A Visualization Tool for Knowledge Discovery in
Maintenance Event Sequences

Michael Schuh, John Sheppard, Shane Strasser, Rafal Angryke@te Izurieta
Department of Computer Science
357 EPS Building
Montana State University, Bozeman, MT 59717
michael.schuh@cs.montana.edu

_Abstract—We developed a tool that facilitates knowledge as insightful text-fields detailing the results of theseicat.
discovery from aircraft maintenance data through sequences Also, we now integrate onboard (in-flight) data which indi-

of maintenance events. Several interconnecting ontologies were ;
°) cates which faults were observed to prompt the performed
developed in OWL, based on formally defined IEEE standards, . . P P P
maintenance event actions.

and we use these ontologies to guide the data transformation, dat
mining, and interactive visualization processes. The tool provides We used existing data model standards, defined by the
an easy-to-use interface that generates relevant sequencésiata |nstitute of Electrical and Electronics Engineers (IEE&)d
in a meaningful context in a fraction of the time it would take 4o 04 new ontological models to better represent the. data
domain experts to retrieve and display similar information. We . .)
present an up-to-date overview of the current tool and exteriens, Ve then transform the raw data into maintenance events and
which now includes several visualization options, ties together provide the user with a query interface to filter on specific
several ontology-based data sources, and enables a method okvent attributes. The filtered query generates a chrormibgi
obtaining diagnostic maturation recommendations. sequence of maintenance events and the user can optionally
display links between events that belong to the same aircraf
] . or share the same remove/install part(s). Additionallye th
Modern diagnostic systems can generate an overwhelmigsr now has the ability to view these sequences to scale
abundance of data. Often this data is distributed across Mg ihe actual time elapsed between events. Each event in a
tiple heterogeneous systems and cannot be immediately {gfuence can also be inspected individually, displayirey th
easily) collected and aggregated for use. Even with ea®s8CCentijre ontology-based graph from interconnected datacssur

to data, much of it is uninteresting to the user’s specificing
X By combining maintenance event sequences with their un-
This puts a large burden on the user to coalesce the dogta

. . . .) erlying faults and corrective actions, the user is prodide
and mine the interesting bits relevant to their current see dith 2 much more complete context of maintenance histor
Depending on the task at hand, this amount of effort m P Y-

not be justifiable or practical, and the potential for knaige e model maturation tool uses this data in conjunction with
) Just X . Timed Failure Propagation Graph (TFPG) models [3], allow-
discovery is lost. Our tool facilitates this data mining gges

. ; ing the user to go beyond standard diagnostic procedures. Th
and generates relevant sequences of data in a fraction of . . ; :
. . ; : . _maturation process provides recomendations about pessibl
time it would take domain experts to retrieve and displ

a . ; . ; .
T . drrors in the diagnostic models used to guide maintenance
similar information.

. . %ctions. If there exists errors in a model, the resultinglisis
We present this extended update from our previously pu nd corrective actions may be incorrect, causing wastee, tim
lished work at AUTOTESTCON 2011 [1]. As developmen? Y ’ 9 '

i o . ; money, and effort during the maintenance process [4].
continues on our application, it has now grown into a full-

fledged tool that incorporates additional visualizatiomsl a The ongoing tool development provides increased accessi-
analysis methods, including the necessary inputs requirdify of existing (and related) data sources to the expettse w
for the method of diagnostic maturation developed in [zpeed them. This increases novel data exploration and KDD by
The tool further removes the users burden for data lodRtegrating additional existing standards and data cttiec
up and aggregation, and it greatly increases the potermtial formats. Through continued integration, the user will wast
knowledge discovery from data (KDD) within the maintenanc@® time switching to different tools and analysis methods fo
community. the same event sequence of interest.

This work primarily focused on aircraft data collected at The remainder of the paper is organized as follows. Section
ground-based maintenance facilities. The data are cordposiediscusses ontology-guided data mining and data tranmsder
of transactional records detailing each maintenancerathiat tion. Section Il provides an overview of our applicationthw
takes place, including important fields such as the aircrafbplementation details presented in Section IV. We hidftlig
tail number, type and date of the event, and possible partéspects worth further discussion in Section V and present
being removed or installed. Importantly, this data alsataims some future work in Section VI. Finally, we close with our
the necessary corrective actions that were performed ds welnclusions in Section VII.

I. INTRODUCTION

TABLE |
FREQUENTLY USED ABBREVIATIONS

terfaces between elements of such reasoners. The informati
models defined for AI-ESTATE are designed to form the basis

AI-ESTATE | Artificial Intelligence for facilitating exchange of persistent diagnostic infatian
Exchange and Service Tie to All Test Environments between two reasoners through a standardized system for
SIMICA Software Interface diagnostic services. Additionally, both models make use of
for Maintenance Information Collection and Analysis | a “common” information model (called the Common Element
MAID Maintenance Action Information Document Model) [9].
ME Maintenance Event Maintenance events are primarily represented by the SIM-
MA Maintenance Action ICA Maintenance Action Information (MAI) model, which
ML Maintenance Level was designed to capture records of actual maintenancenactio
ACID Aircraft Identification performed on a particular system or subsystem [11]. The Al-
JCN Job Control Number ESTATE D-Matrix Inference Model and Dynamic Context
UNS Unified Numbering System Model are used to define the diagnostic models and associ-
PartNo Item (Removed or Installed) Part Number ated information used and produced by diagnostic reaspners
SerNo Item (Removed or Installed) Serial Number including recommended corrective actions.

Recent work in ontology-guided data mining has made use
of standard ontology languages (e.g. OWL [12], DAML+OIL
[13], and RDF [14]). EXPRESS was not designed to support
ontology-based analysis; however, the semantics defined by

We utilized domain ontologies to join together differentada EXPRESS models are rich enough to use as the foundation
sources and aggregate individual records into more me@ingfor defining ontologies in the Web Ontology Language (OWL),
models. In information science, an ontology is a type @fhich is one of the most widely used ontology languages. An
knowledge representation that formally defines concepést t owL ontology may have descriptions of classes, properties,
properties, and the relationships between them [5]. Thit weand their data instances, and the formal OWL semantics then
defined representation enables automated methods of FeasPcify how to find logical consequences from the defined
ing and analysis into the domain concepts the ontology dgntities. Given an OWL ontology, we can then define and
scribes. Previous work by Wilmering and Sheppard suggesi@dtantiate data in OWL format [15], [12].
using domain ontologies to focus and filter data analysis inTg convert EXPRESS to OWL, we first had to define a
data mining [6]. logical mapping from the general EXPRESS concepts to OWL

The approach we take in developing ontologies to supp@dncepts (e.g., an EXPRE$Stity becomes an OWlclass.
the knowledge discovery process is based on a set of standgy@ then used the mapping to create our OWL ontologies
ized semantic models developed in the EXPRESS modelifigm the existing standards in EXPRESS. In some cases, the
language [7]. EXPRESS is an information modeling langua@gta did not match the entire EXPRESS models, and the
defined by the International Organization for Standarzat newly created OWL ontologies had to be extended beyond the
(ISO) to support communication of product data betweefefined standards. With the incorporation of additional eted
engineering applications. The purpose of the language isdAd data sources, we also have to ensure a unified ontology
define the semantics of information that will be generated at links each piece accurately given the available dalisfie
a system, and it is not meant to define database formats. Figures 1 and 2 present a small sample of this conversion

Models in EXPRESS are defined using a hierarchy parfirocess for theMaintenance Eventomponent. Notice the
tioned along schemata, entities, and attributes [8]. The EXimilarity between each format, such as the “actionTakenl' a
PRESS language incorporates a number of object-orienteidlayReason” relationships present in both.
features, such as encapsulation, abstraction, and iaheeit
and it additionally allows logical constraints to be plaaad 1.
attribute values. These constraints, which often defiragiosl- We define aneventas a group of records pertaining to a
ships in non-trivial ways, give EXPRESS the ability to definenique set of ground-based maintenance actions. Each event
computer-processable semantics, which allows applitatio is composed of one or more transactional database records
discern if the information being received satisfies theride®l grouped together based on the SIMICA MAI model, which
meaning when it was generated and transmitted [8]. defines the elements and attributes of our OWL ontology. The

The tool uses ontologies derived from the IEEE Std. 123@aintenance Action Information Document (MAID) element
Artificial Intelligence Exchange and Service Tie to All Tests the root of our MAI ontology, and its attributes are spedifi
Environments (AI-ESTATE) [9] and IEEE Std 1636 Softwar@s unique, representing the super-key of each event. The
Interface for Maintenance Information Collection and Arség existence of multiple records with the same super-key value
(SIMICA) [10]. AI-ESTATE is a set of specifications for indicates multiple Maintenance Actions (MA) were perfodme
exchanging data and defining software services for diagnodbr a single Maintenance Event (ME). Therefore, the ME
systems. Its purpose is to standardize the diagnostic datdology element contains a list of MAs, and is directly
representations of an intelligent diagnostic reasonetlaaéh- connected to the root (MAID) element. Refer to the model

II. ONTOLOGY-GUIDED DATA MINING

EVENT GRAPHS AND SEQUENCES

| MaintenanceActioninformationDocument |

SULS) - ‘ I |

actionTaken L[1:7]
7.5 MaintenanceDelay -
delayReason 5(1.7) . maintenanceProcess leyel
_____________ = ~Jercamenud =il actionTaken-
{ MantcnanceTspe | p’—"ﬂ'“e"—anci—‘im'nujnccﬁwnt | X S
? acton L12) E *’i Maintenanervenlt | | SIMICA COMMON_Maintenancelevel
maintenanceFacility : 1 maintenanceEventCode l .
H maintenanceType delayReason maintenanceEventAction
([\1qmwn.mrc:\\m-n) (6.1 Code J
. h 4 h 4§
‘ Maintenance Type ‘ [MaintenanceDelay | | MaintenanceAction
<owl:Class rdf:ID="MaintenanceEvent">
<rdfs:label rdf:datatype="XMLSchema#string"
ENTITY MaintenanceEvent; >Maintenance event</rdfs:label>
maintenanceEventCode :OPTIONAL Code; <rdfs:subClassOf rdfiresource="#SIMICA MAI"/>
action :LIST [1:?] OF MaintenanceAction; </owl:Class >
:"aLnt?nTMHCEFaCIIIIty ggggmit gaE‘fll_“[t{_:?] OF D t <owl:ObjectProperty rdf:ID="maintenanceProcess" >
ec_ nicalManua . ocument; <owl: cardinality rdf:datatype="XMLSchema#nonNegativelnteger"
actionTaken :LIST [1:?] OF MaintenanceEvent; >1</owl:cardinality>
delayReason :OPTIONAL SET [1:?] OF MaintenanceDelay; <rdfs:range rdf:resource="#MaintenanceEvent"/>
maintenance :MaintenanceType; <rdfs:domain
END ENTITY: rdfiresource="#MaintenanceActionlnformationDocument"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf: ID="maintenanceFacility" >

. <rdfs:domain rdfiresource="#MaintenanceEvent"/>
Fig. 1. A sample of an EXPRESS model and related code. <rdfs:range rdf:resource="#SIMICA_ COMMON_Organization"/>

</owl:ObjectProperty>

in Figure 2 to see the direct relationship between MAID, ME,
and MA.

The tool also incorporates onboard diagnostic data from the

aircraft. This data contains a chronological list of diaghd These additional attributes (UNS, and item serial numbe) a
tests (and results) that were performed during the courggt part of the unique key, but were suggested by domain
of a flight. Faults that were observed during a flight leagyperts as the most valuable information to display. Theent
to ground-based maintenance actions that are meant to fpplication window is shown in Figure 3, with the sequence
and resolve the faults. The TFPG model maturation approqg@ing displayed in the large panel on the right.
analyzes the statistical discrepencies between the regson Tq simplify the readability of the interface, the sequence
action recommendations and the corrective actions (on t&ntains three distinct layers. The top-most layer costie
ground) that actually fixed the problem [2]. date of each event through time, and the aircraft tail number
Since the data sources have transactional records, thgsdisplayed in the middle layer directly below the eventedat
multi-actioned corrective events typically contain a pafr The bottom layer is composed of the single node events,dinke
remove/install actions or a list of timely inspection aoso vertically to their corresponding aircraft above. Thisdayf
In other words, each ground-based record is essentially @fent nodes is further segmented into three separate levels
MA element, stored with its MAID attributes. Similarily, €& corresponding to the Maintenance Level (ML) attribute ealu
record of onboard data contains the identifying attrib@i®s for each event (with ML 1 the top-most / closest to the aifcraf
shared in common by all, such as ACID. By aggregating thesad ML 3 at the bottom). Finally, we create links between
events into ontological graph structures, we are perfogmivents that have the same aircraft, or item serial number,
something similar to a database conversion from first normal help the user follow items of interest through the larger
form to third normal form, where each key now returns onlgequence. This is a critical enhancement to KDD, as it quickl
a single event graph [16]. and easily allows a user to trace the context of specific parts
After the data is transformed into events it must then k@ aircraft through time.
presented to the user. We develop a method of displaying thélThe default sequence view is not scaled in proportion to
summarized events as a sequence through time. Each eewent time/date occurrences. Instead, each event hagmnifo
is reduced to a single node, and arranged in sequence skyaration between all actions and other events in the -gener
one of the user-specified date attributes: JCN (Job Conteded sequence. This makes the most sense when a user is inter-
Number) Date, or MA Completion Date. The sequence casted in following specific links or looking for specific eten
be considered a further abstraction of the data, where eaebardless of when they occurred. Alternatively, the user c
event only displays the date and associated aircraft, dsasel choose to view the sequence in a true time-proportionaéscal
all UNS (Unified Numbering System) and item serial numberghis can be more beneficial when investigating the history of

Fig. 2. A sample of an OWL model and related code.

specific parts or aircraft, where a quick glance can give easyME, ME to MA #1, ME to MA #2, etc. Additionally, each
indication of time between events. node contains an identifier that defines it as a specific elemen
An additional utility-turned-feature was inspired by thef the ontology, and internal nodes contain a list of coneect
nature of the data. We developed a data pre-processor whiclles, while leaf nodes contain their respective data value
anonymizes sensitive attributes’ values while retainihg t The node ID is important, because it allows for quick and
relationships between records. After anonymization, fii@ia easy identification of any node anywhere within the entire
cation is used exactly like before, except the “clean” dat&a n ontology, and that identification provides further infotina
replaces the original (sensitive) data. Unfortunatelycdose about the node, such as its name and attribute value type
of the inherent (and necessary) randomness built into awsed during visualization and analysis methods. We use the
anonymization algorithm, the resultant attribute valuesken JGraphT library [17] to create these graphs with custom sode
little logical sense to the human observer. Especially irgmd and store them as serialized objects in our database.
attributes, such as text-based corrective actions, arevest After all records for a single event are added to a graph, we
retained, as their only benefit is being able to actually eradl store the event keys (which again are the MAID attributes, or
infer more information from them. This also means presentiteaf nodes), as well as the two date fields used for sorting
interesting case studies is difficult — especially for thePG- and the serialized graph object in a new database table —
model maturation, which we encourage the reader to referdeparate from the raw data. We also create a look-up table
[2] for a previously published example. to store a cross-relation of every UNS, item part number, and
item serial humber associated with each event (a many-to-
many relation). At this point, the original data is no longer
The application implementation can be separated into fireeded since the tool runs entirely on the two new tables Thi
parts: an initial (optional) raw data anonymization, a 13se€y provides a convenient mechanism for dumping the data into
data transformation into ontology instances, attributtuera the backend database as it is accumulated incrementadiyg. Al
filtering and querying, the display of event sequences, had hote that both pre-processing steps are self-containdunwit
display of individual event graphs. While the first two part¢he tool and initiated with specific command line arguments.
represent one-time pre-processing steps, the remainheg th With the data transformation complete, the user can now
parts are performed dynamically during normal applicaticeiccess the main application window for interactive KDD by
use. All code was written in Java (v1.6), and MySQL (v5.1applying a filter to the query and then viewing the event
was used as our database management system. sequence and individual events. When the program is started,
The optional first step is a pre-processing anonymizatidthe user is presented with several query options in the left
function that transforms the data into clean and safe contgranel (refer to Figure 3) which are ordered from top to boftom
for general presentation. This algorithm essentially te®@ and from least to most specific. The only required options
mathematical correspondence mapping between the origine¢ “Sort By”, which orders the events by JCN Date or MA
data values and the randomly generated new values. E&idmpletion Date, and “Date To” - “Date From”, which restrict
attribute retains its specific qualities, such as data typ# athe sequence to only events within the given date range. To
length, and the correspondence ensures all relationsliipg;w aid the user, we provide the default selection of JCN Date,
the data are preserved. and auto fill the date range with the minimum and maximum
The second step is a required data transformation frail@N dates found in the database.
transactional records representing pieces of maintenanc®ne complication that arose with our method of record
events, to entire event graphs that aggregate all thosegieaggregation is the possibility of conflicting date values fo
into a common OWL ontology instance. Since we are onbctions in the same event. This is a known problem with the
concerned with connection-based relationships among ftiieta, and we resolved it by storing the earliest found JCN
data, defined by the ontology, we can more simply, and efind MA Completion dates as the date fields for an event. The
ciently, store the transformed data as graph objects —niagui remaining query options: ACID (Aircraft ID), UNS (Unified
only a few assumptions. Recall that our ontology defindéumbering System), PartNo (item part humber), and SerNo
a root element, MAID, which contains the keys for eacfitem serial number) provide further filtering capabiktieand
instance, as well as an attached ME list of MA elements, eaitte valid options for each filter are auto-generated based
of which essentially encapsulates an original grounddbasen the previously selected filters. For example, when a user
data record. The MAID element also links to the onboarskelects a set of ACIDs that are of interest, the subsequent
diagnostic records from the previous flight(s) that matah tHilters (UNS, PartNo, and SerNo) are repopulated to display
data keys. only valid values found in database records that contain one
In our graph representation, we define nodes in a tree-liké the selected ACIDs. This removes the guessing game of
context, either as internal nodes (e.g. MAID, ME, MA), oidentifying which records exist, and it allows the user tanga
as leaf nodes which represent attributes associated with camsiderable insight into the data they are investigatiegen
internal node. Therefore, given an internal node, all cotete before the first query is performed.
leaf nodes are its attributes, and all connected interndé®o After the query options are set, the sequence graph is gen-
are further extensions of the ontology structure, such astMAerated and displayed in the right side panel of the apptinati

IV. IMPLEMENTATION

[Parts r 2008-07-17 2008-07-18
SortBy: ® JCNDate h4|__—’7
ruBCe1 3Lb6TZ
) Comp Date C sL
Date from: |2007-01-03
to: |2008-12-29
ACID: AL |~
@ FA - LMS: W, Wy UNS: rm, mim
7deaiw I iR I 2 UNg: 27 !
e <l Rt 2JM Fidn
Gl oA =
of UNS: ba, bl
Oh — F: Huwe
L -
ttem Part Number: [Go]
OUDRFK =
24ByTX L
2MWnké = | »|
< L] [»
Item Serial Number: —_— —
m | = 10:16] Updated selections based on ACID change. =
0 =] 10:17] Updated selections based on UMNS change...
060 =l 10:17] Updated selections based on Partio change. . -
10:17] Events found in sequence: 2471 =
Generate Sequence I
I - - I [10:17] Esxecuted guety in B secohds. had

Fig. 3. The main application window. The left panel contaihs fuery options to filter on event attributes, and the rigirigh contains the generated
sequence based on the query. Below the sequence is a smadl wiatlow that provides information and feedback to the user.

=10l

Event Graph
Eile

ACID : ruBCc1

(| I i | [»

Fig. 4. An individual event window containing an auto-geated layout of all the attributes (and their values) for aegievent. The unique event ID is
displayed in the window title bar and the graphical visualiz can be saved as an image.

2009-01-31 2009-02-02

window. While using the tool, information such as query 2009-01-29
history and important messages are displayed in the bottc ruBCc1
status panel and optionally logged to a file. A sequence ¢
be scrolled (left and right) through time and each event
a click-able object that displays the details of the indixab
event. The sequence graph is generated using Java's Sw; e
layout mechanism with the semantic links being overlaid b| %3 L 128
Java’s 2D drawing framework. These links connect identici
aircraft (ACID) and item parts (SerNo) from one occurrenc
to the next, as time flows to the right. As discussed earlie
the sequences presented in figures are not scaled by ti
and instead use the original default graphical view. There
currently active development on the GUI framework to mor uns:2p,2p
easily support adding additional views and user interastio 123
Finally, when an event is clicked, a separate window Is
opened that displays all the details of the event, such as in Fig. 5. A sequence of events.
Figure 4. Each clicked event opens a new window, allowing
easier side-by-side comparison of multiple events. Vigwin
individual events is accomplished quite easily by portitg o therefore be encountered minimally. For example, a usehyrar
jects from JGraphT to JGraph [18], which provides an on-theeeds to see a large set of aircraft, related to a large set of
fly layout and visualization of the graph object. These eveiteéms, over a large span of time; rather, they are more often
graphs can be further manipulated (dragged, reshaped, emerested in a specific aircraft and a handful of parts, or a
to highlight attributes of interest while hiding the uninmant specific part on any aircraft. These practical queries netur
ones. At any time, the visualized graphs can be saved ageaults in seconds.
image (.png format) for presentation and discussion beyondn a similar argument, the readability of our dynamic links
the confines of the tool and the computer system it is runniigtween neighboring events that share aircraft or parts in
on. common can become muddled in an overly-complicated query.
Again however, if someone is attempting to follow links for
V. DiscussioN a part or aircraft from one event to another, they are prgbabl
The primary objective of this software tool is to minimizenot looking at a lot of parts or aircraft. If for some reasos th
wasted time and effort during aircraft maintenance by proser deems a large or overly-complicated query is necessary
viding a meaningful display and integration of data cokelt these links are easily toggled off for a clean view of the éven
from ground-based and onboard maintenance records. Tégsjuence.
was achieved with the grouping and ordering of records, andBeyond the idea of just querying items, the application has
the summarized display of only certain key information. Ththe added benefit of allowing a user to follow interestingnise
application facilitates detailed query selections basedhe through time. This is achieved in part by the aforementioned
most useful parameters identified by domain experts. Becaugiery options, but also by the dynamically generated iteksli
of the large (and continually growing) set of data beindisplayed on the sequence. With these features, a user can fo
accessed, this allows the user to select only the apprepriakample: generate a summary of specific items through time,
data that they are interested in. discover a re-occurring list of similar problems to a specifi
The potentially large volume of stored data is a point ddircraft, or track a specific part from aircraft to aircra#t ia
concern, as it could have effects on maintaining timely mser is perhaps repetitively cannibalized or replaced. All ofgh
Our current implementation provides no safe-guards tosvandses could benefit from these novel data visualizations.
checking for manageable and effective user-generatedeguer We provide an example use case in Figures 5 and 6, and
Through MySQL, we maintain a separate index for all queryve walk through the important knowledge discovery abditie
able attributes, but the shear volume of data combined with displayed. Presented in Figure 5 is a sequence of threesevent
ill-minded query can still bring the application to a bri¢isd- The top arc indicates the same aircrafBCclin the second
still. For example, suppose we have four successive filteemd third events, while the bottom arc indicates the sanme ite
each with 100 possible items to choose from — so if we chooisereferenced in all three events. The item is identified By it
ten from each, then we haye00 choosel0)* which is nearly serial numbetZs which we simply highlighted for readability.
10°3 possible combinations! The problem is that a query liklow we can essentially read the event sequence “story”. In
this has no defining attribute to filter on that provides adegu early 2009, thetZs item was removed from aircraftJP4Xi
data reduction, whereby MySQL can optimize the query amtliring a Level 1 Maintenance Action. Then, only days later,
perform the most selective joins first. the same item was installed on aircraftBCcl, only to be
The good news for us is that these vague and indiscriminatemoved a few more days later during a Level 3 Maintenance
gueries are rarely helpful to real-world users, and shoukttion. According to domain experts, this most likely inalies

Fig. 6. A user-modified event graph.

a failed part which was later fixed and cannibalized only tprovides connections between multiple sources of mainmna
fail once again. data. While we have already added an on-board diagnostic data
To investigate further, the user could then inspect ttsmurce to the application, additional data sources wiltiooe
other attributes of each event in the sequence. The grdphimaenhance KDD through more comprehensive analyses and
visualization of an event can be manipulated to highliglimcorporated tools. By filling out the existing ontologiegtw
the important attributes before being saved for discussiamore available information sources, we can provide the user
and investigation outside the application. Figure 6 shows a more complete context surrounding an interesting event, o
example of the modified event graph for the third event in theequence of events. Similar to the facilitated TFPG modél ma
sequence in Fig. 5. Notice we can now clearly see the eventimtion recommendations, further integration with indegent
MAID node connected to the ME node and the ME nodmols will increase the efficiency of aircraft maintenanaed
connected to two MA nodes. Each MA node has three visibieinimize costly mistakes that would be otherwise unavdiglab
aftributes that indicate the item being removed or ingfalle As we mentioned earlier, current and ongoing work has
Important text fields would also be present here (in real)datgeen focused on enhancing the GUI for the user. Additional
and they would likely confirm our previous insights. yiews of aggregated maintenance data, such as the timesscal
~ The investigation of maintenance events is dramaticali)ent sequences, provide unique benefits for an overatbett
increased with the aide of TFPG diagnostic model maturgngerstanding of the data. New visualizations also crdwute t
tion recommendations through the method described in [gyportunity for new user interactions with the system, and
The maturation process requires a combined analysis of figirely new tools may arise during such development. Pre-
diagnosed faults found onboard, and the corrective actiofgfined layouts of individual event graphs would also speed
reported to fix the problem — both of which are available in oy, the detailed investigation of event attributes, minimgz

maintenance event graphs. Essentially, the recommendalighe need for the user to extensively manipulate these graphs
arise when a corrective action is performed more often thagery time one is viewed.

expected, given the reasoner’s diagnosis from observéts;fau
or vice versa, when a suggested corrective action rarelg fix%
the actual problem. These indicate a potential problem wit

the underlying diagnosis model, and the user could be bet éjlrta mining algorithms. Angryk's previous work in frequent

) LT . : subgraph mining [19] shared a similar problem formulation,
informed by knowing in advance these discrepancies may .
exist ere the goal was to detect all frequently occurring sufttgga

(based on a given support threshold) from a larger graph
VI. FUTURE WORK object. This is similar to frequent itemset mining, except
The tool provides a promising and exciting framework fonstead of a set of items we use a set of edges, representing a
continued data mining and knowledge discovery researdhibgraph [20].
Interesting continuations of this work include adding more Similar to Angryk’s use of an ontology asrmaster docu-
data sources and tools, enhanced GUI interactions andlvisument graphin text-mining [19], we can use our ontology as
izations, applying graph-based data mining algorithmsht ta “master event graph”, retaining the necessary compugitio
data, and performing an in-depth analysis and mining of tespeed-ups gained by this assumption. While the set of frequen
field attributes. subgraphs lends itself to further data mining applicatiensn
A benefit of conforming to the IEEE standards-basesimple analysis could provide some beneficial knowledge.
ontologies is the well established data model that alreafipr example, a frequent subgraph might indicate that skvera

Since our data is essentially a database of graphs, another
teresting research direction would be exploring grapkell

events always occur together when accompanied by certain REFERENCES
attribute values. Perhaps this is a series of items 10 replag) m. schuh, J. Sheppard, S. Strasser, R. Angryk, and C.iefayr
after a specific malfunction, then if the malfunction occurs “Ontology-guided knowledge discovery of event sequencemainte-

and only triggers some of the associated events, an operator Nance dataJEEE AUTOTESTCON 2011 Conference Recpl 279~
Id be informed that other events commonly occur in the 285, September 2011. ;
coula be y S@] s. Strasser, J. Sheppard, M. Schuh, R. Angryk, and Cieeyr‘Graph-

circumstances and they probably deserve attention too. based ontology-guided data mining for d-matrix model matundtio
The ground-based maintenance data we used has two very Aerospace2011.

. field he d . . hich d S. Abdelwahed, G. Karsai, N. Mahadevan, and S. Ofsthémactical
Important text fields — the description narration, whic e- implementation of diagnosis systems using timed failure prapag

scribes details of the task or problem of the event, and the graph models”[EEE Transactions on Instrumentation and Measure-
corrective action, which describes the actions taken to ffix o ment vol. 58, no. 2, pp. 240-247, 2009.

. 4] T. J. Wilmering, “Semantic requirements on information greion for
complete the event task. Both fields are entered manual[)’] diagnostic maturationJEEE AUTOTESTCON 2001 Conference Regord

by human operators and contain a variety of shorthand and pp. 793-807, 2001.

abbreviations — as well as spelling mistakes and input errofe] T. Gruber, “Toward principles for the design of ontolegiused for
h | . d . f . . knowledge sharing,International Journal of Human-Computer Studies
— that truly require a domain expert for proper interpretati vol. 43, no. 5-6, pp. 907-928, 1995.

However, the benefits of understanding and incorporatiageth [6] T. Wilmering and J. Sheppard, “Ontologies for Data Miniagd Knowl-

fields would be enormous, as a great deal of information is €dge Discovery to Support Diagnostic Maturation,”Rroceedings of
d lel ithin th includi f | h the 18th International Workshop on Principles of Diagnofixx-07),
conveyed solely within the text, including referrals to et 2007, pp. 210-217.

events, parts, and problems. Furthermore, simple keyword I1SO, “10303-11:2004, Industrial automation systems antbgration

analysis (and perhaps tagging of events) would detect commo ~ Product data representation and exchange — Part 11: p&scri
methods: The EXPRESS language reference manual,” 2004.

Phr_ases |I|.(e: ‘routine mspectlon”., ‘see JOb #, “Car.m"bal [8] J. Sheppard, M. Kaufman, and T. Wilmering, “Model basedhd&ads
ization of item #”, etc., and provide great opportunities to for diagnostic and maintenance information integration Airtotestcon,

explore clustering on these phrases as an alternative wiew t_ 2007 I[EEE |EEE, 2002, pp. 304-310.
P 9 P [9] IEEE Std 1232-2010, Standard for Artificial IntelligencecBange and

the ChronOIOg'Cal sequence dlsplay. Service Tie to All Test Environments (AI-ESTATHHEE Standards
Press, Piscataway, New Jersey, 2011.
VIl. CONCLUSION [10] IEEE Std 1636-2010, Trial-Use Standard for Software Iwateef for

; ; imiti ; Maintenance Information Collection and Analysis (SIMICAEEE
This paper described the initial and ongoing development Standards Press, Piscataway, New Jersey, 2010,

of a tool which facilitates improved knowledge discoveryi1) |EEE Std 1636.2-2010, Trial-Use Standard for Software rfatee for
within maintenance data by transforming data records into Maintenance Information Collection and Analysis (SIMICMainte-

ontology-based event graphs and providing several filtera nance Action Information (MA))IEEE Standards Press, Piscataway,
! New Jersey, 2010.

visualizations of event sequences through time. We acdesmpl[12] w3c, “OWL 2 Web Ontology Language Document Overview,’
several major pre-processing objectives, such as redords- http://iwww.w3.org/TR/owl2-overview/, 2009.
; ; ; [13] Agent Markup Language Committee, “DAML+OIL,"
ontology event mapping and the resolution of date conflicts hitp://www.dam. org/2001/03/daml+oil-index, 2001.
the aggregated records of events. [14] w3C, “Resource Description Framework (RDF),”
The most beneficial aspect of our software is the quick look http://www.w3.org/RDF/, 2004.

; ; P. Hitzler, M. Krtzsch, and S. Rudolpfroundations of Semantic Web
up an_d display of filtered event sequences. Rather than také% Technologies1st ed. Chapman & HalICRC, 2009,
domain expert hours to coalesce and display the relevaat dak) r. Eimasri and S. B. Navath€undamentals of Database Systems (5th

records, our tool can generate a comprehensive sequence of Edition). Addison-Wesley Longman Publishing Co., Inc., 2006.

contextual maintenance events from several data sourcas i’} ggﬁpm’ "JGraphT afree Java Graph Library,” httpaimigrapht.org/,

matter of seconds. This work continues to highlight a vairiet1g] jGraph, “JavaScript and Java Diagram Library Compajent
of research topics that could greatly benefit the maintemanc http://Aww.jgraph.com/, 2011.
community [19] M. S. Hossain and R. A. Angryk, “Gdclust: A graph-baseztument
’ clustering technique,” inEEE International Conference on Data Min-
ing, 2007, pp. 417-422.
[20] J. Han and M. KambeBbata Mining: Concepts and Techniques, Second
Edition. Morgan Kaufmann, 2006.
[21] C. S. Byington, P. W. Kalgren, and B. P. Donovan, “Poigatiagnostic
reasoning for improved avionics maintenance and informaguce &
continuity,” IEEE AUTOTESTCON 2004 Conference Recqml. 518—
524, September 2004.

