, and evaluating FTMs and the
second for creating, editing, and evaluating BMs. Each
mode has a Graphical User Interface (GUI) for creating and
editing the diagnostic models, as well as a separate interface
for performing diagnostic evaluation of the current
diagnostic model. The interface for entering test results for
diagnosis requires manual data input by the user, as does the
interface for the creation and modification of diagnostic
models.

The EXPRESS compliant XML exchange file format is
used as the application's native file format. Therefore, any
time a model is saved to or loaded from disk, it must be
converted from the internal data model of the application to
the standard XML exchange format, or vice-versa. When an
XML file is loaded from disk, the application checks the
model against both the XSD constraints and the EXPRESS
semantic constraints. In the event a model fails validation,
the application generates an error message explaining which
constraint has been violated and whether it is an XSD-based
constraint or a higher-level EXPRESS constraint.

Furthermore, the application can be set to ignore errors in
this validation step. This allows models which are correct
but incomplete, such as a BM in which the probability
tables have not yet been populated, to be loaded so that the
model can be completed. The application will still generate
validation error messages in this mode, but will continue
trying to load the model in spite of the errors. Truly
malformed models will still fail to load if the data in the file
cannot be mapped to the data structures expected by the
standard.

The application contains three principal components: the
graphical user interface, the data model, and the XML
parser and validator. The data model is a set of Java classes
that contain information about the active diagnostic model.
Because we chose to use the XML exchange format as our
native file format, the structure of the data model closely
parallels the model format defined by the exchange
standard. This means that there are several classes in the
data model that are not directly interacted with by the user
via the GUI, but it also means that the translation to and
from XML is a very natural one. In particular, writing XML
files is a straightforward process of recursive traversal of
the data model in memory, with each class possessing the
knowledge of how to translate itself into AI-ESTATE
conformant XML.

The GUI is composed of a set of classes inheriting from the
standard Java Swing package. It does not contain a separate

 8

data model, but rather communicates with the underlying
data model directly, passing messages to the data model
both to modify the data based on user input and to update
the GUI display based on the current state of the model.

The XML parser/validator makes use of the standard Java
Document Object Model (DOM) XML parser both for
reading the file into memory and for the XSD based
validation. The DOM objects are then parsed by code
specific to the application that extracts semantic information
based on the AI-ESTATE specification and then creates
new objects in the application's data model with the same
semantic content. Application specific code also validates
any EXPRESS constraints which are not checked by the
XSD; as mentioned earlier, this includes verifying that the
probability tables are well formed by ensuring that all rows
are the same length, that the length is correct given the set
of dependencies, and ensuring that each row sums to one.

While these tests had to be hand written (as opposed to the
XSD, which was extracted from the EXPRESS standard in
an automated fashion), the engineering burden imposed was
fairly minor. This is due to the fact that many constraints are
already checked by the XSD, while others do not need to be
checked, as they are true by construction (e.g., the standard
has EXPRESS constraints to check that parent-child
relationships are bi-directional, but since the application
creates the links, it is impossible for a uni-directional
relationship to exist. Thus, this constraint and a number of
others like it did not need to be explicitly tested). Only a
small number of tests actually had to be written by hand,
and most of them were quite simple, taking only a few lines
of code to perform.

B. Team B Application

Team B also developed a consolidated application that
could handle both types of models, Fault Trees and
Bayesian Networks. The application is written as a
networked web application. The client consists of an Adobe
Flash application written using the Flex software
development kit (SDK). Flex allows for the creation of
Flash applications using a combination of ActionScript and
compilable XML to describe the user interface and provide
behavior. The resulting application can be run in any
browser that supports Flash 9.

The server is implemented using Ruby on Rails, a popular
web application framework. In this particular case, Rails is
run under jRuby, the implementation of Ruby for the Java
Virtual Machine. The main advantage to running Rails
under jRuby is that jRuby provides full access to Java-based
libraries from inside the Ruby language and thus Rails. This
is an important design consideration because the Bayesian
Network inference library used was the SMILE library
written by the University of Pittsburgh. Although SMILE is
a C++ library, a Java Native Interface (JNI) wrapper is also

provided permitting access to the library inside Java. JRuby
provides access to that from inside Rails’s Ruby code.

Communication between the client and server is mediated
using Adobe’s Action Message Format (AMF) for binary
object serialization. Using binary serialization required
writing all data models in both Ruby and ActionScript.
Although serialization and deserialization are handled
automatically by the client, server-side serialization and
deserialization is accomplished using the RubyAMF
component. On the server-side, all models are stored using
the YAML Ain’t Markup Language (YAML) format to
mimic the use of a proprietary format. YAML is a simple
plain text format.

The application has several distinct modes of operation
meant to cover the specifications. The first mode is an edit
mode where a model can be created, edited, loaded and
saved. In edit mode, a user can create an entire model on the
client-side by adding and editing Repair Items, Faults and
Tests, arranging them in a Fault Tree or Bayesian Network
and then send the model back to the server for saving.
Because the application uses a simple file format for
persistence, partial models can easily be saved and retrieved
for later editing.

The data model was designed to capture the main
characteristics of the underlying information model without
replicating it in its entirety in the class hierarchy. In many
cases, EXPRESS entities were “de-normalized” as attributes
of parent classes, especially when those entities were not
required elsewhere in the application. However, when the
objects are exported, they are “normalized” into an AI-
ESTATE compliant form.

The second mode is a diagnostic mode where a model can
be loaded from the server into the client and then used to
perform diagnosis. In the case of the Fault Tree, all
inference is performed client-side because of the simplicity
of the inference mechanism in fault trees. The UI walks the
user through the tree, prompting for test results and
redisplaying the ambiguity group. In the case of the
Bayesian Network, because of the computational resources
required, inference is performed on the server-side. In this
case, the UI presents all tests to the user. Any number of test
results can be entered and then inference is performed using
just those test results by sending them to the server. With
each inference request, the server provides new conditional
probabilities for the ambiguity group back to the client.

C. Differences Between Applications

Because the applications were created independently, there
are several major differences in design between them. The
first and most obvious is the fact that the language choices
were quite different; Team A used a single language (Java),
while Team B used a suite of several different languages to
implement different features. Additionally, Team B used a

 9

client/server architecture with a UI which ran in a web
browser, while Team A created a stand-alone desktop
application.

There were also several design choices made by the two
teams which could reflect different real world design
requirements. For instance, Team A used the Part 28 format
as its native file format, and the software data model closely
paralleled the EXPRESS data model as a result. Team B, on
the other hand, used YAML for serialization of its objects,
giving it the equivalent of a “proprietary” file format, using
Part 28 only for import/export purposes. The software data
model for Team B was, therefore, much less similar to the
EXPRESS data model; many of the intermediary layers of
the object hierarchy in the EXPRESS model were
compacted or left out of the software data model.

The Team B model might better reflect the usage pattern of
a legacy application, or an application which needed to store
extra information (e.g. vendor specific data beyond the
scope of AI-ESTATE) in a proprietary format, but still
wanted to support AI-ESTATE compliant models. The
Team A model, on the other hand, would be a better model
for an application primarily designed to consume and
produce models for use by other systems. An example of
this would be an application for learning or improving
models based on historical data, or an application for taking
diagnostic models from many different vendors and
providing a standard API for doing diagnosis with them in
the field.

7. THE DEMONSTRATION
Because the main objective of the demonstration is to show
successful model validation and exchange, a simple system
was chosen so that it could be easily explained. This system
was a simple door bell circuit as shown in Figure 3. The
circuit contains three main items: a clapper-type bell, a push
button-type switch, and a battery. This circuit can fail in
several ways. The battery can die, the switch can fail to
make contact, the switch can jam (thus working the first
time but not the second time it is pushed), the clapper can
be stuck open, the clapper can be stuck against the bell or
the solenoid can be stuck.

The circuit can be tested in a number of ways. The button
can be pushed, it can be pushed twice in succession, a
voltage meter can be used to test the battery, a stimulus can
be applied to the bell, or a bridge can be applied at the
switch.

Two types of diagnostic models were created for this
circuit, a Fault Tree and a Bayesian Network (Figure 4 and
Figure 5 respectively). Both models were created using each
team's application. The Part 28 EXPRESS XML
representations of these models using the simplified AI-
ESTATE specification form the basis for the demonstration

tests. For the first nine tests, specific errors were introduced
into correct XML model files with the intent of testing
import validation. Some of the errors can be caught by the
XSD while others cannot, demonstrating the necessity of
implementing some of the EXPRESS constraints in code.

The final two tests show the round-trip process of exporting
the model from one application, importing, modifying, and
exporting the model with the second application, and then
importing the model back into the first application. The first
nine demonstration tests are described first. After that, the
modifications to the models for the final two tests are
shown. Note that all of the tests are single failure tests
because XSD validation stops on the first failure found so
while it would be possible to create a single model with all
of the errors demonstrated in the tests, the XSD would still
only find the first one. Therefore to demonstrate the XSD’s
ability (or inability) to find errors requires that each model
file only have one error.

A. Importing with an Unknown Reference

For this test, an element is made to reference a non-existent
entity. Many elements reference other elements that are
defined elsewhere in the document. They are able to do this
by using the “ref” property. The value of the ref property
must match the value of the “id” property of some element
in the document. Starting with a correct XML model file for
a Fault Tree, the ref property of the Diagnosisoutcome
element is set to a value that does not correspond to the id
of any element in the document, “sw-o-candidate.”

As we expected, the XSD correctly caught the reference to
the non-existent element as indicated by the message “XSD
detected error:”. The somewhat intimidating error message
that followed was produced by the Java DOM API used to
validate the XML file:

[Thu Oct 16 17:47:07 GMT-0400 2008] XSD detected error:
Key 'Ai_estate___Diagnosisoutcome-keyref' with value 'sw-o-candidate'
not found for identity constraint of element 'uos'.
Full EXPRESS validation errors detected:
Full EXPRESS validation aborted with XSD validation failure.

This is one problem we found with XSD errors, they are
very often difficult to interpret without some practice.

Figure 3. Simple Doorbell Circuit

 10

B. Importing with a Missing Required Element

For this test, a required element is missing. The XSD
enforces EXPRESS constraints for required properties by
making the child element that represents the property a
required element. Starting with a correct XML model file,
the required “description” child element is removed from
the Repairitem element, “switch.”

As we expected, the XSD correctly caught the problem with
the model. The error message indicates that the something is
missing from the content of element “ai:Repairitem”. As we
described above, the Description element was deleted to
make this model incorrect.

C. Importing with the Wrong Number of Elements

For this test, an element has the wrong number of children.
The XSD enforces EXPRESS cardinality constraints by
requiring the correct number (minimum, maximum or other)
of child elements. Starting with a correct XML model file,
one of the Diagnosisoutcome elements is deleted from the
Allowedoutcomes element of a Fault element.

Here XSD validation correctly caught that the number of
elements in the content of the tag “Allowedoutcomes” was

wrong and missing a Diagnosisoutcome. This is what we
expected to happen when trying to import this model.

D. Importing with an Empty Element

For this test, an element that can be empty (zero children are
permitted) is omitted. In several places in the AI-ESTATE
specification, entities reference collections that are
permitted to be empty. When translated to XML, this means
that the collection may have zero child elements. However,
the tag representing the collection is still required even if it
is just an empty tag. Starting with a correct XML model file,
we remove the Currentdiagnosisoutcomes from a TestResult
element. While the Currentdiagnosisoutcomes element—
which represents the current test result’s ambiguity group—
is permitted to be empty, the tag itself must be present.

This file contains an error that is a fairly easy mistake to
make when writing XML files. When writing the XML file,
it is often tempting to leave out a tag when it has no content.
In this case, the Currentdiagnosisoutcome tag was omitted
from the model. However, as expected, XSD validation
caught the error.

E. Importing with a Missing Probability

For this test, an error is introduced that is specific to the
Bayesian Network model. In this case, a probability is
missing. This is basically the same as the test in section B
above but is conducted with a different XSD (the Bayesian
Network XSD) and is provided to contrast what can and
cannot be validated by XSDs. In this case the required
Probability element of the Bayesttestoutcome element is
removed.

After attempting to import the erroneous model file, the
console reported the following error:

[Thu Oct 16 17:51:51 GMT-0400 2008] XSD detected error:
cvc-complex-type.2.4.b: The content of element 'ai:Bayestestoutcome' is
not complete. One of '{"":Probability, "":Confidence}' is expected.
Full EXPRESS validation errors detected:
Full EXPRESS validation aborted with XSD validation failure.

Here we can see that the XSD caught the error of the
missing Probability tag as we expected.

F. Importing with Incorrect Minimal Outcomes

In this test, an error is introduced by specifying an incorrect
combination of values. The AI-ESTATE specification states
that each Fault must have two Diagnosisoutcomes with
values “good” and “candidate”. If there are more, then other
values are permitted but there must at least be those two
values. Here we introduce an error by changing the
“candidate” outcome to be the “bad” outcome instead.

Each application should reject this model because although
it will pass XSD validation, the error will be caught by full
EXPRESS validation. “Full EXPRESS validation” in this

Figure 4. Fault Tree for Doorbell Circuit

Figure 5. Bayesian Network for Doorbell Circuit

 11

case and the ones that follow refers to the constraints in the
EXPRESS model that could not be expressed in the XSD
and must be checked by the additional code.

After attempting to import the erroneous model file, the
console reported the following error:

[Thu Oct 16 17:52:36 GMT-0400 2008] No XSD errors detected.
Full EXPRESS validation errors detected:
_1617A054-58E2-6BC0-37BA-3A4642728560:Fault.allowedOutcomes
must have at least have outcomes of 'good' and 'candidate'.

Here we find our first error that cannot be detected by the
XSD. In this case, we were able to detect that one of the two
necessary outcomes was not provided. The full EXPRESS
validation implemented in the application caught the error,
but no XSD errors were detected.

G. Importing with Duplicate Names

For this test, an error is introduced that cannot be detected
by XSD validation. Many EXPRESS entities in the AI-
ESTATE specification are required to have globally unique
names. For example, it is not permitted to have a Repairitem
named “Battery” and a Bayesfault named “Battery”. The
second one must be named “Battery Fault” or anything not
used elsewhere in the model.

After attempting to import the erroneous model file, the
console reported the following error:

[Thu Oct 16 17:53:54 GMT-0400 2008] No XSD errors detected.
Full EXPRESS validation errors detected:
Battery:Fault has a conflicting name with _214D7F66-1EE0-B04B-D4D2-
3A44C2F55447:RepairItem

For this test, we made names of two different entities in the
XML file to be the same. The error indicates which two
items share that name.

H. Importing with Mismatched Dependencies

For this test, we look at another constraint violation that
cannot be detected by the XSD. The number of probabilities
required in the Probability element of a Bayestestoutcome is
a function of the number of children of its parent’s
Dependsonelement and their cardinality. For this particular
case, we look at the Bayestest for “push”. This test depends
on two other tests and a single fault, each of which have a
cardinality of two. This requires 23 probability values to be
specified for each Bayestestoutcome. Instead we only
specify 22 probability values for each Bayestestoutcome.

After attempting to import the erroneous model file, the
console reported the following error:

[Thu Oct 16 17:54:19 GMT-0400 2008] No XSD errors detected.
Full EXPRESS validation errors detected:
_6D116E1F-4CA2-274A-C473-3A4803F313EE:BayesTestOutcome
probability size should be 8 not 4

_5DA9B1AB-8C6B-4D96-4D4C-3A4803F39BDD:BayesTestOutcome
probability size should be 8 not 4

The test demonstrated one of the more complicated
constraints in the underlying AI-ESTATE specification and
it was caught by the full EXPRESS validation. The number
of probabilities enumerated in the Probabilities tag of a
Bayestestoutcome must comport with the number and
cardinalities of the Faults and or Tests that the parent
Bayestest depends on. As the error message indicates, for a
correct file, this would have been eight probabilities but the
file only contained four. Again, the XSD detected no errors.

I. Importing with Invalid Probabilities

For this test we look at a constraint violation similar to that
in section H that cannot be detected by the XSD. Looking at
the same Bayestestoutcome elements, given a “pass” and a
“fail” element, the corresponding probabilities enumerated
in the Probability element must sum to one. Suppose we use
the following XML fragment in our model:

<ai:Bayestestoutcome id="_476389C2">
 <Valuedomain>pass</Valuedomain>
 <Probability>0.99 0.98 0.99 0.02</Probability>
</ai:Bayestestoutcome>
<ai:Bayestestoutcome id="_CCD6D689">
 <Valuedomain>fail</Valuedomain>
 <Probability>0.01 0.05 0.01 0.98</Probability>
</ai:Bayestestoutcome>

We need to sum the probabilities in the Valuedomain of
“pass” and the corresponding probabilities in the
Valuedomain of “fail.” Notice the first probability entries
for the Probability element of the “pass” and “fail”
Bayestestoutcomes, 0.99 and 0.01 sum to one as they
should. However, if we look at the next set of
corresponding entries, 0.98 and 0.05, we see that they do
not sum to one.

After attempting to import the erroneous model file, the
console reported the following error:

[Thu Oct 16 17:54:46 GMT-0400 2008] No XSD errors detected.
Full EXPRESS validation errors detected:
_6439B11A-80EA-3A3C-D430-
3A48CE83E26B:BayesTest.allowedOutcomes corresponding probabilities
must approximately sum to 1.0 (not 1.03).

Once again, this was caught by the full EXPRESS
validation. The XSD detected no errors.

J. Model Transfer: A-to-B-Edit-to-A

For this test, we started out with the Fault Tree model
loaded into Team A’s application. We note that for the Fault
Tree model, a test result sequence of stim-fail, push/push-
pass leads to an ambiguous diagnosis of “Sol-O” (solenoid
open) or “Clap-O” (clapper open). The model was then
exported for use by Team B’s application. After importing
the Fault Tree model, a new test was added to the model

 12

“Open” (for “open” bell casing). By visual inspection of the
opened bell, this test can resolve the previously noted
ambiguity. After creating the test, it was added to the proper
place in the Fault Tree. The model was then exported and
then imported back into Team A’s application where the
changes were visible. The process completed successfully
as expected.

K. Model Transfer: B-to-A-Edit-to-B

For this test, we started out with the Bayes Network and
Team B’s application. We first exported the model and
loaded it into Team A’s application. For this test we noted
that the battery, bell and switch are not the only components
of the bell circuit. There is also the wiring. For this
modification, we added a new Repairitem (wiring), a new
Fault (wiring fault) and a new Test (short). For simplicity,
we made the Test depend directly on only the wiring fault.
After editing the model, we exported it and then re-imported
it into Team B’s application where the changes were visible.
The process completed successfully as expected.

8. CONCLUSIONS
Two of the primary motivations behind the DoD adopting
consensus standards for ATS development are to reduce
cost by improving interoperability and to minimize repeated
design of similar systems. The IEEE SCC20 standards focus
on promoting information interoperability between
components of a test or health monitoring system. The
emphasis by the DOD on acquisition reform based on
commercial standards for ATS, combined with declining
budgets mandates the need for more affordable health
management system development and operation.

A key objective of the demonstration reported here was to
show that information can be shared between applications in
such a way that re-engineering is minimized, external
agreements on handling the data are minimized and, if
possible, eliminated, and information validation is provided
beyond simple structural validation. An associated concern
is whether the implementation of standards purporting to
provide these characteristics can be done in a cost-effective
manner. It is clear from this demonstration that AI-ESTATE
satisfies all of these concerns when exchanging diagnostic
models. A pair of complete fault tree and Bayesian
diagnostic systems was developed, including facilities to
export, import, and semantically validate diagnostic models.
Furthermore, these systems were developed from scratch by
three graduate students working part time for four months.

ACKNOWLEDGMENTS
We thank Heidi Preston for permitting us to use the Jen-X
tool and for her assistance in resolving some issues, both
with the tool and with our models. We also thank the
Decision Systems Laboratory at the University of Pittsburgh

for allowing us to use their SMILE reasoning engine in one
of the Bayesian applications. We thank Charles Robertson
for allowing us to use his BayesNetBuilder engine for the
other Bayesian application. Finally, we thank Michael
Malesich, Jennifer Fetherman, Michael Seavey Mukund
Modi, Joseph Stanco, Timothy Wilmering, Michelle Harris,
Darryl Busch, and the anonymous reviewers for their
guidance, both in the completion of this project and in the
preparation of this paper. This work was supported via the
Johns Hopkins University Applied Physics Laboratory
under contract N00024-03-D-6606 with the US Navy.

REFERENCES
[1] IEEE Std 1232-2002, IEEE Standard for Artificial

Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE), Piscataway, New Jersey:
IEEE Standards Association Press, 2002.

[2] IEEE P1232, Draft IEEE Standard for Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE), D1.0, Piscataway, New
Jersey: IEEE Standards Association Press, 2008.

[3] ISO 10303-11:1994, Industrial Automation Systems and
Integration—Product Data Representation and
Exchange—Part 11: Description Methods: The
EXPRESS Language Reference Manual, Geneva,
Switzerland: International Organization for
Standardization, 1994.

[4] ISO 10303-28:2007, Industrial Automation Systems and
Integration—Product Data Representation and
Exchange—Part 28: XML Representation of EXPRESS
Schemas and Data using XML Schemas, Geneva,
Switzerland: International Organization for
Standardization, 2007.

[5] ISO 10303-21:1994, Industrial Automation Systems and
Integration—Product Data Representation and
Exchange—Part 21: Implementation Methods: Clear
Text Encoding of the Exchange Structure, Geneva,
Switzerland: International Organization for
Standardization, 1994.

[6] Busch, D., “Validation of XML Data Against an
EXPRESS Schema Using XSLT Translation to Part 21
Format,” IEEE AUTOTESTCON 2007 Conference
Record, IEEE Press, pp. 64–71, September 2007.

[7] W3C, Web Services Description Language (WSDL),
v1.1, W3C Note, http://www.w3.org/TR/wsdl, March 15,
2001.

[8] Preston H., T. Rondo, and J. Tennison, The Jen-X Tool
for EXPRESS-to-Part 28 Conversion, v. 2.0, available
from http://pdesinc.aticorp.org/vendor/Jen-X.html.

 13

BIOGRAPHIES

John Sheppard is the RightNow
Technologies Distinguished Professor
of Computer Science at Montana State
University. He is also an Associate
Research Professor at Johns Hopkins
University. His research interests
include algorithms for diagnostic and
prognostic reasoning, machine
learning and data mining in temporal
systems, and reinforcement learning.

Dr. Sheppard holds a BS in computer science from
Southern Methodist University and an MS and PhD in
computer science from Johns Hopkins University. He is a
fellow of the IEEE and currently serves as Vice Chair of the
IEEE Standards Coordinating Committee 20 (SCC20) on
Test and Diagnosis for Electronic Systems

Steve Butcher is currently pursuing
his PhD in computer science at the
Johns Hopkins University. He has
served as a lecturer in economics and
grader in computer science. He
received his BA in economics from the
California State University,
Sacramento, his MA in economics
from The American University,
Washington, DC, and his MS in

computer science from Johns Hopkins. His research
interests are in machine learning and include Bayesian
networks and evolutionary computation.

Patrick Donnelly is currently pursuing
his Ph.D in computer science at Johns
Hopkins University. He previously
received a BS in computer science and
an AB in music history and Italian
literature from Washington University
in St. Louis. He also holds an MSE in
computer science from the Whiting
School at Johns Hopkins, and both the
MM in musicology and the MM in

computer music from the Peabody Conservatory at Johns
Hopkins. His research interests are primarily in machine
learning in the musical domain.

Benjamin Mitchell is currently
pursuing a PhD in the Johns Hopkins
University department of computer
science. He has previously received a
BA in computer science from
Swarthmore College, and an MSE in
computer science from Johns Hopkins
University. His interests are in
artificial intelligence and machine
learning, with an emphasis on finding

solutions to the problems involved in autonomous mobile
robotics.

