

 1

Demonstrating Semantic Interoperability of
Diagnostic Reasoners via AI-ESTATE

 John W. Sheppard Stephyn G. W. Butcher, Patrick J. Donnelly
 Department of Computer Science Department of Computer Science
 Montana State University The Johns Hopkins University
 Bozeman, MT 59717 Baltimore, MD 21218
 406-994-4835 410-516-6115
 john.sheppard@cs.montana.edu steve.butcher@jhu.edu, donnell@cs.jhu.edu

Abstract—The Institute for Electrical and Electronics
Engineers (IEEE), through its Standards Coordinating
Committee 20 (SCC20), is developing interface standards
focusing on Automatic Test System-related elements in
cooperation with a Department of Defense (DoD) initiative
to define, demonstrate, and recommend such standards.12
One of these standards-IEEE Std 1232-2002 Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE)-has been chosen for
demonstration. Previously, we presented the results of the
first phase of the AI-ESTATE demonstration, focusing on
semantic interoperability of diagnostic models. The results
of that demonstration successfully showed the effectiveness
of semantic modeling in information exchange. In addition,
the engineering burden imposed by stronger semantic
requirements was demonstrated to be manageable. In the
second phase, the focus was on supporting reasoner
interoperability by implementing semantically defined
software services in a service-oriented architecture. Here,
we present an overview of the semantic interoperability
problem in the context of diagnostic reasoning and discuss
the results of the second phase of the demonstration.

TABLE OF CONTENTS

1. INTRODUCTION...1
2. THE AI-ESTATE STANDARD ..2
3. SEMANTIC INTEROPERABILITY2
4. DEMONSTRATING AI-ESTATE.......................................4
5. DEMONSTRATION PLAN ...5
6. A USE CASE—THE ATML UUT.....................................6
7. RESULTS ...7
8. CONCLUSIONS ..9
REFERENCES ..9
BIOGRAPHIES ...10

1. INTRODUCTION
The Department of Defense (DoD) has established a
partnership between government, industry and academia to
address architectural design and standardization issues for
automatic test systems (ATS). This DoD ATS Framework
Working Group is focusing on defining an information
framework and identifying standards for next-generation
ATS. The principal requirement to be satisfied by the

1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper#1071, Version 4, Updated 2009:12:31

framework and associated standards is providing an open
architecture for ATS to reduce overall cost of development
and ownership for resulting families of standards. Based on
work in the 1990s when the ATS Research and
Development Integrated Product Team defined a set of
“critical interfaces” for ATS, the current working group has
been selecting, supporting the development of, and
demonstrating commercial standards to be used in ATS with
the intent of, ultimately, recommending these standards in
future ATS procurement programs.

Of specific interest in the work reported here are the DIAS
(diagnostic services) interface. Specifically, DIAS is
defined as follows:

Diagnostic Services are those standardized interfaces
that facilitate transmission, conversion, and retrieval of
diagnostic data for utilization in the maintenance
process. These services link results obtained from the
execution of a test with a diagnostic process that
utilizes these results and suggests conclusions or
additional actions that are required.

In 1976, the IEEE established the Standards Coordinating
Committee 20 (SCC20) for purposes of standardizing on the
Abbreviated Test Language for All Systems (ATLAS).
Since then, SCC20 has expanded its scope to develop
standards for larger system-level test and diagnostic related
systems. In 1989, the IEEE approved a project authorization
request (PAR) for SCC20 to develop a new standard
focusing on diagnostic systems that use techniques from the
maturing field of artificial intelligence—the Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE) standard under project P1232.
In 1995, SCC20 approved and published the AI-ESTATE
standard, IEEE Std 1232-1995 [1], and in 2002, the
standard was updated [2].

The AI-ESTATE standard is undergoing a major revision to
update several diagnostic models and to define data and
software interfaces consistent with modern software
architectures [3]. Prior to recommending any standards,
several demonstrations are being performed to show that the
standards were capable of meeting relevant DoD
requirements. In September 2009, the second demonstration
of the AI-ESTATE was completed, and this paper presents

 2

the results of this demonstration. The results of the first
demonstration can be found in [4]

2. THE AI-ESTATE STANDARD
The AI-ESTATE standard has been under development
since the late 1980s and has undergone several significant
modifications and advances over the intervening 20 years.
AI-ESTATE is based upon the definition of formal semantic
information models developed in the EXPRESS modeling
language [5]. Initially, the standard was published in three
parts:

• Architecture: The first part focused on a conceptual
view of a diagnostic reasoner in the context of an
abstract test environment [1]. This first standard
imposed requirements on the following two standards
rather than on any particular AI-ESTATE
implementation.

• Knowledge Exchange: The second part introduced the
first information models for diagnosis [6] and
incorporated a little-used member of the Standard for
the Exchange of Product model data (STEP) family for
file exchange—EXPRESS-I [7].

• Software Services: The third part used the syntax of the
EXPRESS information modeling language to specify
software services, focusing mostly on model access
services [8]. No specific implementation strategy was
either specified or assumed; however, a binding
strategy illustrated with the C programming language
was provided as guidance.

Subsequent to their publication, all three standards were
upgraded to full-use, and the revision process began. During
the revision of the standard, the DMC determined that
maintaining the standard would be simplified if the three
“components” were combined into a single document. In
addition, it was pointed out that the exchange format was
not particularly useful since it was never intended for file
exchange. Furthermore, the STEP community had already
specified a standard specifically for file exchange, known as
the “STEP physical file format” [9]. In 2002, a new version
of the standard was approved making these changes [2].

The IEEE requires that all of their standards either be
reaffirmed, revised, or withdrawn every five years. Shortly
after publication of the 2002 version of AI-ESTATE, it was
discovered that a significant error was introduced into the
standard. Specifically, while the information models were
being updated, the specification for failure rate had been
deleted from the standard. At the time the error was
discovered, the DMC believed a simple “corrigendum”
could be prepared repairing the error.

As the process of preparing the corrigendum began, the
DMC also decided to explore incorporating an XML-based
file exchange into the standard. To accomplish this, the
corrigendum changed into an amendment, and the DMC
decided to develop a set of XML schemata for the models in
the standard [10], [11]. As the amendment proceeded, the
DMC determined that there were several places where the
standard could be improved, and the XML schemata should
follow the STEP specification for deriving XML from
information models [12]. AI-ESTATE now started a full
revision process.

In the spring of 2009, the newly revised AI-ESTATE
standard was balloted [3]. That standard is now in the
process of being revised based on over 700 comments
received. The demonstration described in this paper has
been developed in parallel and has provided several
additional “rogue comments” for incorporation into the
draft to be recirculated by the end of the year.

3. SEMANTIC INTEROPERABILITY
As mentioned in the previous section, the fundamental
principle that underlies AI-ESTATE and the approach
developed to write the standard is that of providing a sound
semantic specification of the information to be exchanged
with a diagnostic reasoner. Within software, generally two
approaches exist to exchanging information: 1) through the
exchange of static files, and 2) through a set of software
services defined as an Application Program Interface (API).
AI-ESTATE provides specifications both for file exchange
and for software APIs. Although not stated explicitly,
access to model elements can also be done through the
STEP Standard Data Access Interface (SDAI) [13].

Several previous papers have been published focusing on
the role of semantic models in addressing data exchange
within AI-ESTATE [4], supporting information integration
[14], and facilitating data mining [15]. In this paper, we
focus on the role of semantic interoperability in defining
software services and on the demonstration of the AI-
ESTATE services. Within AI-ESTATE, five information
models were developed to support model exchange. In
addition, a sixth information model has been developed—
the dynamic context model (DCM)—that defines the
semantics of much of the information required when
performing diagnosis. In addition, a new information model
is under development as a result of the P1232 ballot that
defines a set of types for the information passed by way of
the services. We will discuss each of these two models here.

Dynamic Context Model

The AI-ESTATE standard describes the DCM as a model
used that “captures a record of the reasoning session that
may be used in any diagnostic context by an adequate
abstraction of widely used diagnostic principles. … The
DCM data and knowledge are developed during a

 3

diagnostic session, unlike those of the [other AI-ESTATE
models] (which consist of static diagnostic data and
knowledge.” As described, the DCM represents only a
history of the diagnostic session; however, the semantics of
the model do far more than that. First, the model defines the
concept of a diagnostic session. A session is a container for
everything that happens while a system is being tested or
monitored and while reasoning about test/monitor
information is going on. Thus, the session encapsulates the
entire diagnostic process.

While the session is used as a “container” for the
information captured during diagnosis, the key entity
defined within the DCM corresponds to a step in the
diagnostic process. The balloted version of AI-ESTATE
defines a step as follows:

ENTITY Step;
Name: OPTIONAL NameType;
actionsPerformed : LIST OF ActiveAction;
activeModels : SET [1:?] OF
 DiagnosticModel;
optimizedByCost : SET OF CostCategory;
optimizedByDistribution :
 ReliabilityDirected;
optimizedByUser : HypothesisDirected;
outcomesInferred : SET OF ActualOutcome;
outcomesObserved : SET OF ActualOutcome;
serviceLog : OPTIONAL LIST [1:?] OF
 ServiceState;
stepContext : OPTIONAL ContextState;
timeOccurred : OPTIONAL TimeStamp;
userHypothesis : OPTIONAL SET [1:?] OF
 ActualOutcome;
lifeCycleStatus : LIST [1:?] OF
 ActualUsage;

INVERSE
owningSession : Session FOR trace;

WHERE
modelsInSet :
 (SELF.activeModels <=
 SELF.owningSession.modelSet);
hypothesisWithUserDirected :
 (NOT(SELF.optimizedByUser) OR
 EXISTS(SELF.userHypothesis));

END_ENTITY;

The step entity defines the main pieces of information to be
collected during diagnosis and includes concepts such as the
actions that are performed (including any setup actions,
adjustments or repairs, and especially tests), the results of
these actions (especially test results/outcomes), and any
inferences drawn as a result.

The step also provides the ability to specify how the
diagnostic reasoner should choose tests to perform,
assuming the reasoner has that capability. Specifically, the
standard assumes the reasoner as a default test choice
capability. The specifics of that capability are immaterial; it
could follow a static fault tree, perform a brute-force end-to-
end test, or optimize test selection based on information
gain. Up to three additional criteria can also be selected for
optimization:

(1) Cost-based optimization: Incorporate cost factors as
specified in an instance of the AI-ESTATE Common
Element Model (CEM) such as the time required to
perform a test or the skill level of the technician
performing the test.

(2) Probability-based optimization: Incorporate
information on the prior probability of a diagnosis
incorporated into an instance of the CEM. Usually,
these priors are determined based on failure rate
information; however, the specific way the reasoner
determines priors is not specified.

(3) Hypothesis-directed optimization: Incorporate
knowledge of an expert, a technician, or any other
“agent” that might be able to furnish a hypothesis to
the reasoner. The reasoner then redirects its test choice
process to focus on verifying or denying that
hypothesis.

The ability to optimize by any or all of these approaches has
been available to several diagnostic tools for at least 20
years, one of which was co-developed in 1988 by the lead
author [16].

The AI-ESTATE standard does not specify how to use this
model except to require that a reasoner be able to export a
fully populated DCM using one of the two interchange
formats. These exported files can then be used by
applications to record the history of the session or support
post mortem analysis of the session to support trending or
maturation of the models. In addition, the DCM includes the
ability to reference other DCMs to enable reasoners with the
ability to incorporate historical information into the
reasoning process to access that historical information.
Because of the formal information model, these tools are
able to use the exported information and understand exactly
what the information means.

It is possible that a reasoner can also use the DCM to
specify its internal representation of the state of diagnosis.
While such a use is neither required nor necessarily even
recommended, this use points out the richness of the model
in that it is more than just historical data. In fact, it is this
potential use that led to the word “dynamic” being
incorporated into the name. As diagnosis proceeds,
information integrity is maintained by mapping the
information used to the DCM.

Service Interface Model

In addition to the DCM, the DMC is in the process of
developing a new information model to specify semantics of
the data being passed to and from the services. To explain
this model, we also need to explain the service specification
itself. In the balloted version of P1232, two classes of
services were specified—model management services and
reasoner manipulation services. The model management
services were intended to permit a client to create, get, put,

 4

and delete elements in any of the AI-ESTATE models. The
reasoner manipulation services were intended to provide the
primary means of a client communicating with a diagnostic
reasoner during a diagnostic session. As a result of the
P1232 ballot, the model manipulation services are being
deleted, leaving only services for communicating with the
reasoner.

We will describe a complete use case in the next section;
however, here we describe three of the services specified.
Diagnosis is a process of obtaining observations (e.g., test
results) and drawing conclusions about the target of
diagnosis based on those observations. Thus, three key
services include getting a recommendation for a test to
perform (recommendActions), reporting the results of
that test to the reasoner (applyActions), and asking that
the reasoner update its belief in the state of the target system
(updateState). These services are specified using the
syntax of EXPRESS as follows:

FUNCTION recommendActions(
maxNumber : OPTIONAL INTEGER;
levelsOfInterest : OPTIONAL SET [1:?] OF

 NameType;) :
LIST [1:?] OF ActionRecomendation;

END_FUNCTION;

PROCEDURE applyActions
(actions : LIST [1:?] OF ActualAction);

END_PROCEDURE;

PROCEDURE update_state;
END_PROCEDURE;

The recommendActions service has two optional
attributes that specify the maximum number of actions to
return as the levels of indenture of the target system for the
analysis. It returns a set of ActionRecommendation,
which is a new entity to be included in the new information
model.

ENTITY ActionRecomendation;
actionNames : LIST [1:?] OF NameType;
actionDescriptions : LIST OF [1:?]

DescriptionType;
sequenceDescription : OPTIONAL

DescriptionType;
costCategories : LIST [0:?] OF NameType;
catDescriptions : LIST [0:?] OF

DescriptionType;
estimates: LIST [0:?] CostValue;
uppers : LIST [0:?] CostValue;
lowers : LIST [0:?] CostValue;
units : LIST [0:?] STRING;

END_ENTITY;

The applyActions service passes a list of
ActualAction, which is an entity also defined in the
new model.

ENTITY ActualAction;
actionName : NameType;
statusValue : OPTIONAL AssignedValue;
statusConfidence : OPTIONAL

 ConfidenceValue;
costLabels : OPTIONAL LIST [0:?] OF
 NameType;
costValues : OPTIONAL LIST [0:?] OF

CostValue;
END_ENTITY;

Thus, by including semantic definitions of the parameters
and return values, AI-ESTATE provides an additional layer
of semantic interoperability in the service specification as
well.

4. DEMONSTRATING AI-ESTATE
The AI-ESTATE interoperability demonstration consists of
three phases, where the first phase (now complete) focused
on seamlessly exchanging diagnostic models between
applications. The emerging revision of AI-ESTATE
includes six schemata defining the semantics of the domain
of system-level diagnosis using the ISO 10303-11
EXPRESS language [4]. Phase two uses standard services
to interact with diagnostic reasoners, and phase three will
integrate an AI-ESTATE conformant reasoner into an
automatic test system. This paper focuses on the results of
the first phase.

As we will describe below, the results of this demonstration
successfully showed the effectiveness of using semantic
modeling to define the standard services. All applications
seamlessly interacted with the client application. In
addition, the engineering burden was demonstrated to be
manageable: all three applications were constructed in less
than six months by two graduate students working part time.

The principal requirement of the second phase of this
demonstration was to show that reasoner applications
accessed remotely using a standardized application
programming interface (API) defined relative to the
information models. The result is that, as long as the
reasoner publishes these standard services, then the
underlying implementation should be irrelevant to the client
application accessing that reasoner. To accomplish this,
Web Service Definition Language (WSDL) specifications
were developed and specified [17]. The usual way to use
these specifications is by sending messages via the Simple
Object Access Protocol (SOAP) [18]. Diagnostic reasoners
and a separate client application were developed, including
a fault-tree reasoner and a Bayesian reasoner. The
demonstration process considered the impact on using
previously defined AI-ESTATE conformant models and to
provide test recommendations and hypotheses based on the
results of performing the recommended tests. The
development process was also monitored to determine the
engineering burden to develop an application based on AI-
ESTATE conformant models.

 5

The architecture of the demonstration system made use of a
software component architecture consisting of five major
components—the user interface, a client gateway, two
diagnostic reasoners, and a model server (Figure 1). From
the user’s perspective, a user interface is presented that is
common for any AI-ESTATE reasoner. This user interface
communicates via JSON/RPC to a “client” gateway that
serves as intermediary with the actual reasoner. It is in this
gateway that requests from the user interface are translated
into SOAP service calls to the reasoner. For the
demonstration, two different reasoners were implemented
where WSDL-based services were published as specified by
the standard. One reasoner was a fault tree reasoner to
provide basic, legacy-type diagnostics. The second was a
more advanced reasoner using a Bayesian network for
purposes of diagnosis. The actual Bayesian reasoner used
was the SMILE reasoner provided by the Decision Systems
Laboratory at the University of Pittsburgh. Finally, a
separate model server was developed to handle providing
specific diagnostic models both to the reasoner and to the
gateway. In addition, the results of diagnostic sessions were
formatted according to the AI-ESTATE standard and
exported for use by systems implementing the IEEE
P1636.2 Maintenance Action Information (MAI) standard
[19].

5. DEMONSTRATION PLAN
The primary objective of the second phase of the
demonstration can be summarized as follows:

To demonstrate the ability of IEEE Std 1232 (AI-
ESTATE) to ensure the interchangeability of

diagnostic reasoners through the definition of
encapsulated services.

To this end, the focus of this demonstration was on the
implementation of the services specified in Clause 7
(Services) of the current draft of IEEE P1232. That clause
specifies two classes of services—model management
services and reasoner manipulation services.

Key to the demonstration is the abstraction created by
specifying encapsulated reasoner manipulation services.
This was demonstrated by using two different types of
reasoners—a fault tree reasoner (to exemplify legacy
diagnostic systems) and a Bayesian reasoner (to exemplify
state-of-the-art diagnostic systems). Using these two types
of reasoners also provides continuity between the two
phases since these two reasoner types were also used in
Phase I.

The following provides an outline of the demonstration
process implemented in this phase.

(1) Defined use cases that would reasonably be expected
to exemplify typical use of a diagnostic reasoner in a
networked environment that also exercise all specified
services with Clause 7.3 of IEEE P1232 (Reasoner
Manipulation Services).

(2) Selected an existing fault tree reasoner and Bayesian
reasoner from Phase I to serve as the baseline
reasoners for Phase II.

(3) Developed a reusable WSDL/SOAP wrapper to serve
as the interface layer for both diagnostic reasoners.

Figure 1. AI-ESTATE Demonstration Architecture

 6

(4) Modified the fault tree and Bayesian reasoners to use
the WSDL/SOAP wrapper for communicating with an
external diagnostic client.

(5) Developed a WSDL/SOAP wrapper for a generic
diagnostic client to communicate with an arbitrary
diagnostic server.

(6) Developed a diagnostic client user interface and
integrate with the WSDL/SOAP wrapper.

(7) Mapped the use cases to test scenarios for the
demonstration process.

(8) Conducted tests based on the test scenarios and
evaluate the effectiveness of the implemented systems.

(9) Exported AI-ESTATE Dynamic Context Models in
ISO 10303 Part 28 format for use with an associated
IEEE Std 1636.2 (MAI) demonstration.

(10) Published the services and server address on the
internet to permit evaluation from external parties
(e.g., Impact Technologies, Lockheed Martin, or
Boeing).

To illustrate the application of the standard reasoner,
imagine the diagnostic client resides on a test station at a
maintenance depot but two diagnostic reasoners with
possibly different types of models are located on possibly
different servers at remote locations. The test station has
access to the internet or a closed intranet and is able to
communicate with these reasoners over the network. A
UUT is attached to the test station, and the maintenance
technician requests that a model be loaded for that UUT.
Once the model is loaded, testing begins.

At each step of testing, the tester would request a test
recommendation from the diagnostic server. Upon receiving
the recommendation, the tester would run the corresponding

test (if possible) and provide the results back to the server.
Based on the results of the test (which might include an
inability to perform that test), the diagnostic hypothesis
would be updated and returned. The process would continue
until either no more testing was required or the technician
determined the hypothesis was sufficient to take action. At
the end of the session, the technician would request that the
session be exported and associated with a maintenance
action form (MAF) for the UUT.

6. A USE CASE—THE ATML UUT
In 2009 and 2010, additional demonstration programs were
funding by the US Navy focusing on exchange of
information in automatic test systems using IEEE standards
for XML-based exchange. The Automatic Test Markup
Language (ATML) family of standards (IEEE Std 1671
[20]). In the first phase of the demonstration, a simple low-
frequency analog Unit Under Test (UUT) was built to
support both parametric testing and diagnostics. A
schematic of the designed UUT is shown in Figure 2.

As shown, the UUT consists of five resistors, three
capacitors, and a transistor. For purposes of demonstration,
a separate fault-insertion device was created to insert 13
different faults. Seven of the faults corresponded to a single
failure mode for the resistors and capacitors as follows.
Capacitors C1 and C2 could be failed open, and C3 could
be shorted. Open faults were induced for resistors R1
through R4. For the transistor, six faults were able to be
injected—an open on each of the base, emitter, and
collector, a collector short, a base-emitter short, and a base-
collector open.

Eleven tests were defined and implemented on the tester
used for the demonstration designed to detect each of the
faults above. Note that the tests were not sufficient to
uniquely isolate each fault; however, the fault isolation
capabilities of the test set were not the main point of the
demonstration. The tests defined correspond to the
following:

• An AC voltage test at VO.
• A DC voltage test at VO.
• An AC voltage test at VC.
• A DC voltage test at VC.
• A test for high DC voltage at VB.
• A test for low DC voltage at VB.
• A test for high DC voltage at VE.
• A test for low DC voltage at VE.
• A test for high DC voltage at VC while bridging the

base and emitter.
• A test for low DC voltage at VC while bridging the

base and emitter.
• A VCC resistance (i.e., continuity) test.

Figure 2. ATML UUT for Demonstration

 7

The D-matrix corresponding to the associations between
tests and faults is shown in Figure 3.

As mentioned, both a fault-tree based reasoner and a
Bayesian reasoner were created. The fault tree was
generated by the ATML demonstration group and provided
for purposes of encoding according to the AI-ESTATE
standard and used by the AI-ESTATE-conformant fault tree
reasoner. The fault tree is shown in Figure 4. As can be seen
in the fault tree, only nine of the 11 tests were used.
Specifically, the voltage tests where the base and emitter
were bridge were omitted. The fault tree also reveals that
three ambiguity groups of size greater than one are
included.

Developing the Bayesian network was a bit more of a
challenge. An initial network was provided by Lockheed-
Martin, which was developed for the 2009 ATML
demonstration. Upon close examination of the network, two
issues were revealed. First, the transistor was not modeled

according to the different failure modes. Only a single
failure mode was assumed. Second, once the failure modes
were inserted into the network, several probability tables
needed to be defined, and these tables were likely to be very
large because of the number of dependencies. To address
this latter issue, several latent variables were added to the
network to make the distributions more manageable. This
had the added benefit of introducing several “hierarchical”
relationships in the model corresponding to the ambiguity
groups in the circuit. (Strictly speaking, these latent
variables were not necessary; however, they greatly
simplified the modeling problem.) The resulting network is
shown in Figure 5.

7. RESULTS
The DoD is placing more and more emphasis on net-
centricity in future ATS and maintenance system
procurements [21]. Within the context of AI-ESTATE and
diagnostics, net-centricity can be achieved through different
approaches which can be broadly grouped into those that
are data-centered and procedure-centered. Data-centered
approaches generally fall under the category of RESTful
interfaces although their adherence to the principles of
representational state transfer (REST) can vary. REST
centers on resources and Uniform Resource Locators (URL)
to resources. In REST, the standard’s
startDiagnosticProcess would be mapped to
/myreasoner/session/create where the
parameters for the UUT and serial number of the
actualRepairItem are supplied as XML or query
parameters. The call would return a session identifier, which
would be used in subsequent API calls. For example to call
recommendActions using REST, one would access the
recommended actions as a resource on the reasoner using a
URL such as /myreasoner/123456/actions/list.
The session id has become part of the URL which identifies
the resource for this particular session. While the semantics
of the standard could be achieved using REST, the standard
has an explicit implementation bias towards procedure-
centered approaches because the services must have the
same names as those in the standard.

Procedure-centered approaches have a long history. The
Common Object Request Broker Architecture (CORBA) is
one of the oldest object-oriented remoting approaches.
Remote Method Invocation (RMI) fulfills a similar role in
Java-based solutions. For net-centric solutions, the oldest
remote procedure call (RPC) type of approach is the
standard HTTP GET/POST. This approach uses a URL and
query parameters. Our startDiagnosisProcess
could be implemented in HTTP GET/POST using a URL
such as

/myreasoner/startDiagnosticProcess?uut=X&actu
alRepairItem=Y.

VCC
Resistance

VO AC Voltage

VC AC Voltage

No
Faults

VC DC Voltage
Fail High

VC DC Voltage
Fail Low

C3
Shorted

VE DC Voltage1
Fail High

VE DC Voltage2
Fail Low

C1
Open

C2
Open

R4
Open

VB DC
Voltage1

VB DC
Voltage2

Q1 B
open

VE DC Voltage2
Fail High

VE DC Voltage2
Fail Low

R3
Open

R2
open

Q1 C
shorted

Q1 BE
shorted

Q1 C
open

Q1 E
open

R1
open

Q1 BC
shorted

Figure 3. Fault Tree for ATML Test Circuit

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X X X X X

C1 Open

C2 Open

C3 Short

R1 Open

R2 Open

R3 Open

R4 Open

Q1-C Open

Q1-C Short

Q1-B Open

Q1-E Open

Q1-BE Short

Q1-BC Open

Q1

Figure 4. D-Matrix for ATML Test Circuit

 8

Unlike REST, HTTP GET/POST services can also be
formally described in a WSDL. Another alternative is
XML-RPC. In this case, an XML document is sent
describing the method to be invoked and the parameters to
that method on the remote server by POSTing an XML
document to a service URL. XML-RPC eventually evolved
into SOAP; however, XML-RPC is still used today for
those who find defining a SOAP service through a WSDL
to be “overkill.” One final alternative is to use SOAP itself
and one of its various encoding combinations including
“rpc” or “document” with “literal” or “encoded.” There is
also a format recommendation called “wrapped document
literal.” All of these formats have their good and bad points.

Although the standard services definition precludes some
implementations (REST), it lays the foundation for a
simplified process of coordination and integration when
parties must negotiate or use implementations. This process
might be even further enhanced by the presence of reference
implementations; however, SCC20 has historically taken a
position against either providing reference implementations
or conformance test suites.

Other than the various implementation issues and
alternatives, the process by which the services have been
implemented for demonstration served a very useful
purpose. Several items were found to be missing in the
balloted standard that would be of value (and even
required), given common uses of diagnostic applications.
Two areas where such deficiencies were found were with
the management of resource availability and the
specification of optimization criteria.

The balloted standard includes a service that permits a client
to specify which resources (e.g., test instruments, power
sources) are available: setAvailableResources.
While the AI-ESTATE CEM includes information on
resources, the DCM does not capture what resources have
been identified as available. From the perspective of the
service, the DCM does not need to store this information;
however, given the DCM is supposed to capture a history of
all information relevant to the diagnostic process, omitting
this information was a serious oversight. As a result, the
DCM has been modified as part of the demonstration to
capture this information.

While the problem identified above illustrates a situation
where the DCM does not support a service, the second
problem illustrates the opposite situation—where no service
exists to support information in the DCM. Specifically, the
balloted version of the DCM defines four attributes of a step
to support the optimization process:

• Step.optimizedByCost
• Step.optimizedByUser
• Step.userHypothesis
• Step.optimizedByDistribution

Unfortunately, no corresponding reasoner manipulation
services were defined that enabled the client to set these
attributes. Technically, the model management services
could be used to set these values, except an approach was
taken where model management services worked with entity
ids and reasoner manipulation services worked with entity
names. This mismatch made it impossible to use the model
management services with the reasoner manipulation

Q1-C
Open

Q1-C
Short

Q1-B
Open

Q1 –E
Open

Q1-BE
Short

Q1-
BC

Short

Q11 Q12 Q13 Q14

VO
AC

VC
DC

VB
DC-1

VE
DC-1

VE
DC-2

VBE
VC FH

VBE
VC FL

C1
Open

C2
Open

C3
Short

Vcc
Gnd

VO
DC

VC
AC

R1
Open

R2
Open

R4
Open

R3
Open

VB
DC-2

Figure 5. Bayesian Network for ATML Test Circuit

 9

services to set the optimization information. As a result,
three services have been added as a part of this
demonstration to address this deficiency:

• optimizeByCostCriteria
• optimizeByDistribution
• optimizeByUserHypothesis

The purpose of the demonstration process was to provide a
way of “testing” a standard being considered by the DoD
for future mandate. The intent is to provide a proof-of-
concept that the standard works and will satisfy the DoD’s
requirements. But there is a more important benefit to the
demonstration process, especially when no de facto standard
exists. The demonstration process serves as a valuable tool
for identifying deficiencies/errors and testing alternatives,
thus providing a mechanism for producing an even more
effective standard.

8. CONCLUSIONS
Two of the primary motivations behind the DoD adopting
consensus standards for ATS development are to reduce
cost by improving interoperability and to minimize repeated
design of similar systems. The IEEE SCC20 standards focus
on promoting information interoperability between
components of a test or health monitoring system. The
emphasis by the DOD on acquisition reform based on
commercial standards for ATS, combined with declining
budgets mandates the need for more affordable health
management system development and operation.

A key objective of the demonstration reported here was to
show that diagnostic reasoners developed according to the
standard services specified in AI-ESTATE are capable of
interacting seamlessly with a corresponding diagnostic
client with minimal engineering requirements beyond those
specified in the standard. An associated concern is whether
the implementation of standards purporting to provide these
characteristics can be done in a cost-effective manner. It is
clear from this demonstration that AI-ESTATE satisfies all
of these requirements when interacting with a client via the
standard services. A pair of complete fault tree and
Bayesian diagnostic systems was developed, including
implementation of all of the reasoner manipulation services
(e.g., test recommendation, test outcome application, and
hypothesis recommendation). Furthermore, these systems
were developed from scratch by two graduate students
working part time for six months.

The question that remains involves the likelihood of tool
builders to adopt the standard. We believe that this
demonstration shows there are no major technical obstacles
to adoption. We also believe that the two phases of the
demonstration have demonstrated the value of incorporating
semantic definition into the interfaces. Fortunately, early
indicates from industry show that the idea is catching on.

Members of SCC20 have indicated that organizations such
as Lockheed Martin, Northrop Grumman, Honeywell, and
Boeing are already developing tools conforming to the
standard and are even adapting the models to other
applications.

REFERENCES
[1] IEEE Std 1232-1995, IEEE Trial-Use Standard for

Artificial Intelligence Exchange and Service Tie to All
Test Environments (AI-ESTATE): Overview and
Architecture, Piscataway, NJ: IEEE Standards Press.

[2] IEEE Std 1232-2002, IEEE Standard for Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE), Piscataway, NJ: IEEE
Standards Association Press.

[3] IEEE P1232, IEEE Standard for Artificial Intelligence
Exchange and Service Tie to All Test Environments (AI-
ESTATE), Draft 4, Piscataway, NJ: IEEE Standards
Association Press, 2009.

[4] John W. Sheppard, Stephyn G. W. Butcher, Patrick J.
Donnelly, and Benjamin R. Mitchell, “Demonstrating
Semantic Interoperability of Diagnostic Models with AI-
ESTATE,” Proceedings of the IEEE Aerospace
Conference, Big Sky, Montana, March 7–13, 2009.

[5] ISO 10303-11:1994, Industrial Automation Systems and
Integration—Product Data Representation and
Exchange—Part 11: Description Methods: The
EXPRESS Language Reference Manual, Geneva,
Switzerland: The International Organization for
Standardization.

[6] IEEE Std 1232-1997, IEEE Trial Use Standard for
Artificial Intelligence Exchange and Service Tie to All
Test Environments (AI-ESTATE): Data and Knowledge
Specification, Piscataway, NJ: IEEE Standards Press.

[7] ISO/TR 10303-12:1997, Industrial Automation Systems
and Integration—Product Data Representation and
Exchange—Part 12: Description Methods: The
EXPRESS-I Language Reference Manual, Geneva,
Switzerland: The International Organization for
Standardization.

[8] IEEE Std 1232-1998, IEEE Trial Use Standard for
Artificial Intelligence Exchange and Service Tie to All
Test Environments (AI-ESTATE): Service Specification,
Picataway, NJ: IEEE Standards Press.

[9] ISO 10303-21:1994, Industrial Automation Systems and
Integration—Product Data Representation and
Exchange—Part 21: Implementation Method: Clear Text
Encoding of the Exchange Structure, Geneva,

 10

Switzerland: The International Organization for
Standardization.

[10] eXtensible Markup Language (XML) Schema Part 1:
Structures, Second Edition. W3C Recommendation,
http://www.w3.org/TR/xmlschema-1/, 28 October 2004.

[11] XML Schema Part 2: Datatypes, Second Edition. W3C
Recommendation, http://www.w3.org/TR/xmlschema-2/,
28 October 2004.

[12] ISO 10303-28:2007, Industrial Automation Systems and
Integration—Product Data Representation and
Exchange—Part 28: Implementation Methods: XML
Representation of EXPRESS Schemas and Data Using
XML Schemas, Geneva, Switzerland: The International
Organization for Standardization.

[13] ISO 10303-22:1998, Industrial Automation Systems and
Integration—Product Data Representation and
Exchange—Part 22: Implementation Methods: Standard
Data Access Interface Specification, Geneva,
Switzerland: The International Organization for
Standardization.

[14] Timothy J. Wilmering, “Semantic Requirements on
Information Integration for Diagnostic Maturation,”
IEEE AUTOTESTCON 2001 Conference Record, Valley
Forge, PA, September 2001.

[15] Timothy J. Wilmering and John W. Sheppard,
“Ontologies for Data Mining and Knowledge Discovery
to Support Diagnostic Maturation,” Proceedings of the
18th International Workshop on Principles of Diagnosis
(DX-07), Nashville, TN, May 2007.

[16] William R. Simpson, John W. Sheppard, and C. Richard
Unkle, “POINTER—An Intelligent Maintenance
Assistant,” IEEE AUTOTESTCON '89 Conference
Record, Philadelphia, PA, September 1989.

[17] Web Services Description Language (WSDL), v1.1, W3C
Note, http://www.w3.org/TR/wsdl, March 15, 2001.

[18] Simple Object Access Protocol (SOAP), v1.2, W3C Note,
http://www.w3.org/TR/soap, April 27, 2007.

[19] IEEE P1636.2, Draft IEEE Trial Use Standard Software
Interface for Maintenance Information Collection and
Analysis (SIMICA): Exchanging Maintenance Action
Information via the Extensible Markup Language (XML),
Piscataway, NJ: IEEE Standards Association Press, 2009.

[20] IEEE Std 1671-2006, Standard for Automatic Test
Markup Language (ATML) for Exchanging Automatic
Test Equipment and Test Information via XML,
Piscataway, NJ: IEEE Standards Association Press.

[21] Michael Malesich, “New Direction for the DoD ATS
Framework,” IEEE AUTOTESTCON ’09 Conference
Record, Anaheim, CA, September 2009, pp. 64–68.

BIOGRAPHIES
John Sheppard is the RightNow
Technologies Distinguished Professor
of Computer Science at Montana State
University. He is also an Associate
Research Professor at Johns Hopkins
University. His research interests
include algorithms for diagnostic and
prognostic reasoning, machine learning
and data mining in temporal systems,
and reinforcement learning. Dr.

Sheppard holds a BS in computer science from Southern
Methodist University and an MS and PhD in computer
science from Johns Hopkins University. He is a fellow of the
IEEE and currently serves as Vice Chair of the IEEE
Standards Coordinating Committee 20 (SCC20) on Test and
Diagnosis for Electronic Systems.

Steve Butcher is currently pursuing his
PhD in computer science at the Johns
Hopkins University. He has served as a
lecturer in economics and grader in
computer science. He received his BA
in economics from the California State
University, Sacramento, his MA in
economics from The American
University, Washington, DC, and his
MS in computer science from Johns

Hopkins. His research interests are in machine learning
and include Bayesian networks and evolutionary
computation.

Patrick Donnelly is currently pursuing
his Ph.D in computer science at Johns
Hopkins University. He previously
received a BS in computer science and
an AB in music history and Italian
literature from Washington University
in St. Louis. He also holds an MSE in
computer science from the Whiting
School at Johns Hopkins, and both the
MM in musicology and the MM in

computer music from the Peabody Conservatory at Johns
Hopkins. His research interests are primarily in machine
learning in the musical domain.

