
A Visualization Tool for Knowledge Discovery in
Maintenance Event Sequences

Michael Schuh, John Sheppard, Shane Strasser, Rafal Angryk, Clemente Izurieta
Department of Computer Science

357 EPS Building
Montana State University, Bozeman, MT 59717

michael.schuh@cs.montana.edu

Abstract—We developed a tool that facilitates knowledge
discovery from aircraft maintenance data through sequences
of maintenance events. Several interconnecting ontologies were
developed in OWL, based on formally defined IEEE standards,
and we use these ontologies to guide the data transformation, data
mining, and interactive visualization processes. The tool provides
an easy-to-use interface that generates relevant sequences of data
in a meaningful context in a fraction of the time it would take
domain experts to retrieve and display similar information. We
present an up-to-date overview of the current tool and extensions,
which now includes several visualization options, ties together
several ontology-based data sources, and enables a method of
obtaining diagnostic maturation recommendations.

I. I NTRODUCTION

Modern diagnostic systems can generate an overwhelming
abundance of data. Often this data is distributed across mul-
tiple heterogeneous systems and cannot be immediately (or
easily) collected and aggregated for use. Even with easy access
to data, much of it is uninteresting to the user’s specific inquiry.
This puts a large burden on the user to coalesce the data
and mine the interesting bits relevant to their current needs.
Depending on the task at hand, this amount of effort may
not be justifiable or practical, and the potential for knowledge
discovery is lost. Our tool facilitates this data mining process
and generates relevant sequences of data in a fraction of the
time it would take domain experts to retrieve and display
similar information.

We present this extended update from our previously pub-
lished work at AUTOTESTCON 2011 [1]. As development
continues on our application, it has now grown into a full-
fledged tool that incorporates additional visualizations and
analysis methods, including the necessary inputs required
for the method of diagnostic maturation developed in [2].
The tool further removes the user’s burden for data look
up and aggregation, and it greatly increases the potential for
knowledge discovery from data (KDD) within the maintenance
community.

This work primarily focused on aircraft data collected at
ground-based maintenance facilities. The data are composed
of transactional records detailing each maintenance action that
takes place, including important fields such as the aircraft
tail number, type and date of the event, and possible part(s)
being removed or installed. Importantly, this data also contains
the necessary corrective actions that were performed as well

as insightful text-fields detailing the results of these actions.
Also, we now integrate onboard (in-flight) data which indi-
cates which faults were observed to prompt the performed
maintenance event actions.

We used existing data model standards, defined by the
Institute of Electrical and Electronics Engineers (IEEE),and
derived new ontological models to better represent the data.
We then transform the raw data into maintenance events and
provide the user with a query interface to filter on specific
event attributes. The filtered query generates a chronological
sequence of maintenance events and the user can optionally
display links between events that belong to the same aircraft
or share the same remove/install part(s). Additionally, the
user now has the ability to view these sequences to scale
of the actual time elapsed between events. Each event in a
sequence can also be inspected individually, displaying the
entire ontology-based graph from interconnected data sources.

By combining maintenance event sequences with their un-
derlying faults and corrective actions, the user is provided
with a much more complete context of maintenance history.
The model maturation tool uses this data in conjunction with
Timed Failure Propagation Graph (TFPG) models [3], allow-
ing the user to go beyond standard diagnostic procedures. The
maturation process provides recomendations about possible
errors in the diagnostic models used to guide maintenance
actions. If there exists errors in a model, the resulting diagnosis
and corrective actions may be incorrect, causing wasted time,
money, and effort during the maintenance process [4].

The ongoing tool development provides increased accessi-
blity of existing (and related) data sources to the experts who
need them. This increases novel data exploration and KDD by
integrating additional existing standards and data collection
formats. Through continued integration, the user will waste
no time switching to different tools and analysis methods for
the same event sequence of interest.

The remainder of the paper is organized as follows. Section
II discusses ontology-guided data mining and data transforma-
tion. Section III provides an overview of our application, with
implementation details presented in Section IV. We highlight
aspects worth further discussion in Section V and present
some future work in Section VI. Finally, we close with our
conclusions in Section VII.



TABLE I
FREQUENTLY USED ABBREVIATIONS

AI-ESTATE Artificial Intelligence

Exchange and Service Tie to All Test Environments

SIMICA Software Interface

for Maintenance Information Collection and Analysis

MAID Maintenance Action Information Document

ME Maintenance Event

MA Maintenance Action

ML Maintenance Level

ACID Aircraft Identification

JCN Job Control Number

UNS Unified Numbering System

PartNo Item (Removed or Installed) Part Number

SerNo Item (Removed or Installed) Serial Number

II. ONTOLOGY-GUIDED DATA M INING

We utilized domain ontologies to join together different data
sources and aggregate individual records into more meaningful
models. In information science, an ontology is a type of
knowledge representation that formally defines concepts, their
properties, and the relationships between them [5]. This well-
defined representation enables automated methods of reason-
ing and analysis into the domain concepts the ontology de-
scribes. Previous work by Wilmering and Sheppard suggested
using domain ontologies to focus and filter data analysis in
data mining [6].

The approach we take in developing ontologies to support
the knowledge discovery process is based on a set of standard-
ized semantic models developed in the EXPRESS modeling
language [7]. EXPRESS is an information modeling language
defined by the International Organization for Standardization
(ISO) to support communication of product data between
engineering applications. The purpose of the language is to
define the semantics of information that will be generated by
a system, and it is not meant to define database formats.

Models in EXPRESS are defined using a hierarchy parti-
tioned along schemata, entities, and attributes [8]. The EX-
PRESS language incorporates a number of object-oriented
features, such as encapsulation, abstraction, and inheritance,
and it additionally allows logical constraints to be placedon
attribute values. These constraints, which often define relation-
ships in non-trivial ways, give EXPRESS the ability to define
computer-processable semantics, which allows applications to
discern if the information being received satisfies the intended
meaning when it was generated and transmitted [8].

The tool uses ontologies derived from the IEEE Std. 1232
Artificial Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE) [9] and IEEE Std 1636 Software
Interface for Maintenance Information Collection and Analysis
(SIMICA) [10]. AI-ESTATE is a set of specifications for
exchanging data and defining software services for diagnostic
systems. Its purpose is to standardize the diagnostic data
representations of an intelligent diagnostic reasoner andthe in-

terfaces between elements of such reasoners. The information
models defined for AI-ESTATE are designed to form the basis
for facilitating exchange of persistent diagnostic information
between two reasoners through a standardized system for
diagnostic services. Additionally, both models make use of
a “common” information model (called the Common Element
Model) [9].

Maintenance events are primarily represented by the SIM-
ICA Maintenance Action Information (MAI) model, which
was designed to capture records of actual maintenance actions
performed on a particular system or subsystem [11]. The AI-
ESTATE D-Matrix Inference Model and Dynamic Context
Model are used to define the diagnostic models and associ-
ated information used and produced by diagnostic reasoners,
including recommended corrective actions.

Recent work in ontology-guided data mining has made use
of standard ontology languages (e.g. OWL [12], DAML+OIL
[13], and RDF [14]). EXPRESS was not designed to support
ontology-based analysis; however, the semantics defined by
EXPRESS models are rich enough to use as the foundation
for defining ontologies in the Web Ontology Language (OWL),
which is one of the most widely used ontology languages. An
OWL ontology may have descriptions of classes, properties,
and their data instances, and the formal OWL semantics then
specify how to find logical consequences from the defined
entities. Given an OWL ontology, we can then define and
instantiate data in OWL format [15], [12].

To convert EXPRESS to OWL, we first had to define a
logical mapping from the general EXPRESS concepts to OWL
concepts (e.g., an EXPRESSentity becomes an OWLclass).
We then used the mapping to create our OWL ontologies
from the existing standards in EXPRESS. In some cases, the
data did not match the entire EXPRESS models, and the
newly created OWL ontologies had to be extended beyond the
defined standards. With the incorporation of additional models
and data sources, we also have to ensure a unified ontology
that links each piece accurately given the available data fields.
Figures 1 and 2 present a small sample of this conversion
process for theMaintenance Eventcomponent. Notice the
similarity between each format, such as the “actionTaken” and
“delayReason” relationships present in both.

III. E VENT GRAPHS AND SEQUENCES

We define aneventas a group of records pertaining to a
unique set of ground-based maintenance actions. Each event
is composed of one or more transactional database records
grouped together based on the SIMICA MAI model, which
defines the elements and attributes of our OWL ontology. The
Maintenance Action Information Document (MAID) element
is the root of our MAI ontology, and its attributes are specified
as unique, representing the super-key of each event. The
existence of multiple records with the same super-key value
indicates multiple Maintenance Actions (MA) were performed
for a single Maintenance Event (ME). Therefore, the ME
ontology element contains a list of MA’s, and is directly
connected to the root (MAID) element. Refer to the model



Fig. 1. A sample of an EXPRESS model and related code.

in Figure 2 to see the direct relationship between MAID, ME,
and MA.

The tool also incorporates onboard diagnostic data from the
aircraft. This data contains a chronological list of diagnostic
tests (and results) that were performed during the course
of a flight. Faults that were observed during a flight lead
to ground-based maintenance actions that are meant to fix
and resolve the faults. The TFPG model maturation approach
analyzes the statistical discrepencies between the reasoner’s
action recommendations and the corrective actions (on the
ground) that actually fixed the problem [2].

Since the data sources have transactional records, these
multi-actioned corrective events typically contain a pairof
remove/install actions or a list of timely inspection actions.
In other words, each ground-based record is essentially an
MA element, stored with its MAID attributes. Similarily, each
record of onboard data contains the identifying attribute values
shared in common by all, such as ACID. By aggregating these
events into ontological graph structures, we are performing
something similar to a database conversion from first normal
form to third normal form, where each key now returns only
a single event graph [16].

After the data is transformed into events it must then be
presented to the user. We develop a method of displaying the
summarized events as a sequence through time. Each event
is reduced to a single node, and arranged in sequence by
one of the user-specified date attributes: JCN (Job Control
Number) Date, or MA Completion Date. The sequence can
be considered a further abstraction of the data, where each
event only displays the date and associated aircraft, as well as
all UNS (Unified Numbering System) and item serial numbers.

Fig. 2. A sample of an OWL model and related code.

These additional attributes (UNS, and item serial number) are
not part of the unique key, but were suggested by domain
experts as the most valuable information to display. The entire
application window is shown in Figure 3, with the sequence
being displayed in the large panel on the right.

To simplify the readability of the interface, the sequence
contains three distinct layers. The top-most layer contains the
date of each event through time, and the aircraft tail number
is displayed in the middle layer directly below the event date.
The bottom layer is composed of the single node events, linked
vertically to their corresponding aircraft above. This layer of
event nodes is further segmented into three separate levels
corresponding to the Maintenance Level (ML) attribute value
for each event (with ML 1 the top-most / closest to the aircraft,
and ML 3 at the bottom). Finally, we create links between
events that have the same aircraft, or item serial number,
to help the user follow items of interest through the larger
sequence. This is a critical enhancement to KDD, as it quickly
and easily allows a user to trace the context of specific parts
or aircraft through time.

The default sequence view is not scaled in proportion to
event time/date occurrences. Instead, each event has uniform
separation between all actions and other events in the gener-
ated sequence. This makes the most sense when a user is inter-
ested in following specific links or looking for specific events,
regardless of when they occurred. Alternatively, the user can
choose to view the sequence in a true time-proportional scale.
This can be more beneficial when investigating the history of



specific parts or aircraft, where a quick glance can give easy
indication of time between events.

An additional utility-turned-feature was inspired by the
nature of the data. We developed a data pre-processor which
anonymizes sensitive attributes’ values while retaining the
relationships between records. After anonymization, the appli-
cation is used exactly like before, except the “clean” data now
replaces the original (sensitive) data. Unfortunately, because
of the inherent (and necessary) randomness built into our
anonymization algorithm, the resultant attribute values make
little logical sense to the human observer. Especially important
attributes, such as text-based corrective actions, are noteven
retained, as their only benefit is being able to actually readand
infer more information from them. This also means presenting
interesting case studies is difficult – especially for the TFPG
model maturation, which we encourage the reader to refer to
[2] for a previously published example.

IV. I MPLEMENTATION

The application implementation can be separated into five
parts: an initial (optional) raw data anonymization, a necessary
data transformation into ontology instances, attribute value
filtering and querying, the display of event sequences, and the
display of individual event graphs. While the first two parts
represent one-time pre-processing steps, the remaining three
parts are performed dynamically during normal application
use. All code was written in Java (v1.6), and MySQL (v5.1)
was used as our database management system.

The optional first step is a pre-processing anonymization
function that transforms the data into clean and safe content
for general presentation. This algorithm essentially creates a
mathematical correspondence mapping between the original
data values and the randomly generated new values. Each
attribute retains its specific qualities, such as data type and
length, and the correspondence ensures all relationships within
the data are preserved.

The second step is a required data transformation from
transactional records representing pieces of maintenance
events, to entire event graphs that aggregate all those pieces
into a common OWL ontology instance. Since we are only
concerned with connection-based relationships among the
data, defined by the ontology, we can more simply, and effi-
ciently, store the transformed data as graph objects – requiring
only a few assumptions. Recall that our ontology defines
a root element, MAID, which contains the keys for each
instance, as well as an attached ME list of MA elements, each
of which essentially encapsulates an original ground-based
data record. The MAID element also links to the onboard
diagnostic records from the previous flight(s) that match the
data keys.

In our graph representation, we define nodes in a tree-like
context, either as internal nodes (e.g. MAID, ME, MA), or
as leaf nodes which represent attributes associated with an
internal node. Therefore, given an internal node, all connected
leaf nodes are its attributes, and all connected internal nodes
are further extensions of the ontology structure, such as MAID

to ME, ME to MA #1, ME to MA #2, etc. Additionally, each
node contains an identifier that defines it as a specific element
of the ontology, and internal nodes contain a list of connected
nodes, while leaf nodes contain their respective data value.
The node ID is important, because it allows for quick and
easy identification of any node anywhere within the entire
ontology, and that identification provides further information
about the node, such as its name and attribute value type
used during visualization and analysis methods. We use the
JGraphT library [17] to create these graphs with custom nodes,
and store them as serialized objects in our database.

After all records for a single event are added to a graph, we
store the event keys (which again are the MAID attributes, or
leaf nodes), as well as the two date fields used for sorting
and the serialized graph object in a new database table –
separate from the raw data. We also create a look-up table
to store a cross-relation of every UNS, item part number, and
item serial number associated with each event (a many-to-
many relation). At this point, the original data is no longer
needed since the tool runs entirely on the two new tables. This
provides a convenient mechanism for dumping the data into
the backend database as it is accumulated incrementally. Also
note that both pre-processing steps are self-contained within
the tool and initiated with specific command line arguments.

With the data transformation complete, the user can now
access the main application window for interactive KDD by
applying a filter to the query and then viewing the event
sequence and individual events. When the program is started,
the user is presented with several query options in the left
panel (refer to Figure 3) which are ordered from top to bottom,
and from least to most specific. The only required options
are “Sort By”, which orders the events by JCN Date or MA
Completion Date, and “Date To” - “Date From”, which restrict
the sequence to only events within the given date range. To
aid the user, we provide the default selection of JCN Date,
and auto fill the date range with the minimum and maximum
JCN dates found in the database.

One complication that arose with our method of record
aggregation is the possibility of conflicting date values for
actions in the same event. This is a known problem with the
data, and we resolved it by storing the earliest found JCN
and MA Completion dates as the date fields for an event. The
remaining query options: ACID (Aircraft ID), UNS (Unified
Numbering System), PartNo (item part number), and SerNo
(item serial number) provide further filtering capabilities, and
the valid options for each filter are auto-generated based
on the previously selected filters. For example, when a user
selects a set of ACIDs that are of interest, the subsequent
filters (UNS, PartNo, and SerNo) are repopulated to display
only valid values found in database records that contain one
of the selected ACIDs. This removes the guessing game of
identifying which records exist, and it allows the user to gain
considerable insight into the data they are investigating –even
before the first query is performed.

After the query options are set, the sequence graph is gen-
erated and displayed in the right side panel of the application



Fig. 3. The main application window. The left panel contains the query options to filter on event attributes, and the right panel contains the generated
sequence based on the query. Below the sequence is a small status window that provides information and feedback to the user.

Fig. 4. An individual event window containing an auto-generated layout of all the attributes (and their values) for a given event. The unique event ID is
displayed in the window title bar and the graphical visualiztion can be saved as an image.



window. While using the tool, information such as query
history and important messages are displayed in the bottom
status panel and optionally logged to a file. A sequence can
be scrolled (left and right) through time and each event is
a click-able object that displays the details of the individual
event. The sequence graph is generated using Java’s Swing
layout mechanism with the semantic links being overlaid by
Java’s 2D drawing framework. These links connect identical
aircraft (ACID) and item parts (SerNo) from one occurrence
to the next, as time flows to the right. As discussed earlier,
the sequences presented in figures are not scaled by time
and instead use the original default graphical view. There is
currently active development on the GUI framework to more
easily support adding additional views and user interactions.

Finally, when an event is clicked, a separate window is
opened that displays all the details of the event, such as in
Figure 4. Each clicked event opens a new window, allowing
easier side-by-side comparison of multiple events. Viewing
individual events is accomplished quite easily by porting ob-
jects from JGraphT to JGraph [18], which provides an on-the-
fly layout and visualization of the graph object. These event
graphs can be further manipulated (dragged, reshaped, etc.)
to highlight attributes of interest while hiding the unimportant
ones. At any time, the visualized graphs can be saved as a
image (.png format) for presentation and discussion beyond
the confines of the tool and the computer system it is running
on.

V. D ISCUSSION

The primary objective of this software tool is to minimize
wasted time and effort during aircraft maintenance by pro-
viding a meaningful display and integration of data collected
from ground-based and onboard maintenance records. This
was achieved with the grouping and ordering of records, and
the summarized display of only certain key information. The
application facilitates detailed query selections based on the
most useful parameters identified by domain experts. Because
of the large (and continually growing) set of data being
accessed, this allows the user to select only the appropriate
data that they are interested in.

The potentially large volume of stored data is a point of
concern, as it could have effects on maintaining timely queries.
Our current implementation provides no safe-guards towards
checking for manageable and effective user-generated queries.
Through MySQL, we maintain a separate index for all query-
able attributes, but the shear volume of data combined with an
ill-minded query can still bring the application to a brief stand-
still. For example, suppose we have four successive filters,
each with 100 possible items to choose from – so if we choose
ten from each, then we have(100 choose10)4 which is nearly
1053 possible combinations! The problem is that a query like
this has no defining attribute to filter on that provides adequate
data reduction, whereby MySQL can optimize the query and
perform the most selective joins first.

The good news for us is that these vague and indiscriminate
queries are rarely helpful to real-world users, and should

2009-01-29 2009-01-31 2009-02-02

Fig. 5. A sequence of events.

therefore be encountered minimally. For example, a user rarely
needs to see a large set of aircraft, related to a large set of
items, over a large span of time; rather, they are more often
interested in a specific aircraft and a handful of parts, or a
specific part on any aircraft. These practical queries return
results in seconds.

In a similar argument, the readability of our dynamic links
between neighboring events that share aircraft or parts in
common can become muddled in an overly-complicated query.
Again however, if someone is attempting to follow links for
a part or aircraft from one event to another, they are probably
not looking at a lot of parts or aircraft. If for some reason the
user deems a large or overly-complicated query is necessary,
these links are easily toggled off for a clean view of the event
sequence.

Beyond the idea of just querying items, the application has
the added benefit of allowing a user to follow interesting items
through time. This is achieved in part by the aforementioned
query options, but also by the dynamically generated item links
displayed on the sequence. With these features, a user can for
example: generate a summary of specific items through time,
discover a re-occurring list of similar problems to a specific
aircraft, or track a specific part from aircraft to aircraft as it
is perhaps repetitively cannibalized or replaced. All of these
uses could benefit from these novel data visualizations.

We provide an example use case in Figures 5 and 6, and
we walk through the important knowledge discovery abilities
displayed. Presented in Figure 5 is a sequence of three events.
The top arc indicates the same aircraftruBCc1 in the second
and third events, while the bottom arc indicates the same item
is referenced in all three events. The item is identified by its
serial numbertZs, which we simply highlighted for readability.
Now we can essentially read the event sequence “story”. In
early 2009, thetZs item was removed from aircrafttUP4Xi
during a Level 1 Maintenance Action. Then, only days later,
the same item was installed on aircraftruBCc1, only to be
removed a few more days later during a Level 3 Maintenance
Action. According to domain experts, this most likely indicates



Fig. 6. A user-modified event graph.

a failed part which was later fixed and cannibalized only to
fail once again.

To investigate further, the user could then inspect the
other attributes of each event in the sequence. The graphical
visualization of an event can be manipulated to highlight
the important attributes before being saved for discussion
and investigation outside the application. Figure 6 shows an
example of the modified event graph for the third event in the
sequence in Fig. 5. Notice we can now clearly see the event’s
MAID node connected to the ME node and the ME node
connected to two MA nodes. Each MA node has three visible
attributes that indicate the item being removed or installed.
Important text fields would also be present here (in real data),
and they would likely confirm our previous insights.

The investigation of maintenance events is dramatically
increased with the aide of TFPG diagnostic model matura-
tion recommendations through the method described in [2].
The maturation process requires a combined analysis of the
diagnosed faults found onboard, and the corrective actions
reported to fix the problem – both of which are available in our
maintenance event graphs. Essentially, the recommendations
arise when a corrective action is performed more often than
expected, given the reasoner’s diagnosis from observed faults;
or vice versa, when a suggested corrective action rarely fixes
the actual problem. These indicate a potential problem with
the underlying diagnosis model, and the user could be better
informed by knowing in advance these discrepancies may
exist.

VI. FUTURE WORK

The tool provides a promising and exciting framework for
continued data mining and knowledge discovery research.
Interesting continuations of this work include adding more
data sources and tools, enhanced GUI interactions and visual-
izations, applying graph-based data mining algorithms to the
data, and performing an in-depth analysis and mining of text
field attributes.

A benefit of conforming to the IEEE standards-based
ontologies is the well established data model that already

provides connections between multiple sources of maintenance
data. While we have already added an on-board diagnostic data
source to the application, additional data sources will continue
to enhance KDD through more comprehensive analyses and
incorporated tools. By filling out the existing ontologies with
more available information sources, we can provide the user
a more complete context surrounding an interesting event, or
sequence of events. Similar to the facilitated TFPG model mat-
uration recommendations, further integration with independent
tools will increase the efficiency of aircraft maintenance,and
minimize costly mistakes that would be otherwise unavoidable.

As we mentioned earlier, current and ongoing work has
been focused on enhancing the GUI for the user. Additional
views of aggregated maintenance data, such as the time-scaled
event sequences, provide unique benefits for an overall better
understanding of the data. New visualizations also create the
opportunity for new user interactions with the system, and
entirely new tools may arise during such development. Pre-
defined layouts of individual event graphs would also speed
up the detailed investigation of event attributes, minimizing
the need for the user to extensively manipulate these graphs
every time one is viewed.

Since our data is essentially a database of graphs, another
interesting research direction would be exploring graph-based
data mining algorithms. Angryk’s previous work in frequent
subgraph mining [19] shared a similar problem formulation,
where the goal was to detect all frequently occurring subgraphs
(based on a given support threshold) from a larger graph
object. This is similar to frequent itemset mining, except
instead of a set of items we use a set of edges, representing a
subgraph [20].

Similar to Angryk’s use of an ontology as amaster docu-
ment graphin text-mining [19], we can use our ontology as
a “master event graph”, retaining the necessary computational
speed-ups gained by this assumption. While the set of frequent
subgraphs lends itself to further data mining applications, even
simple analysis could provide some beneficial knowledge.
For example, a frequent subgraph might indicate that several



events always occur together when accompanied by certain
attribute values. Perhaps this is a series of items to replace
after a specific malfunction, then if the malfunction occurs
and only triggers some of the associated events, an operator
could be informed that other events commonly occur in these
circumstances and they probably deserve attention too.

The ground-based maintenance data we used has two very
important text fields – the description narration, which de-
scribes details of the task or problem of the event, and the
corrective action, which describes the actions taken to fix or
complete the event task. Both fields are entered manually
by human operators and contain a variety of shorthand and
abbreviations – as well as spelling mistakes and input errors
– that truly require a domain expert for proper interpretation.
However, the benefits of understanding and incorporating these
fields would be enormous, as a great deal of information is
conveyed solely within the text, including referrals to other
events, parts, and problems. Furthermore, simple keyword
analysis (and perhaps tagging of events) would detect common
phrases like: “routine inspection”, “see job #”, “cannibal-
ization of item #”, etc., and provide great opportunities to
explore clustering on these phrases as an alternative view to
the chronological sequence display.

VII. C ONCLUSION

This paper described the initial and ongoing development
of a tool which facilitates improved knowledge discovery
within maintenance data by transforming data records into
ontology-based event graphs, and providing several filterable
visualizations of event sequences through time. We accomplish
several major pre-processing objectives, such as records-to-
ontology event mapping and the resolution of date conflicts in
the aggregated records of events.

The most beneficial aspect of our software is the quick look
up and display of filtered event sequences. Rather than take a
domain expert hours to coalesce and display the relevant data
records, our tool can generate a comprehensive sequence of
contextual maintenance events from several data sources ina
matter of seconds. This work continues to highlight a variety
of research topics that could greatly benefit the maintenance
community.

REFERENCES

[1] M. Schuh, J. Sheppard, S. Strasser, R. Angryk, and C. Izurieta,
“Ontology-guided knowledge discovery of event sequences in mainte-
nance data,”IEEE AUTOTESTCON 2011 Conference Record, pp. 279–
285, September 2011.

[2] S. Strasser, J. Sheppard, M. Schuh, R. Angryk, and C. Izurieta, “Graph-
based ontology-guided data mining for d-matrix model maturation,”
Aerospace, 2011.

[3] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. Ofsthun, “Practical
implementation of diagnosis systems using timed failure propagation
graph models,”IEEE Transactions on Instrumentation and Measure-
ment, vol. 58, no. 2, pp. 240–247, 2009.

[4] T. J. Wilmering, “Semantic requirements on information integration for
diagnostic maturation,”IEEE AUTOTESTCON 2001 Conference Record,
pp. 793–807, 2001.

[5] T. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing,”International Journal of Human-Computer Studies,
vol. 43, no. 5-6, pp. 907–928, 1995.

[6] T. Wilmering and J. Sheppard, “Ontologies for Data Miningand Knowl-
edge Discovery to Support Diagnostic Maturation,” inProceedings of
the 18th International Workshop on Principles of Diagnosis(DX-07),
2007, pp. 210–217.

[7] ISO, “10303-11:2004, Industrial automation systems and integration
– Product data representation and exchange – Part 11: Description
methods: The EXPRESS language reference manual,” 2004.

[8] J. Sheppard, M. Kaufman, and T. Wilmering, “Model based standards
for diagnostic and maintenance information integration,” inAutotestcon,
2007 IEEE. IEEE, 2002, pp. 304–310.

[9] IEEE Std 1232-2010, Standard for Artificial Intelligence Exchange and
Service Tie to All Test Environments (AI-ESTATE), IEEE Standards
Press, Piscataway, New Jersey, 2011.

[10] IEEE Std 1636-2010, Trial-Use Standard for Software Interface for
Maintenance Information Collection and Analysis (SIMICA), IEEE
Standards Press, Piscataway, New Jersey, 2010.

[11] IEEE Std 1636.2-2010, Trial-Use Standard for Software Interface for
Maintenance Information Collection and Analysis (SIMICA): Mainte-
nance Action Information (MAI), IEEE Standards Press, Piscataway,
New Jersey, 2010.

[12] W3C, “OWL 2 Web Ontology Language Document Overview,”
http://www.w3.org/TR/owl2-overview/, 2009.

[13] Agent Markup Language Committee, “DAML+OIL,”
http://www.daml.org/2001/03/daml+oil-index, 2001.

[14] W3C, “Resource Description Framework (RDF),”
http://www.w3.org/RDF/, 2004.

[15] P. Hitzler, M. Krtzsch, and S. Rudolph,Foundations of Semantic Web
Technologies, 1st ed. Chapman & Hall/CRC, 2009.

[16] R. Elmasri and S. B. Navathe,Fundamentals of Database Systems (5th
Edition). Addison-Wesley Longman Publishing Co., Inc., 2006.

[17] JGraphT, “JGraphT a free Java Graph Library,” http://www.jgrapht.org/,
2011.

[18] JGraph, “JavaScript and Java Diagram Library Components,”
http://www.jgraph.com/, 2011.

[19] M. S. Hossain and R. A. Angryk, “Gdclust: A graph-based document
clustering technique,” inIEEE International Conference on Data Min-
ing, 2007, pp. 417–422.

[20] J. Han and M. Kamber,Data Mining: Concepts and Techniques, Second
Edition. Morgan Kaufmann, 2006.

[21] C. S. Byington, P. W. Kalgren, and B. P. Donovan, “Portable diagnostic
reasoning for improved avionics maintenance and information capture &
continuity,” IEEE AUTOTESTCON 2004 Conference Record, pp. 518–
524, September 2004.


