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Abstract—The Institute for Electrical and Electronics 
Engineers (IEEE), through its Standards Coordinating 
Committee 20 (SCC20), is developing interface standards 
focusing on Automatic Test System-related elements in 
cooperation with a Department of Defense (DoD) initiative 
to define, demonstrate, and recommend such standards.12 
One of these standards-IEEE Std 1232-2002 Artificial 
Intelligence Exchange and Service Tie to All Test 
Environments (AI-ESTATE)-has been chosen for 
demonstration. Previously, we presented the results of the 
first phase of the AI-ESTATE demonstration, focusing on 
semantic interoperability of diagnostic models. The results 
of that demonstration successfully showed the effectiveness 
of semantic modeling in information exchange. In addition, 
the engineering burden imposed by stronger semantic 
requirements was demonstrated to be manageable. In the 
second phase, the focus was on supporting reasoner 
interoperability by implementing semantically defined 
software services in a service-oriented architecture. Here, 
we present an overview of the semantic interoperability 
problem in the context of diagnostic reasoning and discuss 
the results of the second phase of the demonstration.  
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1. INTRODUCTION 
The Department of Defense (DoD) has established a 
partnership between government, industry and academia to 
address architectural design and standardization issues for 
automatic test systems (ATS). This DoD ATS Framework 
Working Group is focusing on defining an information 
framework and identifying standards for next-generation 
ATS. The principal requirement to be satisfied by the 
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framework and associated standards is providing an open 
architecture for ATS to reduce overall cost of development 
and ownership for resulting families of standards. Based on 
work in the 1990s when the ATS Research and 
Development Integrated Product Team defined a set of 
“critical interfaces” for ATS, the current working group has 
been selecting, supporting the development of, and 
demonstrating commercial standards to be used in ATS with 
the intent of, ultimately, recommending these standards in 
future ATS procurement programs.  

Of specific interest in the work reported here are the DIAS 
(diagnostic services) interface. Specifically, DIAS is 
defined as follows: 

Diagnostic Services are those standardized interfaces 
that facilitate transmission, conversion, and retrieval of 
diagnostic data for utilization in the maintenance 
process. These services link results obtained from the 
execution of a test with a diagnostic process that 
utilizes these results and suggests conclusions or 
additional actions that are required. 

In 1976, the IEEE established the Standards Coordinating 
Committee 20 (SCC20) for purposes of standardizing on the 
Abbreviated Test Language for All Systems (ATLAS). 
Since then, SCC20 has expanded its scope to develop 
standards for larger system-level test and diagnostic related 
systems. In 1989, the IEEE approved a project authorization 
request (PAR) for SCC20 to develop a new standard 
focusing on diagnostic systems that use techniques from the 
maturing field of artificial intelligence—the Artificial 
Intelligence Exchange and Service Tie to All Test 
Environments (AI-ESTATE) standard under project P1232. 
In 1995, SCC20 approved and published the AI-ESTATE 
standard, IEEE Std 1232-1995 [1], and in 2002, the 
standard was updated [2]. 

The AI-ESTATE standard is undergoing a major revision to 
update several diagnostic models and to define data and 
software interfaces consistent with modern software 
architectures [3]. Prior to recommending any standards, 
several demonstrations are being performed to show that the 
standards were capable of meeting relevant DoD 
requirements. In September 2009, the second demonstration 
of the AI-ESTATE was completed, and this paper presents 
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the results of this demonstration. The results of the first 
demonstration can be found in [4] 

2. THE AI-ESTATE STANDARD 
The AI-ESTATE standard has been under development 
since the late 1980s and has undergone several significant 
modifications and advances over the intervening 20 years. 
AI-ESTATE is based upon the definition of formal semantic 
information models developed in the EXPRESS modeling 
language [5]. Initially, the standard was published in three 
parts: 

• Architecture: The first part focused on a conceptual 
view of a diagnostic reasoner in the context of an 
abstract test environment [1]. This first standard 
imposed requirements on the following two standards 
rather than on any particular AI-ESTATE 
implementation. 

• Knowledge Exchange: The second part introduced the 
first information models for diagnosis [6] and 
incorporated a little-used member of the Standard for 
the Exchange of Product model data (STEP) family for 
file exchange—EXPRESS-I [7]. 

• Software Services: The third part used the syntax of the 
EXPRESS information modeling language to specify 
software services, focusing mostly on model access 
services [8]. No specific implementation strategy was 
either specified or assumed; however, a binding 
strategy illustrated with the C programming language 
was provided as guidance. 

Subsequent to their publication, all three standards were 
upgraded to full-use, and the revision process began. During 
the revision of the standard, the DMC determined that 
maintaining the standard would be simplified if the three 
“components” were combined into a single document. In 
addition, it was pointed out that the exchange format was 
not particularly useful since it was never intended for file 
exchange. Furthermore, the STEP community had already 
specified a standard specifically for file exchange, known as 
the “STEP physical file format” [9]. In 2002, a new version 
of the standard was approved making these changes [2]. 

The IEEE requires that all of their standards either be 
reaffirmed, revised, or withdrawn every five years. Shortly 
after publication of the 2002 version of AI-ESTATE, it was 
discovered that a significant error was introduced into the 
standard. Specifically, while the information models were 
being updated, the specification for failure rate had been 
deleted from the standard. At the time the error was 
discovered, the DMC believed a simple “corrigendum” 
could be prepared repairing the error. 

As the process of preparing the corrigendum began, the 
DMC also decided to explore incorporating an XML-based 
file exchange into the standard. To accomplish this, the 
corrigendum changed into an amendment, and the DMC 
decided to develop a set of XML schemata for the models in 
the standard [10], [11]. As the amendment proceeded, the 
DMC determined that there were several places where the 
standard could be improved, and the XML schemata should 
follow the STEP specification for deriving XML from 
information models [12]. AI-ESTATE now started a full 
revision process. 

In the spring of 2009, the newly revised AI-ESTATE 
standard was balloted [3]. That standard is now in the 
process of being revised based on over 700 comments 
received. The demonstration described in this paper has 
been developed in parallel and has provided several 
additional “rogue comments” for incorporation into the 
draft to be recirculated by the end of the year. 

3. SEMANTIC INTEROPERABILITY 
As mentioned in the previous section, the fundamental 
principle that underlies AI-ESTATE and the approach 
developed to write the standard is that of providing a sound 
semantic specification of the information to be exchanged 
with a diagnostic reasoner. Within software, generally two 
approaches exist to exchanging information: 1) through the 
exchange of static files, and 2) through a set of software 
services defined as an Application Program Interface (API). 
AI-ESTATE provides specifications both for file exchange 
and for software APIs. Although not stated explicitly, 
access to model elements can also be done through the 
STEP Standard Data Access Interface (SDAI) [13]. 

Several previous papers have been published focusing on 
the role of semantic models in addressing data exchange 
within AI-ESTATE [4], supporting information integration 
[14], and facilitating data mining [15]. In this paper, we 
focus on the role of semantic interoperability in defining 
software services and on the demonstration of the AI-
ESTATE services. Within AI-ESTATE, five information 
models were developed to support model exchange. In 
addition, a sixth information model has been developed—
the dynamic context model (DCM)—that defines the 
semantics of much of the information required when 
performing diagnosis. In addition, a new information model 
is under development as a result of the P1232 ballot that 
defines a set of types for the information passed by way of 
the services. We will discuss each of these two models here. 

Dynamic Context Model 

The AI-ESTATE standard describes the DCM as a model 
used that “captures a record of the reasoning session that 
may be used in any diagnostic context by an adequate 
abstraction of widely used diagnostic principles. … The 
DCM data and knowledge are developed during a 
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diagnostic session, unlike those of the [other AI-ESTATE 
models] (which consist of static diagnostic data and 
knowledge.” As described, the DCM represents only a 
history of the diagnostic session; however, the semantics of 
the model do far more than that. First, the model defines the 
concept of a diagnostic session. A session is a container for 
everything that happens while a system is being tested or 
monitored and while reasoning about test/monitor 
information is going on. Thus, the session encapsulates the 
entire diagnostic process. 

While the session is used as a “container” for the 
information captured during diagnosis, the key entity 
defined within the DCM corresponds to a step in the 
diagnostic process. The balloted version of AI-ESTATE 
defines a step as follows: 

ENTITY Step; 
Name: OPTIONAL NameType; 
actionsPerformed : LIST OF ActiveAction; 
activeModels : SET [1:?] OF  
 DiagnosticModel; 
optimizedByCost : SET OF CostCategory; 
optimizedByDistribution :  
  ReliabilityDirected; 
optimizedByUser : HypothesisDirected; 
outcomesInferred : SET OF ActualOutcome; 
outcomesObserved : SET OF ActualOutcome; 
serviceLog : OPTIONAL LIST [1:?] OF 
  ServiceState; 
stepContext : OPTIONAL ContextState; 
timeOccurred : OPTIONAL TimeStamp; 
userHypothesis : OPTIONAL SET [1:?] OF 
  ActualOutcome; 
lifeCycleStatus : LIST [1:?] OF 
  ActualUsage; 

INVERSE 
owningSession : Session FOR trace; 

WHERE 
modelsInSet : 
  (SELF.activeModels <=  
  SELF.owningSession.modelSet); 
hypothesisWithUserDirected : 
  (NOT(SELF.optimizedByUser) OR 
  EXISTS(SELF.userHypothesis)); 

END_ENTITY; 
 

The step entity defines the main pieces of information to be 
collected during diagnosis and includes concepts such as the 
actions that are performed (including any setup actions, 
adjustments or repairs, and especially tests), the results of 
these actions (especially test results/outcomes), and any 
inferences drawn as a result.  

The step also provides the ability to specify how the 
diagnostic reasoner should choose tests to perform, 
assuming the reasoner has that capability. Specifically, the 
standard assumes the reasoner as a default test choice 
capability. The specifics of that capability are immaterial; it 
could follow a static fault tree, perform a brute-force end-to-
end test, or optimize test selection based on information 
gain. Up to three additional criteria can also be selected for 
optimization: 

(1) Cost-based optimization: Incorporate cost factors as 
specified in an instance of the AI-ESTATE Common 
Element Model (CEM) such as the time required to 
perform a test or the skill level of the technician 
performing the test. 

(2) Probability-based optimization: Incorporate 
information on the prior probability of a diagnosis 
incorporated into an instance of the CEM. Usually, 
these priors are determined based on failure rate 
information; however, the specific way the reasoner 
determines priors is not specified. 

(3) Hypothesis-directed optimization: Incorporate 
knowledge of an expert, a technician, or any other 
“agent” that might be able to furnish a hypothesis to 
the reasoner. The reasoner then redirects its test choice 
process to focus on verifying or denying that 
hypothesis. 

The ability to optimize by any or all of these approaches has 
been available to several diagnostic tools for at least 20 
years, one of which was co-developed in 1988 by the lead 
author [16]. 

The AI-ESTATE standard does not specify how to use this 
model except to require that a reasoner be able to export a 
fully populated DCM using one of the two interchange 
formats. These exported files can then be used by 
applications to record the history of the session or support 
post mortem analysis of the session to support trending or 
maturation of the models. In addition, the DCM includes the 
ability to reference other DCMs to enable reasoners with the 
ability to incorporate historical information into the 
reasoning process to access that historical information. 
Because of the formal information model, these tools are 
able to use the exported information and understand exactly 
what the information means. 

It is possible that a reasoner can also use the DCM to 
specify its internal representation of the state of diagnosis. 
While such a use is neither required nor necessarily even 
recommended, this use points out the richness of the model 
in that it is more than just historical data. In fact, it is this 
potential use that led to the word “dynamic” being 
incorporated into the name. As diagnosis proceeds, 
information integrity is maintained by mapping the 
information used to the DCM. 

Service Interface Model 

In addition to the DCM, the DMC is in the process of 
developing a new information model to specify semantics of 
the data being passed to and from the services. To explain 
this model, we also need to explain the service specification 
itself. In the balloted version of P1232, two classes of 
services were specified—model management services and 
reasoner manipulation services. The model management 
services were intended to permit a client to create, get, put, 
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and delete elements in any of the AI-ESTATE models. The 
reasoner manipulation services were intended to provide the 
primary means of a client communicating with a diagnostic 
reasoner during a diagnostic session. As a result of the 
P1232 ballot, the model manipulation services are being 
deleted, leaving only services for communicating with the 
reasoner. 

We will describe a complete use case in the next section; 
however, here we describe three of the services specified. 
Diagnosis is a process of obtaining observations (e.g., test 
results) and drawing conclusions about the target of 
diagnosis based on those observations. Thus, three key 
services include getting a recommendation for a test to 
perform (recommendActions), reporting the results of 
that test to the reasoner (applyActions), and asking that 
the reasoner update its belief in the state of the target system 
(updateState). These services are specified using the 
syntax of EXPRESS as follows: 

FUNCTION recommendActions( 
maxNumber : OPTIONAL INTEGER; 
levelsOfInterest : OPTIONAL SET [1:?] OF  

 NameType;) : 
LIST [1:?] OF ActionRecomendation; 

END_FUNCTION; 
 
PROCEDURE applyActions 
(actions : LIST [1:?] OF ActualAction); 

END_PROCEDURE; 
 
PROCEDURE update_state; 
END_PROCEDURE; 
 

The recommendActions service has two optional 
attributes that specify the maximum number of actions to 
return as the levels of indenture of the target system for the 
analysis. It returns a set of ActionRecommendation, 
which is a new entity to be included in the new information 
model.  

ENTITY ActionRecomendation; 
actionNames : LIST [1:?] OF NameType; 
actionDescriptions : LIST OF [1:?]  

DescriptionType; 
sequenceDescription : OPTIONAL  

DescriptionType; 
costCategories : LIST [0:?] OF NameType; 
catDescriptions : LIST [0:?] OF  

DescriptionType; 
estimates: LIST [0:?] CostValue; 
uppers : LIST [0:?] CostValue; 
lowers : LIST [0:?] CostValue; 
units : LIST [0:?] STRING; 

END_ENTITY; 
 

The applyActions service passes a list of 
ActualAction, which is an entity also defined in the 
new model.  

ENTITY ActualAction; 
actionName : NameType; 
statusValue : OPTIONAL AssignedValue; 
statusConfidence : OPTIONAL  

 ConfidenceValue; 
costLabels : OPTIONAL LIST [0:?] OF  
 NameType; 
costValues : OPTIONAL LIST [0:?] OF  

CostValue; 
END_ENTITY; 
 

Thus, by including semantic definitions of the parameters 
and return values, AI-ESTATE provides an additional layer 
of semantic interoperability in the service specification as 
well. 

4. DEMONSTRATING AI-ESTATE 
The AI-ESTATE interoperability demonstration consists of 
three phases, where the first phase (now complete) focused 
on seamlessly exchanging diagnostic models between 
applications. The emerging revision of AI-ESTATE 
includes six schemata defining the semantics of the domain 
of system-level diagnosis using the ISO 10303-11 
EXPRESS language [4]. Phase two uses standard services 
to interact with diagnostic reasoners, and phase three will 
integrate an AI-ESTATE conformant reasoner into an 
automatic test system. This paper focuses on the results of 
the first phase. 

As we will describe below, the results of this demonstration 
successfully showed the effectiveness of using semantic 
modeling to define the standard services. All applications 
seamlessly interacted with the client application. In 
addition, the engineering burden was demonstrated to be 
manageable: all three applications were constructed in less 
than six months by two graduate students working part time. 

The principal requirement of the second phase of this 
demonstration was to show that reasoner applications 
accessed remotely using a standardized application 
programming interface (API) defined relative to the 
information models. The result is that, as long as the 
reasoner publishes these standard services, then the 
underlying implementation should be irrelevant to the client 
application accessing that reasoner. To accomplish this, 
Web Service Definition Language (WSDL) specifications 
were developed and specified [17]. The usual way to use 
these specifications is by sending messages via the Simple 
Object Access Protocol (SOAP) [18]. Diagnostic reasoners 
and a separate client application were developed, including 
a fault-tree reasoner and a Bayesian reasoner. The 
demonstration process considered the impact on using 
previously defined AI-ESTATE conformant models and to 
provide test recommendations and hypotheses based on the 
results of performing the recommended tests. The 
development process was also monitored to determine the 
engineering burden to develop an application based on AI-
ESTATE conformant models. 
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The architecture of the demonstration system made use of a 
software component architecture consisting of five major 
components—the user interface, a client gateway, two 
diagnostic reasoners, and a model server (Figure 1). From 
the user’s perspective, a user interface is presented that is 
common for any AI-ESTATE reasoner. This user interface 
communicates via JSON/RPC to a “client” gateway that 
serves as intermediary with the actual reasoner. It is in this 
gateway that requests from the user interface are translated 
into SOAP service calls to the reasoner. For the 
demonstration, two different reasoners were implemented 
where WSDL-based services were published as specified by 
the standard. One reasoner was a fault tree reasoner to 
provide basic, legacy-type diagnostics. The second was a 
more advanced reasoner using a Bayesian network for 
purposes of diagnosis. The actual Bayesian reasoner used 
was the SMILE reasoner provided by the Decision Systems 
Laboratory at the University of Pittsburgh. Finally, a 
separate model server was developed to handle providing 
specific diagnostic models both to the reasoner and to the 
gateway. In addition, the results of diagnostic sessions were 
formatted according to the AI-ESTATE standard and 
exported for use by systems implementing the IEEE 
P1636.2 Maintenance Action Information (MAI) standard 
[19]. 

5. DEMONSTRATION PLAN 
The primary objective of the second phase of the 
demonstration can be summarized as follows: 

To demonstrate the ability of IEEE Std 1232 (AI-
ESTATE) to ensure the interchangeability of 

diagnostic reasoners through the definition of 
encapsulated services. 

To this end, the focus of this demonstration was on the 
implementation of the services specified in Clause 7 
(Services) of the current draft of IEEE P1232. That clause 
specifies two classes of services—model management 
services and reasoner manipulation services.  

Key to the demonstration is the abstraction created by 
specifying encapsulated reasoner manipulation services. 
This was demonstrated by using two different types of 
reasoners—a fault tree reasoner (to exemplify legacy 
diagnostic systems) and a Bayesian reasoner (to exemplify 
state-of-the-art diagnostic systems). Using these two types 
of reasoners also provides continuity between the two 
phases since these two reasoner types were also used in 
Phase I. 

The following provides an outline of the demonstration 
process implemented in this phase. 

(1) Defined use cases that would reasonably be expected 
to exemplify typical use of a diagnostic reasoner in a 
networked environment that also exercise all specified 
services with Clause 7.3 of IEEE P1232 (Reasoner 
Manipulation Services). 

(2) Selected an existing fault tree reasoner and Bayesian 
reasoner from Phase I to serve as the baseline 
reasoners for Phase II. 

(3) Developed a reusable WSDL/SOAP wrapper to serve 
as the interface layer for both diagnostic reasoners. 

 
Figure 1. AI-ESTATE Demonstration Architecture 
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(4) Modified the fault tree and Bayesian reasoners to use 
the WSDL/SOAP wrapper for communicating with an 
external diagnostic client. 

(5) Developed a WSDL/SOAP wrapper for a generic 
diagnostic client to communicate with an arbitrary 
diagnostic server. 

(6) Developed a diagnostic client user interface and 
integrate with the WSDL/SOAP wrapper. 

(7) Mapped the use cases to test scenarios for the 
demonstration process. 

(8) Conducted tests based on the test scenarios and 
evaluate the effectiveness of the implemented systems. 

(9) Exported AI-ESTATE Dynamic Context Models in 
ISO 10303 Part 28 format for use with an associated 
IEEE Std 1636.2 (MAI) demonstration. 

(10) Published the services and server address on the 
internet to permit evaluation from external parties 
(e.g., Impact Technologies, Lockheed Martin, or 
Boeing). 

To illustrate the application of the standard reasoner, 
imagine the diagnostic client resides on a test station at a 
maintenance depot but two diagnostic reasoners with 
possibly different types of models are located on possibly 
different servers at remote locations. The test station has 
access to the internet or a closed intranet and is able to 
communicate with these reasoners over the network. A 
UUT is attached to the test station, and the maintenance 
technician requests that a model be loaded for that UUT. 
Once the model is loaded, testing begins.  

At each step of testing, the tester would request a test 
recommendation from the diagnostic server. Upon receiving 
the recommendation, the tester would run the corresponding 

test (if possible) and provide the results back to the server. 
Based on the results of the test (which might include an 
inability to perform that test), the diagnostic hypothesis 
would be updated and returned. The process would continue 
until either no more testing was required or the technician 
determined the hypothesis was sufficient to take action. At 
the end of the session, the technician would request that the 
session be exported and associated with a maintenance 
action form (MAF) for the UUT. 

6. A USE CASE—THE ATML UUT 
In 2009 and 2010, additional demonstration programs were 
funding by the US Navy focusing on exchange of 
information in automatic test systems using IEEE standards 
for XML-based exchange. The Automatic Test Markup 
Language (ATML) family of standards (IEEE Std 1671 
[20]). In the first phase of the demonstration, a simple low-
frequency analog Unit Under Test (UUT) was built to 
support both parametric testing and diagnostics. A 
schematic of the designed UUT is shown in Figure 2. 

As shown, the UUT consists of five resistors, three 
capacitors, and a transistor. For purposes of demonstration, 
a separate fault-insertion device was created to insert 13 
different faults. Seven of the faults corresponded to a single 
failure mode for the resistors and capacitors as follows. 
Capacitors C1 and C2 could be failed open, and C3 could 
be shorted. Open faults were induced for resistors R1 
through R4. For the transistor, six faults were able to be 
injected—an open on each of the base, emitter, and 
collector, a collector short, a base-emitter short, and a base-
collector open. 

Eleven tests were defined and implemented on the tester 
used for the demonstration designed to detect each of the 
faults above. Note that the tests were not sufficient to 
uniquely isolate each fault; however, the fault isolation 
capabilities of the test set were not the main point of the 
demonstration. The tests defined correspond to the 
following: 

• An AC voltage test at VO. 
• A DC voltage test at VO. 
• An AC voltage test at VC. 
• A DC voltage test at VC. 
• A test for high DC voltage at VB. 
• A test for low DC voltage at VB. 
• A test for high DC voltage at VE. 
• A test for low DC voltage at VE. 
• A test for high DC voltage at VC while bridging the 

base and emitter. 
• A test for low DC voltage at VC while bridging the 

base and emitter. 
• A VCC resistance (i.e., continuity) test. 

 
 

Figure 2. ATML UUT for Demonstration 



 

 7

The D-matrix corresponding to the associations between 
tests and faults is shown in Figure 3. 

As mentioned, both a fault-tree based reasoner and a 
Bayesian reasoner were created. The fault tree was 
generated by the ATML demonstration group and provided 
for purposes of encoding according to the AI-ESTATE 
standard and used by the AI-ESTATE-conformant fault tree 
reasoner. The fault tree is shown in Figure 4. As can be seen 
in the fault tree, only nine of the 11 tests were used. 
Specifically, the voltage tests where the base and emitter 
were bridge were omitted. The fault tree also reveals that 
three ambiguity groups of size greater than one are 
included.  

Developing the Bayesian network was a bit more of a 
challenge. An initial network was provided by Lockheed-
Martin, which was developed for the 2009 ATML 
demonstration. Upon close examination of the network, two 
issues were revealed. First, the transistor was not modeled 

according to the different failure modes. Only a single 
failure mode was assumed. Second, once the failure modes 
were inserted into the network, several probability tables 
needed to be defined, and these tables were likely to be very 
large because of the number of dependencies. To address 
this latter issue, several latent variables were added to the 
network to make the distributions more manageable. This 
had the added benefit of introducing several “hierarchical” 
relationships in the model corresponding to the ambiguity 
groups in the circuit. (Strictly speaking, these latent 
variables were not necessary; however, they greatly 
simplified the modeling problem.) The resulting network is 
shown in Figure 5. 

7. RESULTS 
The DoD is placing more and more emphasis on net-
centricity in future ATS and maintenance system 
procurements [21]. Within the context of AI-ESTATE and 
diagnostics, net-centricity can be achieved through different 
approaches which can be broadly grouped into those that 
are data-centered and procedure-centered. Data-centered 
approaches generally fall under the category of RESTful 
interfaces although their adherence to the principles of 
representational state transfer (REST) can vary. REST 
centers on resources and Uniform Resource Locators (URL) 
to resources. In REST, the standard’s 
startDiagnosticProcess would be mapped to 
/myreasoner/session/create where the 
parameters for the UUT and serial number of the 
actualRepairItem are supplied as XML or query 
parameters. The call would return a session identifier, which 
would be used in subsequent API calls. For example to call 
recommendActions using REST, one would access the 
recommended actions as a resource on the reasoner using a 
URL such as /myreasoner/123456/actions/list. 
The session id has become part of the URL which identifies 
the resource for this particular session. While the semantics 
of the standard could be achieved using REST, the standard 
has an explicit implementation bias towards procedure-
centered approaches because the services must have the 
same names as those in the standard. 

Procedure-centered approaches have a long history. The 
Common Object Request Broker Architecture (CORBA) is 
one of the oldest object-oriented remoting approaches. 
Remote Method Invocation (RMI) fulfills a similar role in 
Java-based solutions. For net-centric solutions, the oldest 
remote procedure call (RPC) type of approach is the 
standard HTTP GET/POST. This approach uses a URL and 
query parameters. Our startDiagnosisProcess 
could be implemented in HTTP GET/POST using a URL 
such as 

/myreasoner/startDiagnosticProcess?uut=X&actu
alRepairItem=Y. 
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Figure 3. Fault Tree for ATML Test Circuit 
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Figure 4. D-Matrix for ATML Test Circuit 
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Unlike REST, HTTP GET/POST services can also be 
formally described in a WSDL. Another alternative is 
XML-RPC. In this case, an XML document is sent 
describing the method to be invoked and the parameters to 
that method on the remote server by POSTing an XML 
document to a service URL. XML-RPC eventually evolved 
into SOAP; however, XML-RPC is still used today for 
those who find defining a SOAP service through a WSDL 
to be “overkill.” One final alternative is to use SOAP itself 
and one of its various encoding combinations including 
“rpc” or “document” with “literal” or “encoded.” There is 
also a format recommendation called “wrapped document 
literal.” All of these formats have their good and bad points. 

Although the standard services definition precludes some 
implementations (REST), it lays the foundation for a 
simplified process of coordination and integration when 
parties must negotiate or use implementations. This process 
might be even further enhanced by the presence of reference 
implementations; however, SCC20 has historically taken a 
position against either providing reference implementations 
or conformance test suites. 

Other than the various implementation issues and 
alternatives, the process by which the services have been 
implemented for demonstration served a very useful 
purpose. Several items were found to be missing in the 
balloted standard that would be of value (and even 
required), given common uses of diagnostic applications. 
Two areas where such deficiencies were found were with 
the management of resource availability and the 
specification of optimization criteria. 

The balloted standard includes a service that permits a client 
to specify which resources (e.g., test instruments, power 
sources) are available: setAvailableResources. 
While the AI-ESTATE CEM includes information on 
resources, the DCM does not capture what resources have 
been identified as available. From the perspective of the 
service, the DCM does not need to store this information; 
however, given the DCM is supposed to capture a history of 
all information relevant to the diagnostic process, omitting 
this information was a serious oversight. As a result, the 
DCM has been modified as part of the demonstration to 
capture this information. 

While the problem identified above illustrates a situation 
where the DCM does not support a service, the second 
problem illustrates the opposite situation—where no service 
exists to support information in the DCM. Specifically, the 
balloted version of the DCM defines four attributes of a step 
to support the optimization process: 

• Step.optimizedByCost 
• Step.optimizedByUser 
• Step.userHypothesis 
• Step.optimizedByDistribution 

Unfortunately, no corresponding reasoner manipulation 
services were defined that enabled the client to set these 
attributes. Technically, the model management services 
could be used to set these values, except an approach was 
taken where model management services worked with entity 
ids and reasoner manipulation services worked with entity 
names. This mismatch made it impossible to use the model 
management services with the reasoner manipulation 
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services to set the optimization information. As a result, 
three services have been added as a part of this 
demonstration to address this deficiency: 

• optimizeByCostCriteria 
• optimizeByDistribution 
• optimizeByUserHypothesis 

The purpose of the demonstration process was to provide a 
way of “testing” a standard being considered by the DoD 
for future mandate. The intent is to provide a proof-of-
concept that the standard works and will satisfy the DoD’s 
requirements. But there is a more important benefit to the 
demonstration process, especially when no de facto standard 
exists. The demonstration process serves as a valuable tool 
for identifying deficiencies/errors and testing alternatives, 
thus providing a mechanism for producing an even more 
effective standard. 

8. CONCLUSIONS 
Two of the primary motivations behind the DoD adopting 
consensus standards for ATS development are to reduce 
cost by improving interoperability and to minimize repeated 
design of similar systems. The IEEE SCC20 standards focus 
on promoting information interoperability between 
components of a test or health monitoring system. The 
emphasis by the DOD on acquisition reform based on 
commercial standards for ATS, combined with declining 
budgets mandates the need for more affordable health 
management system development and operation.  

A key objective of the demonstration reported here was to 
show that diagnostic reasoners developed according to the 
standard services specified in AI-ESTATE are capable of 
interacting seamlessly with a corresponding diagnostic 
client with minimal engineering requirements beyond those 
specified in the standard. An associated concern is whether 
the implementation of standards purporting to provide these 
characteristics can be done in a cost-effective manner. It is 
clear from this demonstration that AI-ESTATE satisfies all 
of these requirements when interacting with a client via the 
standard services. A pair of complete fault tree and 
Bayesian diagnostic systems was developed, including 
implementation of all of the reasoner manipulation services 
(e.g., test recommendation, test outcome application, and 
hypothesis recommendation). Furthermore, these systems 
were developed from scratch by two graduate students 
working part time for six months. 

The question that remains involves the likelihood of tool 
builders to adopt the standard. We believe that this 
demonstration shows there are no major technical obstacles 
to adoption. We also believe that the two phases of the 
demonstration have demonstrated the value of incorporating 
semantic definition into the interfaces. Fortunately, early 
indicates from industry show that the idea is catching on. 

Members of SCC20 have indicated that organizations such 
as Lockheed Martin, Northrop Grumman, Honeywell, and 
Boeing are already developing tools conforming to the 
standard and are even adapting the models to other 
applications. 
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