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Abstract—Fault Isolation Manuals (FIMs) are derived from a
type of decision tree and play an important role in maintenance
troubleshooting of large systems. However, there are some
drawbacks to using decision trees for maintenance, such as
requiring a static order of tests to reach a conclusion. One
method to overcome these limitations is by converting FIMs to
Bayesian networks. However, it has been shown that Bayesian
networks derived from FIMs will not contain the entire set of
fault and alarm relationships present in the system from which
the FIM was developed. In this paper we analyze Bayesian
networks that have been derived from FIMs and report on
several measurements, such as accuracy, relative probability of
target diagnoses, diagnosis rank, and KL-divergence. Based on
our results, we found that even with incomplete information,
the Bayesian networks derived from the FIMs were still able to
perform reasonably well.
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1. INTRODUCTION

Performing fault diagnosis is an extremely difficult problem
[1]. Given a complex system and a set of tests or alarm
outcomes, the user wants to determine the most likely faulty
component. One diagnostic tool that is often utilized is
the Fault Isolation Manual (FIM). FIMs are derived from
a type of decision tree and allow users to isolate faults at
the lowest component level [2]. The user performs the test
corresponding to the root of the tree and follows the branch
based on the test outcome to the next test specified in the FIM.
This process is repeated until the user reaches a leaf in the tree
corresponding to the diagnosed fault.

However, there are some drawbacks to using decision trees
for maintenance, such as requiring a static order of tests to
reach a conclusion. For example, suppose the maintainer
only has access to a subset of the test resources required by a
FIM (e.g., the oscilloscope is broken). Using a static FIM,
determining which faults are diagnosed based on only the
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available tests can lead a difficult problem, especially if tests
requiring unavailable resources occur higher in the tree. One
way to overcome this limitation is to convert the FIM to an
alternate type of model that allows for dynamically ordered
test sequences, such as D-Matrices (i.e., the set of all the
relationships between a set of alarms and faults) or Bayesian
networks.

In this paper we look at converting FIMs to Bayesian net-
works. In addition to allowing for a dynamic ordering of
tests, converting static FIMs to Bayesian networks has several
other advantages. The first is that it allows for probabilistic
reasoning over the system. Another is that certain processes,
such as diagnostic model maturation, are more naturally
suited for Bayesian networks. While there are algorithms
that do allow for the incremental updating of decision trees,
these algorithms assume that one has access to all of the data
used to generate the trees, which will not always be the case,
especially when using FIMs generated by domain experts [3].

Bayesian networks have been used extensively for fault diag-
nosis. Traditionally, there are two ways for building Bayesian
networks; the first is to build the network from data using
a learning algorithm. The other is to build the network by
hand with the aid of a systems expert and manually define
the structure and parameters of each random variable [4].
Additionally, one can use some combination of these two
methods: First start with a network built by a domain expert
and then use a learning algorithm to refine the Bayesian
network [5].

There has also been work in deriving Bayesian networks from
other models. Starting with a fault tree used in fault tree
analysis, one can derive a Bayesian network representing the
various logic gates in the fault tree [6], [7]. This work was
later extended to allow dynamic fault trees to be converted
into Bayesian networks by utilizing dynamic Bayesian net-
works [8]. However these fault trees are not decision trees.
Dependency networks are another type of model that has been
used to aid in constructing Bayesian networks. In [9], the
authors first constructed dependency networks because such
networks are often easier to learn than Bayesian networks.
They then used an oracle to construct the Bayesian networks
from the dependency networks. Our work is similar in that we
are using a model containing relationships between tests and
faults (i.e., dependencies) to construct Bayesian networks,
except that in our case, we the dependencies are specified
using D-Matrices derived from fault trees. In addition, this is
the first paper to analyze the performance of these Bayesian
networks derived from FIMs.

Given a FIM, one can construct a D-Matrix representing the
fault and test relationships in the FIM. From the D-Matrix
derived from the FIM, one can then construct a bipartite
Bayesian network, similar to the Bayesian network presented



in QMR-DT [10], [11]. However, it has been shown that
it is not feasible to derive a full D-Matrix from a FIM
[2]; therefore, any Bayesian network derived from such a
D-Matrix will not represent the entire set of relationships
between faults and tests in the system.

Despite this limitation, we hypothesize that bipartite
Bayesian networks derived from FIMs can still perform
reasonably well. To test this hypothesis, we derive several
FIMs, each from multiple D-Matrices. Using these FIMs, we
then generate the resulting Bayesian network by converting
the FIM to a partial D-Matrix and then the D-Matrix to
a Bayesian network. Additionally, we create a Bayesian
network from the original D-Matrix, treating that network
as “ground truth.” We then evaluate the Bayesian networks
created from the FIMs by comparing them to the Bayesian
network derived from the original D-Matrix and report on
several measurements, such as accuracy, relative probability
of target diagnoses, diagnosis rank, and KL-divergence. In
our results, we found that even with the incomplete informa-
tion derived from the FIM, fairly high diagnostic accuracy
results when using the corresponding Bayesian networks.

The rest of the paper is organized as follows. Section 2
gives a formal definition of D-Matrices, FIMs, and Bayesian
networks while Section 3 gives a formal algorithm on how
to derive Bayesian networks from FIMs. The experiments
in the paper are presented in Section 4 with the results in
Section 5. Finally, analyses of the results are in Section 6
and conclusions in Section 7.

2. DIAGNOSTIC MODELS

There are several ways to perform fault diagnosis [1]. Some
of the most common diagnostic algorithms are rule-based
algorithms, such as those in [12]. Fault dictionaries are an-
other diagnostic method that have successfully been applied
to various systems [13]. Fault trees have also been merged
with rule-oriented reasoning, which allows for locating and
identifying failures [14]. As we have already discussed, Fault
Isolation Manuals (FIMs) are a type of decision tree or fault
tree that provide another means to perform fault diagnosis.
Model-based methods, which compare observations from the
system with those expected from a model, provide another
common set of approaches to performing system-level di-
agnosis [15]. Another diagnostic algorithm that has been
extensively used for fault diagnostics and prognostics are
Bayesian networks, which allow for a compact representation
of probability distributions [10], [16]. Diagnostic models
and Bayesian networks can be represented as D-Matrices [1].
D-Matrices are matrix representations of the relationships
between faults and tests (or alarms) in a diagnostic model [1].
The rest of this section gives a more detailed explanation of
D-Matrices, FIMs, and Bayesian networks.

D-Matrices

One way diagnostic models can be represented is with D-
Matrices. A D-Matrix relate the faults and the tests monitor
or observe those faults. We can formally define it as the
following: Let IF represent a set of faults and T represent a set
of tests. Assume each F; € [F is a Boolean variable such that
eval(F;) € {0,1} and each T; € T is also a Boolean variable
such that eval(F;, T;) € {0,1}. We define eval(F},T}) to
then be the following:

if T; detects F;

I(F;, T;) = !
eval (F;, Tj) = ¢ otherwise

Fo4

FO3 Fo9 Fo7

Figure 1: A logic diagram for the Simple Model from
Simpson and Sheppard [1].

Table 1: The D-Matrix for Figure 1.

TINT1 TOI T02 TO03 T04 TO5 TO06 TO7
FINT1 I I I I I I I I
FO1 0 1 1 1 1 1 1 1
F02 0 0 1 1 0 0 0 1
F03 0 0 0 1 1 1 1 1
F04 0 0 0 1 0 0 0 1
F05 0 0 0 0 0 0 0 1
F06 0 0 0 0 0 1 0 1
F07 0 0 0 1 1 1 1 1
F08 0 0 0 0 0 0 0 1
F09 0 0 0 1 1 1 1 1
NF 0 0 0 0 0 0 0 0

Then a diagnostic signature is defined to be the vector
F, = [eval(F,;, T1),...,eval(F;, T\TI)]

A D-Matrix is then defined to be the set of diagnostic sig-
natures F; for all F; € F [17]. Rows represent faults and
columns represent tests. The ith column corresponds to test
T; in the diagnostic model. Table 1 shows an example D-
Matrix representing the logic diagram of the diagnostic model
in Figure 1. In the Simple Model there are 7 tests, 10 faults
including no fault found (which is not shown in the logic
diagram), and 1 testable input.

Fault Isolation Manuals

Fault Isolation Manuals (FIMs) provide diagnostic strategies
using structured sequences of tests to diagnose the root cause
of fault codes that are reported by on-board diagnostic sys-
tems [1]. At each step, a test is performed and depending on
the test outcome (pass or fail), the FIM then gives the next
test that should be performed. This process is repeated until a
single fault or ambiguity group is diagnosed as the cause for
the fault code.

FIMs are often represented as fault trees, which is a particular
kind of decision tree.” A decision tree is a tree data structure

2The term “fault tree” has also been used to define a tree-like structure in



Figure 2: An example FIM derived from the D-Matrix in
Table 1.

composed of internal decision nodes and terminal leaves [18].
At each decision node, there is a test function with a set of
outcomes. Given an input at each decision node, the test
function is used and a branch from the decision node is taken
corresponding to the outcome of the test function. To classify
a single data instance, the process begins at the root node and
then evaluates the attributes by applying the test to the data
point being classified. The tree is then traversed along the
edges to the next appropriate test until a leaf node is reached.
The leaf node’s label is then assigned to the current instance
that is being classified.

In machine learning, decision trees are often built using in-
formation gain or the Gini index [18]. Given a set of data, the
learning algorithm selects tests to split members of a current
ambiguity group using the expected amount of information
the tests provide. Unless derived from a a system model
such as a D-matrix, fault trees are usually built by a system
expert who has an understanding of how the system being
tested is designed, including the relationships between tests
and faults. The downside to this approach is that a technician
using the resulting tree could encounter difficulties if he or
she wants to modify the fault tree when new data becomes
available. This is due to the fact that the existing algorithms
for incremental updating of decision trees need to keep track
of entropy values for each test and modify the structure of the
network if the entropy values require a reordering of the tests
[3], [19]. With fault trees built by domain experts, there is
no way to know what entropy values to start with; therefore,
model maturation becomes a difficult problem. This is one of
the motivations for converting FIMs to Bayesian networks.

An example FIM is shown Figure 2 built from the model
shown in Figure 1. In this example, one test is not used (T06)
and two diagnoses result in ambiguity groups (which have
been circled). To use the FIM, the user would first run test
TO5. Based on whether test TO5 Passes (P) or Fails (F), the
user would run either test TO3 or TO1. Based on the outcome,
the user would then run the next test designated in the FIM.
The process would continue until a leaf in the tree is reached.

Bayesian Networks

A Bayesian network is a graphical model that can be used
to represent a joint probability distribution in a compact way
[20]. In addition, it enables a person to explicitly view
relationships between random variables in the probability
distribution.  Specifically, let X= {X;,...X,} be a set

which a series of inputs and Boolean logic gates are used to determine if a
failure occurred in a system. In this paper we refer only to the definition of
fault trees above [6].

of random variables where we want to represent the joint
probability P(X)= (Xi,...X,,) as efficiently as possible.
Using the product rule, we can factor P(X) as

n

X)) =P(Xy) [P (Xil Xy, ...

=2

PX) = (X1, ... X;—1).

The problem with representing a probability distribution in
this way is that each factor of the joint distribution is rep-
resented by a probability table whose size is exponential in
the number of variables. However, we can make use of
conditional independence between variables to represent the
probability distribution in a more efficient way.

A variable X; is conditionally independent of variable X
given Xy, if

P(X;, X;| X)) = P(X;| Xi)P(X;| Xy).

This means that the event represented by the random variable
X has no effect on the knowledge of the event X; if we
know something about the event Xj;. Using conditional
independence, we can rewrite P(X) as the following:

P(X1,...,X,) = [] P(Xi|Parents(X;)).

X;eX

Bayesian networks are directed acyclic graphs that model the
conditional independences in a probability distribution [20].
Formally, we can represent it as B = (X, E, P) where:

o Xis a set of vertices corresponding to the random variables
of the distribution,

o E is a set of directed edges (X;, X;), where the source
of the edge corresponds to X;, the destination of the edge
corresponds to X, and the edge represents a conditional
dependence relationship of X; on Xj,

« Pisasetof conditional probability tables P(X;|Parents(X;)),
where each entry provides the probability of X; given the set
of parents of X;.

Given a Bayesian network, a user can query the network for
the probability of an event occurring by performing inference.
In addition, the user can assign evidence to the graph and
then perform inference. There exist several algorithms for
performing exact inference in Bayesian networks, such as the
clique tree algorithm or the message passing algorithm [20]
[21]. These algorithms will return the exact probability of the
event that is being queried, given the evidence that has been
set.

Unfortunately, exact inference in Bayesian networks is NP-
complete [20]. In cases where the Bayesian network is too
large or complex, a person can use approximate inference
algorithms, such as stochastic sampling. These algorithms
use a sampling technique that, depending on how the samples
were taken, may return a different probability each time the
algorithm is run [20] [21]. While approximate algorithms
may not return the exact probability when querying the
Bayesian network, they have the advantage of not facing
the computational complexity that exact inference algorithms
may encounter on complex networks.

One of the most basic Bayesian networks used for fault
diagnosis is a bipartite network. In these networks there are
only two types of nodes: fault nodes and test nodes. In this
network, faults that are detected by a test are represented as



Figure 3: An example diagnostic Bayesian network. The F’s
represents faults and the T’s represent tests.

Table 2: A D-Matrix corresponding to Figure 3.

| TO1 F02 F03 F04
FO1 1 0 1 0
F02 0 1 0 1
FO3 0 1 1 1
FO4 | O 0 1 1

parents of the corresponding test node. If there is no link
between a fault and a test then the test does not detect the
presence of the fault. In addition, each test node has an
associated probability table. The network in Figure 3 is a
Bayesian network that might be used for fault diagnosis [11].

In this example, there are four faults: FO1, F02, FO3, and
FO04, and four tests: TO1, T02, TO3, and T04. To diagnose a
fault, a person would run a subset of the tests and record the
outcome of each test. The results of the tests would be applied
as evidence to the Bayesian network. Finally, the user would
query the fault nodes to see which had the highest probability
of occurring. Note that there is no requirement of how many
tests must be run; however, more tests will often lead to a
higher confidence in the final diagnosis.

Diagnostic Bayesian networks, like the one in Figure 3, can
also be represented as a D-Matrix; however, the D-Matrix
only captures structural relationships between faults and tests
and does not capture any of the probabilistic information [11].
Table 3 shows the D-Matrix for the Bayesian network in
Figure 3.

Because of the computational complexity of developing and
using Bayesian networks, Noisy-OR nodes are a special type
of node that applies additional assumptions to simplify the
network. First, a noisy-OR node is presumed FALSE if all of
the node’s parents are FALSE. This assumption is referred to
as accountability. The second assumption, called exception
independence, is that each of the node’s parents influence the
node independently. This also implies that the mechanism
that inhibits the noisy-OR node for one parent is independent
of the mechanism that inhibits all of the other parents of
the node [20] [21]. The end result is that the size of the
probability table for a noisy-OR node grows linearly instead
of exponentially as the number of parents increases.

Figure 4 gives a schematic representation of a noisy-OR node
[21]. In the figure the U,;’s represent the parents of X.

AND Explanations
or Conditions

Exceptions
or Inhibitors

Figure 4: A Noisy-OR Node [21].

The I;’s represent exceptions that interfere with the normal
relationship between the parents of X.

Let I, represent the inhibitor of the parent U;. We can then let
the value g; represent the probability of inhibitor I; occurring.
If only one parent U; is TRUE while all others parents are
FALSE, X will be TRUE if and only if the inhibitor I; is
FALSE.

P(X = TRUE |U; = TRUE, U, = FALSE ,k # i) = 1—g;

Therefore, the value ¢; = 1—g; represents the probability that
an individual parent U; is TRUE that also causes the node X
to be TRUE. Let T, represent any possible assignment u of
TRUE to a subset of the parents of X.

Ty = {i : U; = TRUE}

X will be FALSE if and only if all of the inhibitors for the
parent nodes which are in 7, are also TRUE. In other words,
X will be FALSE if inhibitors for parents that are TRUE
are also TRUE. Therefore, we can write the following to
represent X being false given the assignment u as

P(X =FALSE |u) = [] .
i€Ty

This means that the probability for X to be FALSE given a set
of its parents being TRUE is simply the product of all of the
inhibitors for the parents that are TRUE. Writing in a more
general form, we have the following

if X = FALSE

HieTu q;
P(Xw) = { if X = TRUE

1- HieT., qi

In addition, there is a Leak value A for each noisy-OR node
which accounts for the probability of X being in the TRUE
state given no evidence from any of the other parents. We can
then rewrite the above equations as the following.

(1=A)x HieTu di
1= [(1 =) x [Tier, ]

if X = FALSE

P(X|“){ if X = TRUE



Once inference algorithms are adopted to account for noisy-
OR nodes, Bayesian networks with noisy-OR nodes can be
used as regular Bayesian networks. However, unlike infer-
ence in a regular Bayesian network, the complexity of exact
inference in a Bayesian network with noisy-OR nodes grows
exponentially with the number of nodes that are assigned
positive evidence [22].

Noisy-OR nodes are often used for fault diagnosis because
they correspond to assumptions typically made, such as there
being only a single fault. For example, in the network in
Figure 3, one could replace the test nodes with noisy-OR
nodes. This makes defining the conditional probability tables
of the test nodes much more manageable, especially if the
there are a large number of faults being modeled.

3. CONVERTING FIMS

While there has been work on deriving D-Matrices from fault
trees and building Bayesian networks from D-Matrices, there
has not been any work that has formally defined how to gener-
ate Bayesian network directly from fault trees. In this section,
we explain how this process can be performed following the
two-step process. Our approach is derived from Timothy
Bearse’s paper that provides a general outline for deriving
a D-Matrix from a FIM [2]. Using those matrices, we then
build a bipartite Bayesian network with noisy-OR nodes to
retain the semantics of the D-matrix. In the remainder of this
section we give details for how these Bayesian networks are
built, including how to set the conditional probability tables
for each node.

Deriving D-Matrices From FIMs

In [2], Bearse gives an informal process for deriving the
partial information present in a fault tree. Here we describe a
formal algorithm that implements this process. The algorithm
starts with an empty D-Matrix with all tests and faults from
the FIM. Beginning at each leaf node, which in the FIM
corresponds to a fault node, the algorithm traverses up to the
parent node. Depending on whether the edge traversed up to
the test corresponds to the parent test passing or failing, a 0
(Pass) or 1 (Fail) is inserted into the D-Matrix for the index
for the corresponding fault and test. For example, in the FIM
in Figure 2, starting at NF, the algorithm would traverse to
the parent node TO7 through test TO7’s Pass link. Therefore,
in the D-Matrix a 0 is inserted into the D-Matrix for NF and
TO7. Next, the algorithm traverses to the next parent node,
where the process is repeated. In our example, this would
mean traversing from TO7 up to TO3 through T03’s Pass link
and therefore a 0 is inserted into the D-Matrix between T03
and NF. This is performed until the algorithm reaches the root
node of the FIM and then this process is repeated for all fault
nodes in the FIM. The completed D-Matrix derived from the
FIM in Figure 2 is shown in Table 3. The D-Matrix shown
here assumes symmetric inference.

As shown, after the algorithm has finished, there will still
be empty entries in the D-Matrix. In these entries, it is
unknown whether the test should detect the fault (1) or not
(0). Bearse argues that because of these empty entries,
asymmetric inference should be used instead of symmetric
inference. However, no work has been done to empirically
analyze how erroneous, if it all, the D-Matrices are when
symmetric inference is used.

Table 3: The D-Matrix derived from Figure 2.

TINT1 TOl TO02 TO03 T04 TO5 TO06 TO7
FINT1 1 1 1
FO1 0 1 1
F02 1 1 0
F03 0 1 1
F04 0 1 0
F05 0 0 1
F06 0 0 1
F07 0 1 1
FO8 0 0 1
F09 1 1 1
NF 0 0 0

Table 4: The conditional probability table for test TINTI
using a noisy-OR node.

Parent | FINTI FOI Leak
State True True ©
Pass | 0.001 | 0.999 [ 0,999
TINTY 30999 [ 0.001 [ 0.001

Building Bayesian Networks From FIMs

Using the partial D-Matrix, we can build a complete D-
Matrix similar to the bipartite network described above. To
do so, we instantiate each fault as a regular random variable
and each test as a noisy OR node. If a relationship does exist
in the D-Matrix between a fault and test, a link is added from
the fault to the test. Finally, the conditional probability tables
for the nodes have to be set. For the priors of the fault nodes,
one can set all of the probabilities based on the corresponding
failure frequency. However, these probabilities are often very
small, and in the Bayesian network after evidence is assigned
to the test nodes, the probabilities of the fault occurring will
still be very small. This is because in the network with priors
set so low, there is still the possibility that there is no fault in
the system. If we assume that there is a fault in the system,
then we must adjust the priors by normalizing the probability
of each fault over the entire set of faults. This means that the
probability of each fault being True is set according to the
formula:

_ FailureFrequency(F})
> _vF, cteatn s r FailureFrequency (F) ’

P(F})

Uniform priors can also be used if there is no clear informa-
tion on failure frequency.

For the test nodes, we want to define the probability of the test
failing given a particular fault to be True to be relatively high.
For this study, we used a value of 0.999 for the test failing if
the particular test detects the fault. Likewise, we use a value
of 0.999 for the test passing if the test does not detect the fault.
Also, a Leak value must be set, which we set to 0.001, which
means that the probability of the test Failing, given there is
actually no fault in the system is 0.001 An example table for
the test TINT1 is show in Table 4

While it is possible to first derive a D-Matrix from a FIM and
then build a bipartite Bayesian network, it is also possible to
build a Bayesian network directly from the FIM. We present
the formula in Algorithm 1. The algorithm takes in a FIM and
first instantiates all of the faults in the FIM as general random
variables in the network (lines 3-7). This is also where the
priors of the fault nodes are set. Next, the algorithm iterates
over the entire set of test nodes in the FIM and instantiates the
fault node as a noisy-OR node in the Bayesian network. For



Algorithm 1 Build Bayesian Network

/I F'T is the fault tree
/I B is the Bayesian network
for all Faults F; € F'T do
F; + CreateNode
F; < SetCPT
FT.AddFaultNode(F;)
end for
for all Tests T; € F'T do
9: T; < CreateNoisyORNode
10:  FT.AddTestNode(T;)
11:  for all Faults F; € F'T'do

AN AN S

12: if T; indicts F; by pass link then

13: T;.AddParent(F})

14: T; ProbOfPassGivenFault(F;) = 0.999
15: T;; ProbOfFailGivenFault(F;) = 0.001
16: end if

17: if T; indicts F} by fail link then

18: T;.AddParent(F})

19: T; ProbOfPassGivenFault(F};) = 0.001
20: T; ProbOfFailGivenFault(F;) = 0.999
21: end if

22: end for

23: T; . ProbOfLeak = 0.001
24: end for

25: return B

each test node, the algorithm then iterates over all fault nodes
(line 11). If the fault is indicted by the test then a link is added
from the fault to the test node. For example, in Figure 2, test
TO7 indicts NF, FO5, and FO8. The two if statements at lines
12 and 17 determine how to set the probabilities in the test
node. In our example, since TO7 indicts FO5 and FO8 through
the failure link, the algorithm would execute lines 18-20 for
test TO7 and faults FO5 and FO8. Finally, the leak value for
the test node is set.

4. EXPERIMENTS

To empirically evaluate the bipartite Bayesian networks de-
rived from FIMs, we use two diagnostic models from Simp-
son and Sheppard [1]. The first model, which is referred to as
the “Simple Model” is shown in Figure 1 that contains seven
tests, nine faults, one testable input, and one feedback look.
The second is a model of a hypothetical missile launcher
shown in Figure 5 that contains 18 tests, 21 faults, 2 testable
inputs, two untestable inputs, and two feedback loops. This
model will be referred to as the “Missile Model” for the
remainder of the paper.

Given the D-Matrices for the two models, we derive fault
trees from each. We first use ID3 to build a fault tree that
is fairly balanced. The second tree is also built using ID3.
However, instead of choosing a test split that maximizes
information gain, we set the algorithm to split on the tests
that minimize the information gain, resulting in very biased
trees. For example, the FIM in Figure 6 is derived from the
D-Matrix in Table 1.

The reason for building the biased trees is because real FIMs
will not always be perfectly balanced and this allows us to
see how a Bayesian network derived from an unbalanced
tree performs. In building the trees, there are cases where
the biased and balanced trees contain different sets of tests.

To make each tree as comparable to the other, we manually
enforce that the biased and balanced trees contain the exact
same set of tests. In addition, if there is an ambiguity group
in the tree, we combine the faults into one node. Also, since
in the Bayesian networks we always assume that a fault has
occurred, we remove the NF from the set of faults in the
Simple Model. For the balanced tree in Figure 2, we would
remove the fault NF and test TO7; faults FO5 and FO8 would
then be linked directly to test TO3.

Given the biased and balanced tree for each model, we
then derive a biased and balanced Bayesian network for
each model. In addition, for each full D-Matrix, we derive
a Bayesian network with the same basic structure as the
Bayesian networks derived from the FIMs. However, since
these networks were derived from the full D-Matrix, there
will be no missing relationships in the Bayesian network.
This provides ground truth so that we can compare the FIM-
based Bayesian networks. Using these networks, we then
performed three different sets of experiments.

Accuracy of Test Sequences

In the first set of experiments, we look at how each tree per-
formed over every possible sequence of tests. For each fault
in the Bayesian network, we take all possible combinations
of tests using the D-Matrix. For each combination of tests for
the fault, we apply to the corresponding test the appropriate
test outcome. We then query the Bayesian networks to see
which fault is diagnosed and compare the results with the D-
Matrix to see if the diagnosis is correct. In these experiments
we plot the number of tests that were applied versus the
following measurements:

o Accuracy: The ratio of the total number of times the DFIM
correctly diagnosed a fault divided by the total number of test
combinations for every fault. In certain cases the DFIM will
diagnose several faults all with the same probabilities. In this
case, if the correct test is still in the top ranked ambiguity
group, we count that as being a correct diagnosis.

o Rank: The average rank of the correct fault. If there
are ambiguity groups in the DFIM, the faults are grouped
into ambiguity groups and the rank of the ambiguity group
containing the correct fault is then reported.

« Probability of Fault: The posterior probability of the fault
after the set of tests have been applied to the network.

« Probability of Top Ranked Fault: The probability of the
fault that is ranked the highest by the DFIM.

« Probability Difference: The difference in probability be-
tween the correct diagnosis and the highest ranked diagnosis.
+ KL-Divergence: A measure of the difference between two
probability distributions P and (), calculated as

D (PIIQ) = 3 o (gg;) P(i),

where P usually represents the “true” distribution and @ is
the distribution being compared to P. In our experiments, P
is based on the distribution derived from the full D-Matrix.

Degradation of Bayesian Networks

In the second set of experiments, we sought to observe how
quickly the performance of networks derived from FIMs may
degrade. To do so, we started with the Bayesian network
derived from the full D-Matrix. We then randomly deleted
links between faults and tests to simulate the effects of
different paths being generated in a FIM and then ran the
same set of experiments described in the previous section.
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Figure 5: A logic diagram for the Anti-Tank Missile Launcher Model from Simpson and Sheppard [1].

In randomly deleting the links from the network, we enforced
that none of the faults would become completely isolated, i.e.,
that there was always at least one test connected to the fault
in the Bayesian network. We performed the above process
10,000 times and averaged the results. For the sake of brevity,
we only present the results for accuracy, rank, and KL-
divergence since they offer a good summary of performance
of the network. Because of the exponential explosion in
the number of different test combinations, running these
experiments on the Missile Model was infeasible; therefore,
only the results for the Simple Model are shown.

Costs of Test Sequences

Finally, we examined the average cost to run a set of tests
for each network. For this set of experiments, we selected
tests based on some cost criterion, assigned outcomes to the
tests, and repeated until a diagnosis could be made. More
specifically, we evaluated two different ways to select tests in
for the networks. First, tests were selected that minimized the
entropy (maximized information gain). Second, we incorpo-
rated a cost metric into the entropy calculation by dividing
the gain by the test cost:

gain(T;)

gainDivCost(T;) a * cost(T;)

where « is a weight factor that controls how much influence
cost has on the test selection.

To build a test sequence, we first select the test ranked the
highest according to the given test selection method. We then

Figure 6: Biased tree derived from Table 1.

assign that test a Pass outcome. The entropy for the tests
are recalculated and the highest ranked test is selected and
also assigned a Pass outcome. This process is repeated until
there are no more tests to run or if the difference between
the top ranked fault and second ranked fault reaches a user
specified threshold. After reaching the stopping criterion, the
faults are queried to find the top ranked fault. The sequence



of tests and corresponding diagnosed fault are then stored to
be evaluated later. To build another test sequence, the last
selected test outcome that had a Pass outcome is changed to
a Fail outcome. Also, all of the tests that were performed
after the test outcome that was changed have the evidence
removed. The process for selecting the highest ranked test is
repeated and the outcome is set to Pass. Again, if the stopping
criterion is met, the test sequence and highest ranked fault
are recorded. In performing this test sequence generation,
we enumerate all possible combinations of tests and test
outcomes. However, in certain cases, the assignment of test
outcomes will result in a fault signature that is inconsistent
with the D-Matrix. In those cases, the test sequence will not
traverse down that branch of the tree.

We assigned random values between 0 and 1 for the costs
in the Simple Network. For the Missile Model, we used the
costs specified in Simpson and Sheppard [1] and normalized
the values to be between 0 and 1. Once we had all of the test
sequences, we calculated the average cost of the diagnostic
strategy.

For these experiments, we considered two additional varia-
tions. In the first, we assumed all the fault prior probabilities
were uniform. For the second, we use non-uniform priors.
For the Simple Model with non-uniform priors, we generated
a single random set of failure rates, and the threshold for the
difference between the top ranked fault and the next ranked
fault was set to 0.50. For the Missile Model, we use the
normalized failure rates specified by Simpson and Sheppard
[1]. A higher threshold rate of 0.95 was used in this case.
When lower threshold values were used, they resulted in
not all faults being diagnosed in a test sequence. Below,
we present the average test sequence cost, accuracy, and the
length of the test sequences.

5. RESULTS

For all experiments we use the Java plug-in for SMILE [23].
Note that in SMILE, noisy-OR nodes are only used as a mod-
eling tool; when inference is performed; the full conditional
probability tables are generated from the user defined noisy-
OR tables. For inference, we used the Lauritzen clique tree
algorithm [24], which is the preferred algorithm in SMILE
for performing exact inference [23].

Accuracy of Test Sequences Results

The accuracy-based results for the Simple Model are shown
in Figure 7, and the corresponding results for the Missile
Model are shown in Figure8. In the figures, “D-Matrix”
denotes the Bayesian network derived from the full D-Matrix
while “Biased” and ‘“Balanced” denote the Bayesian net-
works derived from the based and balanced trees, respec-
tively.

Here we see that the D-Matrix models always correctly
diagnose the expected faults, thereby justifying their use for
ground truth. This is because each model has all of the
links from the D-Matrix, so any assignment of tests will
always raise the probability of the correct fault. In the Simple
Model, the Balanced network performed second best with
the Biased network performing the worst. However, in the
Missile Models, the performance of the Biased and Balanced
networks are almost the same for test sequences of length 4
to 15. In the Simple Model, the performance of the Biased
and Balanced networks degrades from running only 1 test to
running 2 tests but then slowly improves. Meanwhile, the

accuracy of the Biased and Balanced networks for the Missile
Model decreases dramatically from about 1 to 4 tests in the
sequence and slowly increases as more tests are performed.

We see a similar set of results for the average Rank in Figures
7b and 8b, where the D-Matrix always ranks the correct
fault either first or in the top ambiguity group. In addition,
the Biased network performs the worst while the Balanced
network performs second best. For the Biased and Balanced
networks derived from the Missile Model, the average rank
of the correct fault increases as more tests are performed up
to 8 tests, as which point the rank begins to decrease.

When considering the probability of the correct fault on the
Simple network, the highest ranked fault, and the difference
between the two are shown in Figures 7c, 7d, and 7e. The
probability of the correct fault increases in a linear fashion
for both the D-Matrix, Biased, and Balanced networks. For
the Biased and Balanced networks, the probability of the
top ranked fault is higher than that of the correct fault but
then slowly levels out. In particular, this can be seen when
looking at the probability difference. The results for the
Missile Model, shown in Figures 8c, 8d, and 8e, are very
similar to that of the Simple Model. The probability of the
correct fault increases linearly for the D-Matrix, Biased, and
Balanced networks while the probability for the top ranked
fault increases in a logarithmic fashion for the Biased and
Balanced networks. The probability difference results show
an increase in the difference between the correct fault and
true fault in test sequences of length 1 to 5, but then a steady
decrease occurs in sequences from 6 to 16 to tests.

Finally, we have the KL-Divergence results for the Simple
Model in Figure 7f and the Missile Model in Figure 8f. Based
on these results, we can see that the Balanced network’s
distribution is closer to that of the D-Matrix network than
that of the Biased network for both the Simple and Missile
Models. In addition, the difference between the distributions
increases as the number of tests run is increased.

Degradation of Models Results

The results for the model degradation experiments are shown
in Figure 9. Here, the x-Axis indicates the percent of the
links that have been removed from the D-Matrix model. In
Figure 9a we see that, as we remove links from the network,
the accuracy decreases. In addition, the rank (Figure 9b)
increases as the number of links are removed. Finally, we see
that the KL-Divergence (Figure 9c) increases as the number
of links are removed.

Average Costs

For the final set of experiments, we show the accuracy and
the average cost of the test sequences. In addition, we report
on the counts of the number of test sequence lengths, which
allows a user to see the distribution of tests that need to be
performed. Table 5 shows the sequence lengths and the num-
ber of sequences of length x for both test selection methods,
along with the average test sequence cost and accuracy for
the Simple Models. Table 6 shows the same results for these
networks; however, these networks do not have equal priors
on the faults.

As shown in Table 5, the distribution of the sequence lengths
does not appreciably when comparing the test selection meth-
ods. However, including test cost in the selection process
does yield a slightly lower average cost (as one would ex-

pect).
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Table 5: Number of Test Sequence Lengths for the Simple Model with Equal Priors

Number of No Costs With Costs
Tests D-Matrix | Biased | Balanced | D-Matrix | Biased | Balanced

1 1 1 1 1 1 1

2 1 1 1

3 3 1 3 3 1

4 1 1 2

5 1 1 1 1 1 1

6 6 2 6 6 2 6
Avg Cost: 1.54 1.78 1.72 1.49 1.77 1.72
Accuracy: 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 8: Missile Model Results

Table 6: Number of Test Sequence Lengths for the Simple Model with Unequal Priors

Number of No Costs With Costs
Tests D-Matrix | Biased | Balanced | D-Matrix | Biased | Balanced

1 1 1 1

2 1 1 2

3 3 1 5 3 1 3

4 2 1 4 1 1

5 1 1 5 1 1

6 1 2 4 6 2 2
Avg Cost: 1.99 1.58 1.95 1.91 1.58 1.98
Accuracy: 1.00 0.80 0.86 1.00 0.80 0.86
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Figure 9: Degradation Results for the Simple Model.

When the priors of the faults are unequal (Table 6), the
average cost of a test sequence increases for the D-Matrix and
Balanced networks while decreasing for the Biased network.
In addition, the Biased and Balanced networks no longer
perform with 100 percent accuracy. Another interesting result
is that the average cost of the test sequences for the Biased
network is the same regardless of the test selection method.
We also see that the difference between the average cost for
the two test selection methods on the D-Matrix and Balanced
is very small.

The results for the Missile Models with equal priors are
shown in Table 7 while the Missile Model results with non-
equal priors are in Table 8. With equal priors, there is
no difference between the two test selection methods. In
addition, for all of the models, all 16 tests had to be performed
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since the difference between the top ranked fault and the
second top ranked fault never exceeded the threshold. When
a lower threshold was used, we encountered a problem that
some faults were never diagnosed because the stop criterion
was met too early. Finally, the accuracy of the networks is
lower for the networks with unequal priors because a fault
with a low probability for a prior is harder to diagnose.

6. CONCLUSIONS

In this paper, we explored a procedure for deriving Bayesian
networks from Fault Isolation Manuals (fault trees) and inves-
tigated the accuracy of this procedure. From our experiments,
we can conclude that deriving Bayesian networks from fault
trees will not perform as well as Bayesian networks derived
from the full D-Matrix because there are links missing in the
Bayesian network. This is not surprising; however, this is the
first study to our knowledge that attempts to explore this issue
in a systematic way.

Despite the fact that the Bayesian networks derived from
FIMs do not perform as well as the Bayesian network derived
from D-Matrices, there are several encouraging results. First,
the average rank of the correct fault in the Simple Model was
around 2.5 and 1.5 for the Biased and Balanced networks
depending on how many tests were run. Additionally, the
ranks for the Biased and Balanced networks for the Missile
Model were between 2 and 4.5. While the ranks for Biased
and Balanced networks in the Missile Model were worse
than that for the Simple Model, there are more than twice
as many faults in the Missile Model than there are in the
Simple Model. This shows that, while the correct fault may
not be ranked the highest, it is still ranked relatively high in
the overall list. This fits with what we would expect since in
the full D-Matrix, not all of the tests need to be performed to
diagnose a fault.

Another encouraging result is that the probability of the
highest ranked fault and the true fault was relatively small,
especially as the number of tests performed was increased.
This shows us that while the correct fault may be ranked in
the top three, the difference between those top three faults
is relatively small. If a maintainer was using a Bayesian
network instead of a FIM, he or she would probably repair
all three if the difference between the top candidates was so
little (as if they belonged to an ambiguity group). As an
alternative, the maintainer could choose to run more tests to
further isolate the fault in the system.

We also noted some interesting results from the results on
accuracy. The first is that the probability of the top ranked
fault for the Biased and Balanced networks was on average
higher than that of the D-Matrix network. This was because
the Biased and Balanced networks were missing links from
the faults to the test nodes. Because of these missing links,
the influence of the tests performed were stronger relative to
faults connected to those tests.

From the degradation results, we see that the performance
of the Bayesian network degrades fairly quickly when the
first set of links are removed (20 percent of the links are
removed) and then performance seems to level out (from
about 20 to 60 percent). We also noticed that the accuracy
of the networks remains steady from 60 to 80 percent and
even increases in performance at the end. We also found
that the graphs for Rank and KL-Divergence show a similar
behavior. The difference in KL-Divergence between the



Table 7: Number of Test Sequence Lengths for the Missile Model with Equal Priors

Number of No Costs With Costs
Tests D-Matrix | Biased | Balanced | D-Matrix | Biased | Balanced
16 19 19 19 19 19 19
Avg Cost: 22.50 22.50 22.50 22.50 22.50 22.50
Accuracy: 1.00 0.50 0.45 1.00 0.50 0.45

Table 8: Numb

er of Test Sequence Lengths for the Missile Model with Unequal Priors

Number of No Costs With Costs
Tests D-Matrix | Biased | Balanced | D-Matrix | Biased | Balanced
16 19 19 19 19 19 19
Avg Cost: 22.50 22.50 22.50 22.50 22.50 22.50
Accuracy: 1.00 0.42 0.38 1.00 0.42 0.38

full D-Matrix network and the D-Matrix with links removed
degrades fairly steadily until about 60 percent of the links
have been removed, at which point the difference levels out
and even starts to reduce at the end.

In the final set of experiments that evaluate test cost and
sequence length, we see that while we can still get decent
performance from the Biased and Balanced networks, the
networks derived from the trees are not as cost efficient.
While the distribution of the sequence lengths is fairly even,
the average cost for the D-Matrix network was almost always
lower than the two other networks, especially when costs
were incorporated into the test selection process. We also
see in the Missile Model that using a hard threshold of when
to stop performing tests is not a good stopping criterion. In
the Missile Model, all of the test sequences used all of the
tests. However, in certain cases one could stop performing
tests sooner, but determining when those cases occur is not a
trivial task. This may suggest a variable approach to stopping
such as that described in [25].

7. SUMMARY

In this paper, we empirically analyzed the performance of
bipartite Bayesian networks that were derived from FIMs.
While the derived Bayesian networks do not always ac-
curately diagnose the correct fault, they still can perform
reasonably well when looking at some of the other results,
such as the average probability of the correct fault. However,
the Bayesian networks derived from the FIMs will not be as
cost effective.

Using Bayesian networks for diagnosis offer several advan-
tages. The first is that they allow for a natural extension for
diagnostic model maturation [26]. In our previous work we
focused on maturing D-Matrices and TFPGs. That work can
easily be extended to maturing bipartite Bayesian networks
since we can use historical maintenance and test session
data to learn new relationships and conditional probabilities
between faults and tests. This will then allow us to learn both
if there is an erroneous relationship between a fault and alarm
or to fill in the gap where a relationship was not previously
known to exist.

For future work, we plan to examine and develop approaches
to mature the Bayesian networks derived from the FIMs.
By developing an efficient approach to mature the networks,
we would then be better able to justify converting FIMs to
Bayesian networks in the first place. This way we can make
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use of the engineering expertise that generated the FIMs in
the first place as well as providing a seamless approach to
maturing the processes based on historical data.
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