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1 INTRODUCTION

Performing fault diagnosis is an extremely difficult problem 
[1]. Given a complex system and a set of tests or alarm out-
comes, the user wants to determine the most likely faulty 
component. Some of the most common diagnostic algo-
rithms used are rule based, fault dictionaries, and fault trees 
[2], [3], [4]. Model-based methods provide another common 
set of approaches to performing system level diagnosis, 
which compare observations from the system with those ex-
pected from a model [5], [6].

One model-based approach to system-level diagnosis 
that has been receiving attention is the timed failure propa-
gation graph (TFPG), developed at Vanderbilt University 
[6], [7]. The TFPG specifies causal relationships between 
faults and discrepancies, which are irregular conditions that 
are the effects of the faults (whether monitored or unmoni-
tored). TFPG diagnostic algorithms are then able to diag-
nose faults solely from knowing which alarms (monitored 
discrepancies) were or were not triggered. The diagnosis 
process, however, can be improved by incorporating the 
temporal information of when the alarms occurred [5], [8].

Figure 1 shows an example TFPG. Nodes labeled with 
F1, F2, F3, and F4 represent faults in the TFPG. The labels 
D1 through D11 denote nodes that represent discrepancies. 
Monitored discrepancies are represented by nodes labeled 
M2, M3, M9, M10, and M11. If fault F1 were to occur, then 
the signal would propagate to D1 and then split and propa-
gate to D2 and D3, which would be detected by the alarms 
M2 and M3, respectively. The signal would then continue to 
propagate to the rest of the system and would trigger alarms 
M9, M10, and M11. In the diagnostic setting, the algorithm 
would only see alarms M2, M3, M9, M10, and M11 fire. Be-
cause all of those alarms indicate fault F1, F1 would be re-
ported as the most likely diagnosis.

TFPGs are constructed by a domain expert of the system, 
and the modeling process is difficult because the expert must 
accurately represent causal relationships given an often in-
complete understanding of actual system behavior, therefore 

introducing error into the model. A poorly designed TFPG 
will result in inaccurate diagnosis from the reasoner, causing 
an increase in time, money, parts, and labor in the mainte-
nance of the modeled system [9]. For example, suppose that 
in creating the TFPG in Figure 1, the engineer overlooked the 
causal relationship between the discrepancies D7 and D9. In 
this erroneous model, the reasoner will not be able to diag-
nose fault F4, as the model does not have any relationship 
between F4 and any alarm other than M11. If F4 does occur 
in the physical system, alarms M9, M10, and M11 will all oc-
cur, and the reasoner will likely diagnose F2 because it is the 
simplest explanation as to what fault would trigger M9. The 
result is an increase in maintenance time because the true 
fault has to be located by alternative means [10].

Because creating error-free diagnostic models is difficult, 
a process is needed to mature the diagnostic models over 
time. If the system user knows when the model is misdiag-
nosing a fault, he or she should be able to use that informa-
tion to mature the model, resulting in a more accurate di-
agnosis. To determine whether the reasoner diagnosed the 
correct fault, one must compare the reasoner’s diagnosis 
with the actual fault found by alternative means. By storing 
the past maintenance history, detailed engineering analysis 
can often be performed to determine the actual fault that oc-
curred. The maintenance information can then be compared 
to the reasoner history and searched for any discrepancies 
between the two data sources. If there is a discrepancy be-
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Figure 1.
An erroneous TFPG. Nodes labeled with F1, F2, F3, and F4 
represent faults in the TFPG. The labels D1 through D11 denote 
nodes that represent discrepancies. Monitored discrepancies 
are represented by nodes labeled M2, M3, M9, M10, and M11. 
The circled link from discrepancy D7 to discrepancy D9 should 
be included in the TFPG but was overlooked when the model 
was created, resulting in a poor diagnosis of faults.
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tween the two histories, then the user knows that the rea-
soner misdiagnosed a fault that can then be used to modify 
the model such that the reasoner is more likely to diagnosis 
the correct fault in the future [9].

Unfortunately, diagnostic model maturation is also a dif-
ficult problem [11]. To perform maturation, the reasoner diag-
nosis history and maintenance history are needed to be able to 
locate where the reasoner is misdiagnosing a fault. However, 
these data sources are often stored in heterogeneous systems, 
making retrieval and analysis of the data difficult [11]. In pre-
vious work, Wilmering and Sheppard suggested an approach 
using domain ontologies as a means to focus and filter data 
analysis in knowledge discovery [12]. The specific focus of 
that work showed how ontologies could be used to guide the 
process by which diagnostic models could be matured over 
time. That paper proposed using a method such as the Apriori 
algorithm [13] to discover new relationships within historical 
maintenance data that could be used to determine diagnostic 
relationships, improve probability estimates, or provide bet-
ter specification of test processes [12].

In our previous work, we extended the work of Wilmer-
ing and Sheppard to map diagnostic models and historical 
diagnostic session data to two ontologies derived from IEEE 
standards [14]. In that work we mapped the reasoner infor-
mation and D-matrix model from the Fault-Adaptive Con-
trol Technology (FACT) TFPG reasoner to the IEEE Std 1232 
Standard for Artificial Intelligence Exchange and Service Tie 
to All Test Environments (AI-ESTATE) and the maintenance 
history to IEEE Std 1632.2 Software Interface for Mainte-
nance Information Collection and Analysis (SIMICA): Main-
tenance Action Information (MAI) [15], [16], [17]. The IEEE 
models, which were standardized using the EXPRESS lan-
guage, were redefined using the Web Ontology Language 
(OWL) [18], [19]. This allowed us to use graph-theoretic rep-
resentations of the models and sessions to determine statisti-
cal discrepancies between what was expected by the models 
and what had been encountered in practice. From this, we 
were able to recommend changes to TFPGs which matured 
the relationships between faults and alarms.

That work was further extended by looking at how to 
mature the relationships between the different alarms in the 
TFPGs [20]. Given a set of maintenance events, we modeled 
all of the alarm sequences using a probabilistic transition 
matrix similar to a Markov chain. This probabilistic transi-
tion matrix was then compared to the TFPG to find discrep-
ancies between the two. These recommendations were then 
reported back to an engineer or analyst for further review. 
Not only could these recommendations be used in the matu-
ration of relationships between alarms, but also in the matu-
ration of relationships between alarms and faults.

Our previous work focused on the ontological aspect of 
the maturation process and the maturation algorithms for 
TFPGs [14], [20]. In this paper, we discuss ModelMat, the 
tool we developed to perform diagnostic model maturation. 
In addition, we also discuss how the maturation algorithms 
can be extended to other diagnostic models, such as Bayes-

ian networks. The paper is organized as follows. Section 2 
discusses various diagnostic models in greater detail while 
Section 3 discusses related work. The maturation algorithms 
are discussed in Section 4. Section 5 gives a description of 
ModelMat, an example of how the software is used, and a 
discussion of how the maturation algorithms can be extend-
ed to other diagnostic models. Finally, Section 6 concludes 
the paper and discusses future work.

2 FAULT DIAGNOSTIC MODELS

There are several different ways to perform fault diagnosis 
[1]. Some of the most common diagnostic algorithms are rule-
based algorithms, such as those in [4]. Fault dictionaries have 
successfully been applied as another diagnostic method, es-
pecially with digital systems [3]. Fault trees have also been 
merged with rule-oriented reasoning, which allowed failure 
location and identification of the failure cause [2]. Fault Isola-
tion Manuals (FIMs), which are a set of procedures for diag-
nosing faults in complex systems based on decision graphs, 
are another common way to perform fault diagnosis.

Model-based methods provide another common set of 
approaches to performing system level diagnosis, which 
compare observations from the system with those expected 
from a model such as the TFPG [5], [6], [7]. Since TFPGs have 
been introduced, there have been two primary algorithms 
that have been developed that useze TFPGs: one based on 
parsimony and another one based on consistency [5], [6].

2.1	TIMED	FAILURE	PROPAGATION	GRAPHS

A TFPG is a directed graph where each vertex represents a 
failure or a discrepancy [6], [7]. Failure nodes represent faults 
in the target system, and discrepancies are causal nodes that 
are affected by failures. Discrepancy nodes can be monitored 
or unmonitored. Monitored discrepancies are often referred 
to as alarms. The edges between the nodes represent the ef-
fect of failure propagation over time in the underlying sys-
tem that is being modeled. Formally, this is represented as  
TFPG = (F,D,E,ET,DS), where

 C F is a set of failure nodes

 C D is a set of discrepancy nodes

 C E = V × V is a set of directed edges, where V F D= U

 C ET: E → (Int, Int) is a mapping that associates each 
edge in E with a finite time interval

 C DS: D → {M, N} is a mapping that defines whether a 
discrepancy is monitored (M) or not monitored (N).

The set of discrepancies that are monitored are defined 
by the map DS. The map ET associates with each edge e in E, 
a minimum and maximum time for the failure to propagate 
along the edge. The goal of a diagnostic algorithm is to find 
a hypothetical state that tries to explain the physical system 
based on observed alarms [5]. Note that TFPGs are used in 
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an online setting, and therefore the alarms are asymmetric. 
This means that we only know the state of an alarm when it 
fires and that an alarm not firing does not mean the alarm is 
automatically in the off state.

Since TFPGs have been introduced, several online diag-
nostic algorithms have been developed to use these models 
by determining the most likely fault occurrence given a set 
of alarms that have been triggered [5], [8]. TFPGs have also 
been extended by Abdelwahed in 2004 to include model de-
pendency constraints on the propagation links [21]. These 
extended models, referred to as a hybrid failure propagation 
graphs (HFPG), allow the model to operate in various op-
erational modes. Thus, alarms can be either enabled or dis-
abled, depending on the associated mode.

2.2	BAYESIAN	NETWORKS

Another model based approach is the Bayesian network. 
This type of model allows the incorporation of uncertain-
ty into the diagnostic procedure and is useful in scenarios 
where causality appears to be a factor, but the understand-
ing of the system is incomplete [22].

A Bayesian network is a graphical model that represents 
a probability distribution in a compact way [23]. In addition, 
it enables a person to view relationships between random 
variables explicitly in the probability distribution. Given a 
set of random variables { }1, nX X= …X , we want to repre-
sent a joint probability ( )1( ) , nX X= …P PX  as efficiently as 
possible. Using the product rule, we can factor ( )P X  as

( ) ( )1 1 1 1
2

, ( ) | , .
n

n i i
i

X X X X X X −
=

… = …∏P P P  (1)

The problem with representing a probability distribution in 
this way is that each factor of the joint distribution is rep-
resented by a probability table that has a size exponential 
in the number of variables. However, we can make use of 
conditional independence between variables to represent 
the probability distribution in a more efficient way.

A variable Xi is conditionally independent of variable Xj, 
given Xk, if

( | , ) ( | ).i j k i kX X X X X=P P  (2)

This means that the event represented by the random vari-
able Xj has no affect on the knowledge of the event Xi if we 
know something about the event Xk.

Bayesian networks are directed acyclic graphs that mod-
el the conditional independences in a probability distribu-
tion [23]. In the graph, the set of vertices correspond to the 
random variables of the distribution while the set of direct-
ed edges represents conditional dependence relationships 
where destination nodes are conditionally dependent on 
the source node. We can denote the set of nodes Parents (Xi) 
where each node Parents( )j iX X∈  has an edge to Xi. Using 

the conditional independences represented in the Bayesian 
network, we can rewrite ( )P X  as the following:

( )1( , , ) | Parents( ) .
i

n i i
X

X X X X
∈

… = ∏
X

P P  (3)

The structure of the Bayesian network is dependent on the 
conditional dependencies being modeled.

A user can assign evidence to the graph and then per-
form inference. There exist several algorithms for perform-
ing exact inference in Bayesian networks, such as the clique 
tree algorithm or the message passing algorithm [23], [24]. 
These algorithms will return the exact probability of the 
event that is being queried given the evidence that has 
been set. However, exact inference in Bayesian networks is 
NP-complete [22]. For large networks, one can use approxi-
mate inference algorithms, such as stochastic sampling. 
These algorithms generate several example instantiations 
of variables in the network based on the evidence and use 
these samples to estimate probabilities over the variables 
of interest. While not exact, these estimates are often very 
accurate [23], [24].

Bayesian networks have been used extensively for per-
forming fault diagnosis [25]. Traditionally, these networks 
are based on the QMR-DT scheme, which consists of two 
types of nodes: fault nodes and test nodes [26]. Each test 
node has a set of fault nodes as it parents such that if there 
is a relationship between the test and a fault, then the test 
indicts the fault. In addition, each test node has an associ-
ated probability table. Figure 2 shows an example Bayesian 
network that might be used for fault diagnosis [27].

In the example, there are four different faults, F1, F2, F3, 
and F4. In addition, there are four different tests M1, M2, M3, 
and M4. To diagnose a fault, a person would run a subset of 
the tests and record the outcome of each test. Then, these 
outcomes would be applied as evidence to the Bayesian net-
work. Finally, the user could query the nodes F1, F2, F3, and 
F4 to see what fault had the highest probability of occurring, 
which would be reported as the diagnosis. Note that there is 
no requirement on how many tests must be run. However, 
running more tests will often lead to a higher confidence in 
the final diagnoses.

2.3	D-MATRICES

One-way TFPG or Bayesian models can be represented is 
with D-matrices. A D-matrix, at least partially, relates the 
faults and the discrepancies that monitor or observe those 
faults. We can formally define it as the following: Let F  
represent a set of faults. Let D  represent the set of discrep-
ancies. Assume each iF ∈F  is a Boolean variable such that 

{ }(F ) 0,1ieval ∈ , and each D j ∈D  is also a Boolean variable 

such that { }(D ) 0,1jeval ∈ . Then, a diagnostic signature is 
defined to be the vector

1 | |(D ), , (D ,i eval eval = … F D  (4)
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where

1 if D  detects F
(D ) ,

0 otherwise
j i

jeval 
= 


 (5)

A D-matrix is then defined to be the set of diagnostic signa-
tures Fi for all Fi ∈F  [28]. Rows represent faults and columns 
represent discrepancies. The ith column corresponds to dis-
crepancy Di in the diagnostic model. When representing a 
TFPG with a D-matrix, the only discrepancies that are typi-
cally included in the D-matrix are the monitored ones.

D-matrices do not fully represent TFPGs because they 
do not capture the temporal relationships. However, one 
can find the logical relationship between the alarms by com-
puting the logical closure of the matrix [27]. This is done by 
determining which discrepancies detect fault set that is a 
subset of another discrepancy’s detected fault set. Let Di be a 
discrepancy that monitors faults iF  and let Dj be a discrepan-
cy that monitors faults jF . We can represent this as Di i→F  
and Dj j→F . If i j⊆F F , then Dj i→F . If jF  is true, 

jF  
must also be true. This means Di must be true, and therefore 
D Di j→  [1], [27]. The result is a D-matrix representing the 
causal relationships between discrepancies, which are need-
ed if a person is using a D-matrix to represent a TFPG and 
wants to perform sequence maturation.

After finding the logical closure, one can find the transi-
tive reduction of the resulting matrix [29]. In taking the tran-
sitive reduction, all of the transitive links between discrep-
ancies can be removed. Specifically, if there exists a link from 
discrepancy Dx to Dy and Dz and also from Dy to Dz, then we 
can remove the link from Dx to Dz because we know that Dz 
observes Dy and Dy observes Dx, then Dz observes Dx. This 
reduced D-matrix is then able to show the first-order depen-
dencies between the discrepancies, which can be used in the 
Seq-Mat algorithm.

In our previous work, we focused on maturing the D-ma-
trices of the TFPGs. One problem with using the D-matrix to 
represent the TFPG, however, is that the resulting unclosed 
D-matrix will not always represent the true causal relation-
ships between alarms. For example, in Figure 3, after the 
logical closure and transitive reduction of the two models is 
found, the D-matrices will be the same.

Additionally, because the closure step depends on which 
faults the alarms monitor, the logically closed D-matrix will 
not be able to determine the correct temporal relationships 
in a sequence of alarms. Therefore, it is sometimes necessary 
to provide the maturation algorithms with the graph repre-
sentation of the TFPG and then convert the graph to a matrix 
representation. This matrix will then correctly represent the 
relationships between all of the discrepancies and therefore 
allow for accurate sequence maturation.

Additionally, diagnostic Bayesian networks, such as the 
one in Figure 2, can be represented as a D-matrix. Table 1 
shows the D-matrix for the Bayesian network in Figure 2. 
However, the D-matrix only captures structural relation-
ships between diagnoses and tests and does not capture any 
of the probabilistic information [27], [30].

3 RELATED WORK

The idea behind diagnostic maturation has been discussed 
in several papers, but to our knowledge, only one paper has 
published a formal algorithm for large amounts of correc-
tive actions in which nondetects or false alarms could be 
occurring [14]. In [9], Wilmering points out there are unex-
pected and unplanned system interactions that can degrade 
the performance of the diagnostic design. To increase per-
formance of the diagnostic model, historical maintenance 
actions will be used to help mature the model. Wilmering 
however, points out that the process requires ready access 
to the model, maintenance events, and any other informa-
tion that could aid in the maturation process [9]. To use all of 
these resources, he proposes using an ontology to gather all 
the required data together in a meaningful way.

In [1], the authors discuss using explanation-based learn-
ing for the diagnostic model. If misdiagnosis occurs, then 
additional testing is done until a correct diagnosis has been 
made. This information can then be used to modify the 
structure of the model so that the correct diagnosis is consis-
tent with testing. The authors also give a proof that, given a 
single misdiagnosis, the model can be modified so that the 

Figure 2.
An example of a Bayesian network being used for fault diagnos-
tics. The Fs represent a diagnosis while the Ms represent tests.

Figure 3.
Two different TFPGs. If the logical closure and reduction of 
these two TFPGs is taken, the unclosed D-matrix of the two 
models will be the same.
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misdiagnosis never occurs again. This, however, did not in-
clude how to deal with nondetects or false alarms.

In our previous work, we presented an ontology-guided 
approach for D-matrix model maturation [14]. In that work 
we were limited to maturing the relationships between 
alarms and faults. Once the discrepancies between the main-
tenance and reasoner history were found, the algorithm 
would find the probability of an alarm Mi firing given a 
single ground truth (maintenance event) fault Mj was diag-
nosed as the true fault. These probabilities were then com-
pared against the D-matrix. If an alarm occurred with a high 
probability and the D-matrix showed that the alarm was not 
observing the fault or if the alarm occurred with a low prob-
ability and the D-matrix showed that the alarm is observing 
the fault, then the relationship was flagged as possibly erro-
neous, and a recommendation made to the engineer.

The problem with that approach was that it did not give 
any information on how the erroneous relationship between 
the fault and alarm should be fixed, such as which link should 
be added or removed in the TFPG. We extended that previous 
work by using the sequences of alarms to inform which links 
should be removed or added. In addition, we were able to 
mature the relationships between discrepancies in the TFPG. 
Given a set of maintenance events, we modeled all of the 
alarm sequences using a post-occurrence probability matrix. 
This matrix was then compared to the TFPG to find discrep-
ancies between the two. The discrepancies were then noted 
and reported to an engineer or analyst for further review. De-
tails of these algorithms are presented in the next section.

4 MATURATION ALGORITHMS

In our previous work, we presented two maturation algo-
rithms that performed D-matrix and alarm sequence matura-
tion called D-Mat and Seq-Mat, respectively. If a certain alarm 
is monitoring a fault, but maintenance events are finding that 
the alarm never occurs when that fault occurs, then that alarm 
probably should not be modeled as monitoring that particular 
fault. Additionally, if another alarm is not monitoring a fault, 
but the alarm always occurs when the fault occurs, then that 
alarm should probably be modeled to monitor that fault. This 

whole process falls under D-matrix model maturation. For 
alarm sequence maturation, suppose a TFPG has a sequence 
of alarms that diagnoses a particular fault; however, mainte-
nance events are finding that when the fault occurs, the alarms 
are not occurring in the expected order. The sequence needs 
to be adjusted so that the alarms correctly identify the fault.

For both of these maturation scenarios, the algorithms need 
to take into account alarms that do not fire when they should 
(nondetects) and alarms that fire when they should not (false 
alarms). They need to be analyzed to gain an accurate picture of 
the alarms that should be occurring based on the maintenance 
events. Such analysis can also assist incorporating uncertainty 
measures into the diagnostic process. The remainder of the sec-
tion describes the two maturation algorithms in detail.

4.1	D-MAT	ALGORITHM

In the maturation of fault and alarm dependencies, or D-
matrix maturation, we have a collection of alarm sequenc-
es from whenever maintenance locates a certain fault. The 
maturation process searches for any differences between the 
alarm sequences and signatures in the D-matrix. However, 
care needs to be taken when considering false alarms and 
nondetects because adjusting the dependencies based on 
those points of disagreement will likely have a negative ef-
fect on the performance of the model.

The maturation algorithm D-Mat (Algorithm 1) works 
as follows. First, we retrieve the alarm sequences recorded 
in logs of a repaired fault (whether the diagnosis was cor-
rect or not). An alarm sequence is represented as a bit string, 
where each position in the bit string corresponds to a dif-
ferent observable alarm in the TFPG. For example, a one at 
index i means that the ith alarm fired in the sequence, and a 
zero means that the ith alarm did not fire for that sequence. 
We then sum and normalize each bit over the set of log files, 
yielding a probability of firing, given the fault was diagnosed 
as the true fault. Finally, we compare the resulting vector of 
probabilities to the corresponding fault signature in the D-
matrix. When there is a wide disparity between the bit posi-
tions in the D-matrix and the probabilities in the probability 
vector, we flag that as a relationship to be examined.

In D-Mat, F is the repaired fault the user queried, L  is the 
set of logs corresponding to the reasoner history that caused 
the system to be repaired, and D is the D-matrix of the di-
agnostic model that was being used on the system. In the 
algorithm, lines 3 and 4 calculate the probability of an alarm 
occurring, while lines 5–8 compare the probabilities to the 
D-matrix and flag any discrepancies. Also, the user must set 
the threshold values 1ε  and 2ε , which are compared against 
the probability vector to determine when the algorithm will 
flag discrepancies.

4.2	SEQ-MAT	ALGORITHM

In performing alarm sequence maturation, we focus on ma-
turing the causal relationships of discrepancies, or alarms, 

Table 1.

A D-Matrix Representing the Diagnostic Bayesian 
Network in 2.

M1 M2 M3 M4

F1 1 0 1 0

F2 0 1 0 1

F3 0 1 1 1

F4 0 0 1 1
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with one another. In addition, the algorithm Seq-Mat (Al-
gorithm 2) can aid a person in performing D-matrix matu-
ration.

Algorithm 1 D-Mat
1: // F is a single fault
2: // L  is a set of logs
3: // D is a D-matrix
4: SetOfAlarms ←A  GetUniqueAlarms ( L )
5: for all Alarms Ai ∈A  do
6:  x←  Number of logs L∈L  containing Ai

7: / | |n x← L
8:  if D [F, Ai] = = 1 and 1n < ε  then
9:   E ← Flag F and Ai

10: else if D [F, Ai] = = 0 and 2n >ε  then
11:   E ← Flag F and Ai

12: end if
13: end for
14: return AllFlags E

Whenever a particular fault is found during post-maintenance 
analysis to be the true cause of a maintenance event, we ana-
lyze all of the reasoner logs that caused the unit to be pulled 
for maintenance. We then examine all of the reasoner logs 
for the corresponding maintenance event and extract the 
alarm sequences from the reasoner logs. Using these alarm 
sequences, we calculate a post-occurrence probability matrix 
M that gives the probability of an alarm occurring sometime 
after another alarm. For alarms Ai and Aj, M[i, j] represents 
the probability that alarm Aj occurred sometime after alarm 
Ai with respect to the total number of alarm sequences that 
have occurred, given that fault F was diagnosed as the 
ground truth in the maintenance event. Note that alarm Aj 
does not have to occur directly after alarm Ai. This matrix 
represents the possible temporal occurrences of the alarms 
that are being observed.

Next, we determine the expected post-occurrence proba-
bility matrix. As noted in our previous work, this is a combi-
natorial problem and therefore has an exponential run time 
[14]. Therefore, we use the TFPG to find the current causal 
relationships between the various alarms. If there is a causal 
relationship between two alarms Ai and Aj, we would expect 
a high probability in M[i, j] from the post-occurrence prob-
ability matrix. Similarly, if there is no causal relationship 
between two alarms, the corresponding probability in the 
post-occurrence probability matrix should be low. If there 
is a discrepancy occurring between the TFPG and the post-
occurrence probability matrix, we can then flag those two 
alarms to be observed in greater detail.

Algorithm 2 Seq-Mat
1: // M is the post-occurrence matrix
2: // T is a TFPG
3: SetOfAlarms ←A  GetAlarms (T)
4: for all Alarms iA ∈A  do
5:  for all Alarms  Aj iA ≠ ∈A  do
6:  if T [Ai, Aj] = = 1 and 1[ , ]M i j <ε  then
7:    E ← Flag Ai and Aj

8:   else if T [Ai, Aj] = = 0 and 2[ , ]M i j >ε  then
9:    if no common ancestor between Ai and Aj then
10:     E ← Flag Ai and Aj

11:    end if
12:   end if
13: end for
14: end for
15: return AllFlags E

In Algorithm 2, M is the post-occurrence probability matrix, 
T is the TFPG, and the Îs are the threshold values that are 
compared against the probabilities in the post-occurrence 
probability matrix. When the post-occurrence probabil-
ity matrix indicates that there should not be a relationship 
between two alarms, but there is a causal relationship be-
tween the two alarms, we call it a Type I error. This is the if 
statement in line 4 of the pseduocode. We call a Type II error 
when the post-occurrence probability matrix says there is a 
relationship, but there is no causal relationship in the model, 
which is the if statement on line 6.

After all of the discrepancies are flagged, they are ana-
lyzed further to see if any of the discrepancies were falsely 
flagged. For example, suppose we have the TFPG in Figure 
4, and this model is error free. After we calculate the post-oc-
currence probability matrix, suppose we find that the prob-
ability of alarm M18 occurring after alarm M15 is very high. 
Similarly, the probability that alarm M18 precedes alarm 
M17 is very high. Our algorithm will flag the relationships 
between M15 and M18 and between M17 and M18 because 
there is no causal relationship between those alarms. In this 
scenario, however, that is acceptable because of how the sig-
nal is split after discrepancy D13 and propagates through 
the two links. To account for this scenario, we added a step 
that checks to see if the alarms have a related “ancestor,” i.e., 
alarms that share a common causal discrepancy. This step is 
line 7 in the pseudocode of the Seq-Math algorithm. If the 
alarms do have a common alarm or fault for which a causal 
relationship exists, then the alarms are not flagged as having 
an erroneous relationship.

The process to find common ancestors is straightfor-
ward. Using an adjacency matrix to represent the TFPG (us-
ing only faults and monitored faults), we find whether there 
is a path from alarm (or fault) i to alarm j by using Warshall’s 
algorithm [31]. We then take each of the Type II flagged re-
lationships and check to see if there exists another alarm or 
fault for which there is a path to the two alarms that has also 
been flagged as having a false causal relationship. If there is 
a common ancestor, we then remove that flagged relation-
ship. All of the remaining Type II flags, along with all of the 
Type I flags, are then recommended to an engineer as pos-
sible changes to be made to the TFPG.

5 MODELMAT

We developed a tool set called ModelMat that implements 
both the D-Mat and Seq-Mat algorithms. ModelMat was 
written in C# and provides the user with an easy-to-use in-
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terface (Figure 5) for viewing the algorithm output and set-
ting algorithm parameters.

In the left panel of Figure 5, ModelMat displays informa-
tion about the diagnostic model that was loaded, including 
the list of faults, alarms, the D-matrix, and the matrices result-
ing from logical closure and transitive reduction. In the right 
panel, results from running the maturation algorithms are 
displayed. To analyze output from the D-Mat algorithm, the 
user clicks on the tab titled “Fault and Alarm Relationships.” 
Analyzing output from Seq-Mat is performed by pressing 
the tab titled “Alarm Relationships.” Once the user clicks the 
tab, the results of the maturation algorithm are instantly dis-
played. When there is no conflict found, the rows are colored 
blue, while potential conflicts that were discovered during the 
maturation process are highlighted in yellow.

ModelMat works as follows. First, the user selects a diag-
nostic model to open. Currently, the user can load D-matrices 
or TFPGs. If a TFPG is loaded, the software will first store 
the TFPG as a graph. Next, it will convert the TFPG to a 
D-matrix using transitive closure and then perform logical 
closure and transitive reduction. This allows the user to run 
the alarm sequence maturation algorithms on the original 
TFPG or D-matrix, which can then be used to determine how 
much information is lost when the TFPG is converted to a 
D-matrix.

Next, ModelMat connects to a MySQL database that con-
tains entries listing what the reasoner diagnosed as the fault, 
what maintenance determined was the true fault, and the 
ordered list of alarms that fired. In addition, system infor-
mation is also stored, such as the date of the maintenance 
event, the system ID, and the system type. ModelMat then 
allows the user to query the database based on ground truth, 
system type, system ID, and a range of dates. The query win-
dow is shown in Figure 6. Alarm sequences corresponding 
to the user’s query are pulled into the tool, which are then 

used by the tool when running the selected analysis. If the 
user is running the alarm sequence maturation, the user can 
choose if they wish to run Warshall’s algorithm, which re-
moves the falsely flagged relationships. The software also 
allows the user to set the various threshold values used by 
the algorithms.

5.1	DEMONSTRATION

To demonstrate how ModelMat is used, we created a sim-
ple scenario with user-generated data that also shows how 
both maturation algorithms can correctly identify erroneous 
links in the model. In the scenarios, we developed the simple 
TFPG in Figure 7 using the Generic Modeling Environment 
(GME) from Vanderbilt University. In the example, a particu-
lar alarm is not modeled as monitoring a fault that it should 
be. Specifically, the link circled from D3 to D4 in the figure is 
missing in the model, which will result in the reasoner not 
diagnosing fault F1 with high confidence.

Next, we populated the database with log files gener-
ated by the FACT reasoner, which was also developed by 
Vanderbilt University [15]. We used the correct model, i.e., 
the circled link was included, to build alarm sequences that 
would normally diagnose the fault F1. We also added false 
alarms and nondetects with a probability of 0.02 into the 
alarm sequences. Those alarm sequences were then used 
as input to the reasoner for both the correct and erroneous 
TFPGs. The diagnosis made using the correct model was 
then recorded as the ground truth, i.e., the true fault found 
during the maintenance event. The diagnosis from the er-
roneous model was then recorded as the diagnosis from the 
reasoner. The alarm sequences, along with the model name, 
date, ground truth, and reasoner diagnosis were then in-
serted into the database.

Figure 5.
A screenshot of the software. The left side of the panel shows 
information of the diagnostic model, while the right panel 
shows results from the maturation algorithms.

Figure 4.
A correct TFPG. Note that alarm-sequence maturation algo-
rithm may flag certain relationships as errors, unless we add a 
step to check it for relationships that were falsely flagged.
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Using ModelMat, we first load the TFPG and query the da-
tabase on the fault actually repaired. The results from D-Mat are 
displayed in Figure 8. Each row in the results pane corresponds 
to an alarm in the TFPG. The next column displays the proba-
bility that the alarm fired when the repaired fault occurred. The 
final column is the modeled fault signature for that fault. In this 
example, ModelMat had alarms M01 and M03 highlighted in 
blue because there is no error between those alarms and F1. On 
the other hand, alarm M04, which has been circled, observes 
F1 with a high probability, while the fault signature says the 
alarm should not fire when the fault occurs Therefore, Model-
Mat highlighted the row in yellow.

Without knowing anything about the alarm sequences, 
we could hypothesize several different ways to add the caus-
al relationship between M04 and F1, such as adding a link 
from F1 to D4 or D1 to D4. However, we can use Seq-Mat to 
help us correct the relationship between M04 and F1.

Figure 9 illustrates the results of alarm sequence analy-
sis with our sample model. Each cell in the table presents 
the probability that the alarm in the column fired after the 
alarm in the row. If there is a discrepancy between the TFPG 
and the probabilities, the cell is highlighted in yellow. Cells 
that do not have errors are colored in blue. In the example 
in Figure 7, the erroneous model would not expect to find 
any relationship between either M01 or M03 and alarm M04. 
However, Seq-Mat discovered that M04 occurs after both 
M01 and M03 a high number of times; therefore, there is a 
conflict in the relationships. To show these conflicts (which 
have been circled in the figure), ModelMat has highlighted 
the error cells in yellow. To resolve this conflict, a link should 
be added from D3 to D4, which would also resolve the con-
flict between F1 and M04 described above.

5.2	MATURATION	OF	DIAGNOSTIC	BAYESIAN	NETWORKS

As discussed earlier, the algorithms were originally developed 
for maturation of TFPGs. However, because many of the al-

gorithms were designed to work on the D-matrices, they can 
easily be used when maturing other diagnostic models. For 
example, because a diagnostic Bayesian network can be repre-
sented as a D-matrix, the same algorithms can be used directly 
to mature network structure as well. To do so, we first need to 
make the assumptions that each test node has two outcomes, 
Yes and No and that a Yes outcome on the test node indicts its 
parents and a No outcome exonerates the parent nodes.

First, the user would need a D-matrix representation of the 
Bayesian network, log files that show that tests were run, the 
outcome of the each test, and finally, the ground truth. From 
the logs, the user would extract each test with an outcome 
of Yes and insert the tests into the database. Finally, the user 

Figure 6.
A screenshot of query window. The software allows the user to 
query the database based on aircraft, aircraft ID, range of dates, 
and ground truth (fault).

Figure 7.
A TFPG with a missing link. The circled link should be in the 
TFPG but was not included when the model was created. 
Therefore, the reasoner will not diagnose the fault F1 with high 
confidence levels.

Figure 8.
The results from the D-matrix maturation algorithm. There is no 
conflict between fault F1 and the alarms M01 and M03; there-
fore, ModelMat highlights those rows in blue. However, the row 
that has been circled denotes a conflict in the relationship be-
tween fault F1 and alarm M04; therefore, ModelMat highlighted 
that row in yellow.
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would be able use the D-Mat algorithm to perform maturating 
on the D-matrix representation of the Bayesian network. The 
results from D-Mat would give recommendations on relations 
that should be added or removed in the Bayesian network. 
The D-Mat algorithm, however, would give no information 
on how to mature the parameters for the conditional prob-
ability tables; therefore, an algorithm such as expectation-
maximization would be needed to mature the tables.

For example, suppose that in Bayesian network in Fig-
ure 2, M3 should not observe F1. In the logs, we find that 
when F1 is the ground truth, the outcome of test M3 is No a 
high percentage of the time and, conversely, Yes a low per-
cent of the time. In running D-Mat, we would then find out 
that because M3 is Yes a low percent of the time, there is a 
discrepancy between the D-Mat and the logs, and therefore 
the link between F1 and M3 would be flagged as a possible 
erroneous relation.

6 DISCUSSION

In this paper, we presented a tool set, ModelMat, which 
performs diagnostic model maturation. In addition, we de-
scribed the algorithms that ModelMat uses in the matura-
tion process, D-Mat and Seq-Mat. Both algorithms are able 
to identify erroneous relationships in D-matrix-based mod-
els, where the errors can be between faults and alarms and 
among a sequence of alarms. While these algorithms were 
originally designed for maturing TFPGs, they can be extend-
ed easily to any other diagnostic model that can be repre-
sented as a D-matrix, such as Bayesian networks.

For future work we plan to explore maturing the time 
intervals used on the propagation edges in the TFPG. Be-
cause FACT uses the time intervals to assist in diagnosing a 
fault, an incorrect time value could change how the result-

ing diagnosis. Again, using alarm sequences from historical 
maintenance records, one could flag suspicious values and 
adjust them. We will also explore the case when alarms are 
symmetric, i.e., when an alarm not firing is assumed to be in 
the off state. We are also exploring incorporating parameter 
estimation algorithms, which would enable adjusting the 
conditional probability tables in a Bayesian network. A user 
would then be able to mature many aspects of a Bayesian 
model.

Another area of future work that we want to explore is 
using the idea of significance testing in the maturation al-
gorithms. Currently, both algorithms require the user to set 
a threshold value that is used to determine whether or not 
to flag a relationship as a possible error. For example, in D-
Mat, the user is required to set the Îs, which are compared 
against the probability vector representing the probability of 
an alarm firing given a fault occurred. However, a more flex-
ible way to flag possible errors would be to use some form of 
significance testing to determine if the probability is signifi-
cantly different than what is expected. More work, however, 
is needed to determine how to perform significance testing 
between a probability vector and D-matrix fault signature.

Finally, we are in the process of combining ModelMat 
with a companion tool for knowledge discovery in main-
tenance event sequences presented in [32]. In that work, a 
tool was developed that enables users to view transaction-
al maintenance data as ontology-based event graphs. The 
tool allows users to filter sequences of maintenance events 
through time, making it easier to perform knowledge dis-
covery. That tool is also being extended to display onboard 
data and its relationship to individual maintenance events. 
In follow-on work, knowledge discovery algorithms will 
be incorporated to find interesting relationships, such as 
the discrepancies between the reasoner diagnosis and the 
ground truth found in maintenance events needed for Mod-
elMat. Currently, ModelMat assumes that the conflicts be-
tween the reasoner diagnosis and the maintenance events 
have already been located. However, finding those conflicts 
is itself difficult. Once integrated, the suite of tools could be 
connected to available maintenance databases giving engi-
neers a seamless diagnostic maturation process.  
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