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Abstract. Combining different machine learning algorithms in the same system can produce
benefits above and beyond what either method could achieve alone. This paper demonstrates
that genetic algorithms can be used in conjunction with lazy learning to solve examples of a
difficult class of delayed reinforcement learning problems better than either method alone. This
class, the class of differential games, includes numerous important control problems that arise in
robotics, planning, game playing, and other areas, and solutions for differential games suggest
solution strategies for the general class of planning and control problems. We conducted a series
of experiments applying three learning approaches – lazy Q-learning, k-nearest neighbor (k-
NN), and a genetic algorithm – to a particular differential game called a pursuit game. Our
experiments demonstrate that k-NN had great difficulty solving the problem, while a lazy
version of Q-learning performed moderately well and the genetic algorithm performed even
better. These results motivated the next step in the experiments, where we hypothesized k-NN
was having difficulty because it did not have good examples – a common source of difficulty
for lazy learning. Therefore, we used the genetic algorithm as a bootstrapping method for
k-NN to create a system to provide these examples. Our experiments demonstrate that the
resulting joint system learned to solve the pursuit games with a high degree of accuracy –
outperforming either method alone – and with relatively small memory requirements.

Key words: lazy learning, nearest neighbor, genetic algorithms, differential games, pursuit
games, teaching, reinforcement learning

1. Introduction

When two people learn a task together, they can both benefit from the different
skills that each brings to the table. The result is that both will learn better than
they would have on their own. Likewise, machine learning methods should
be able to work together to learn how to solve difficult problems. This paper
describes how a lazy learning algorithm and a genetic algorithm can work
together to produce better solutions than either method could produce by
itself.

To explore our hypothesis that two learning algorithms can work together
to outperform either individually, we focused on a particular problem in
which an agent must perform a task, and the task requires several steps to
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accomplish. We limit feedback on how well the agent is performing to the
end of the task. Several learning algorithms have been applied to this family
of problems, called delayed reinforcement problems (Widrow 1987; Atkeson
1990; Watkins 1989; Barto, Sutton and Watkins 1990; Millan and Torras
1992; Moore and Atkeson 1993), but little has been done to evaluate the
power of combining different types of learning algorithms to these problems.

One way of characterizing these delayed reinforcement problems is as
learning to solve a Markov decision problem (van der Wal 1981). Markov
decision problems are those in which an agent develops a mapping from a
set of states to a set of actions, possibly different ones for each state, and
the optimal strategy from a given state depends only on the current state.
The actions are directed toward achieving some goal or performing some
task, and payoff or penalty for that action is awarded immediately. Delayed
reinforcement problems apply zero payoff at intermediate states and apply
the actual reward at the end of the sequence.

One class of problems frequently modeled as a Markovian decision prob-
lem is the class of differential games. Differential games require the players
to make a long sequence of moves where the behaviors and strategies are
modeled by differential equations. Finding a solution to the differential game
consists of computing the “value” of the game in terms of expected payoff
and determining the optimal strategies for the players that yield this value.
Differential games are difficult to solve yet are important for solving a wide
variety of multi-agent tasks. They have had widespread application in the
military and entertainment industries, but more recently, systems for intel-
ligent highways, air traffic control, railroad monitoring, and ship routing
are using differential game theory to assist agents in optimizing their often
competing goals. More generally, strategies for solving these games can be
used for planning and intelligent agents, thus making the approach discussed
applicable to the broader domain of control problems.

For this study, we begin by considering a differential game that involved
one agent trying to pursue and capture another (i.e., a pursuit game). Earlier
research showed that at least one implementation of this task, known as
evasive maneuvers (Grefenstette, Ramsey and Schultz 1990), can be solved
by a genetic algorithm (GA). We developed a lazy learning approach using
k-nearest neighbor (k-NN) for the same task, hoping to demonstrate lazy
learning could perform as well or better than the GA. Then we made the task
substantially harder to study the limitations of lazy learning methods on this
class of problems. The more complicated task, which is described further in
Section 3.2, also resembles complicated planning tasks in which an agent has
to satisfy several goals simultaneously (Chapman 1987).
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As our experiments will show, we were successful at developing a method
to solve our difficult reinforcement learning task. The key idea behind our
success was the combined use of both lazy learning and GAs. We observed
after comparing two lazy methods (k-NN and an adaptation of Q-learning)
with genetic algorithms that lazy methods can learn to solve the task, but were
dependent on having good examples in the database. Later, we found that the
best learning agent first used a GA to generate examples, and then switched
to k-NN after reaching a certain performance threshold. Our experiments
demonstrate significant improvement in the performance of lazy learning,
both in overall accuracy and in memory requirements, as a result of using these
techniques. The combined system also performed better than the GA alone,
demonstrating how two learning algorithms working together can outperform
either method when used alone.

2. Previous Work

Recently, considerable work has been done applying learning algorithms
to Markov decision problems. To date, little has been done to apply these
algorithms to differential games. One exception to this is Grefenstette’s
SAMUEL system, which uses a genetic algorithm. In addition to the evasive
maneuvers task, Grefenstette (1991) has applied SAMUEL to aerial dogfighting
and target tracking. Ramsey and Grefenstette (1994) have used a case-based
method of initializing SAMUEL with a population of “solutions” dependent on
the current environment. Where we use a GA to “jump start” a lazy learner,
Ramsey and Grefenstette use a lazy learner to jump start a GA. This sug-
gests that a combined strategy where the lazy learner and the GA transmit
information in both directions could be a powerful combination.

In related research, Gordon and Subramanian (1993a, 1993b) use an ap-
proach similar to explanation based learning (EBL) to incorporate advice
into a genetic algorithm, using SAMUEL for the GA. In their multistrategy
apprach, a spatial knowledge base and high-level strategic guidance from a
human teacher are encoded using rule compilation that operationalizes the
rules, by encoding them in a form suitable for SAMUEL to use. SAMUEL then
uses and refines the advice with its genetic algorithm.

The idea of using lazy learning methods for delayed reinforcement tasks
has only recently been studied by a small number of researchers. Atkeson
(1990) employed a lazy technique to train a robot arm to follow a prespecified
trajectory. Moore (1990) took advantage of the improved efficiency provided
by storing examples in kd-trees in using a lazy approach to learn several
robot control tasks. More recently, Moore and Atkeson (1993) developed
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their prioritized sweeping algorithm, in which “interesting” examples in a Q
table are the focus of updating.

McCallum (1995) developed the “nearest sequence memory” algorithm,
which is a lazy algorithm for solving control problems plagued by hidden
state. Hidden state is an artifact of perceptual aliasing in which the map-
ping between states and perceptions is not one-to-one (Whitehead 1992).
McCallum showed through his algorithm that lazy methods can reduce the
effects of perceptual aliasing by appending history information with state
information. Since our approach stores complete sequences, we too have
minimized the effects of hidden state.

In another study, Aha and Salzberg (1993) used nearest-neighbor techniques
to train a simulated robot to catch a ball. In their study, they provided an agent
that knew the correct behavior for the robot, and therefore provided corrected
actions when the robot made a mistake. This approach is typical in nearest-
neighbor applications that rely on determining “good” actions before storing
examples. In our case, we had no idea which examples were good and needed
an approach to determine these examples.

One of the most popular approaches to reinforcement learning has been
using neural network learning algorithms, most often the error back-propaga-
tion algorithm. This has been used for simple multi-step control problems
(Widrow 1987; Nguyen and Widrow, 1989), using knowledge of the correct
control action to train the network. Millan and Torras (1992) used a rein-
forcement learning algorithm embedded in a neural net in which the control
variables were permitted to vary continuously. They addressed the problem
of teaching a robot to navigate around obstacles.

Considerable research has been performed using a form of reinforcement
learning called temporal difference learning (Sutton 1988). Temporal dif-
ference methods apply reinforcement throughout a sequence of actions to
predict both future reinforcement and appropriate actions in performing the
task. Specifically, predictions are refined through a process of identifying
differences between the results of temporally successive actions. Two popu-
lar temporal difference algorithms are ACE/ASE (Barto, Sutton and Anderson
1983; Barto et al. 1990) and Q-learning (Watkins 1989). The original work
by Barto et al. (1983) demonstrated that the cart and pole problem could be
solved using this method. Clouse and Utgoff (1992) later used ACE/ASE
with a separate teacher for the cart and pole problem, and applied Q-learning
to navigating a race track. Lin (1991) used Q-learning to teach a robot to
navigate the halls of a classroom building and plug itself into a wall socket
to recharge its batteries. Below we describe a lazy variant of Q-learning, and
show that it is also capable of learning complex control tasks.
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In addition, Dorigo and Colombetti (1994) and Colombetti and Dorigo
(1994) describe an approach to using reinforcement learning in classifier
systems to teach a robot to approach and pursue a target. Their approach uses
a separate reinforcement program to monitor the performance of the robot and
provide feedback on performance. Learning occurs through a genetic algo-
rithm applied to the classifiers with fitness determined by the reinforcement
program.

More recently, Michael Littman (1994) observed that reinforcement learn-
ing can be applied to multi-agent activities in the context of Markov games.
Littman expanded Watkins’ Q-learning algorithm to cover two players in a
simplified game of soccer. He embedded linear programming to determine
the optimal strategy prior to play, and applied a modified Q backup opera-
tor (which accounted for the competitive goals of the players) to update the
estimates of the expected discounted reward for each player.

Some other recent work in learning strategies for game playing has begun
to deal with issues of co-learning at a superficial level with strategic games
such as chess and othello. Pell (1993) developed an environment for deriving
strategies in what he calls “symmetric chess-like games.” His METAGAMER

focused on translating the rules and constraints of a game into a strategy using
a declarative formulation of the game’s characteristics. METAGAMER has been
applied to chess, checkers, noughts and crosses (i.e., Tic-Tac-Toe), and Go,
and has yielded performance at an intermediate level for each of these games.
Smith and Gray (1993) applied what they call a co-adaptive genetic algorithm
to learn to play Othello. A co-adaptive GA is a genetic algorithm in which
fitness values of members of the population are dependent on the fitness of
other members in the population. They found they were able to control the
development of niches in the population to handle several different types of
opponents. Finally, Tesauro used temporal difference learning (Tesauro 1992)
and neural networks (Tesauro and Sejnowski 1989) to train a backgammon
program called TD-GAMMON. Backgammon’s stochastic component (each
move is determined in part by a roll of dice) distinguishes it from deterministic
games such as chess, but despite this additional complexity, TD-GAMMON is
currently playing at a master level.

3. The Problem

Reinforcement learning (RL) is challenging in part because of the delay
between taking an action and receiving a reward or penalty. Typically an
agent takes a long series of actions before the reward, so it is hard to decide
which of the actions were responsible for the eventual payoff. Both lazy and
eager approaches to reinforcement learning can be found in the literature. The
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most common eager approach is the use of temporal-difference learning on
neural networks (Barto et al. 1983, 1990; Clouse and Utgoff 1992; Tesauro
1992). The advantages to a lazy approach are three-fold. First, minimal com-
putational time is required during training, since training consists primarily of
storing examples (in the most traditional lazy approach, k-nearest neighbor).
Second, lazy methods have been shown to be good function-approximators in
continuous state and action spaces (Atkeson 1992). As we will see, this will
become important for our task of learning to play differential games. Third,
traditional eager approaches to reinforcement learning assume the tasks are
Markov decision problems. When the tasks are non-Markovian (e.g., when
history is significant), information must be appended to the state to encapsu-
late some of the prior state information, in order to approximate a Markov
decision problem. Since the lazy approach stores complete sequences,
non-Markovian problems can be treated in a similar fashion to Markovian
problems.

The class of RL problems studied here has also been studied in the field
of differential game theory. Differential game theory is an extension of tradi-
tional game theory in which a game follows a sequence of actions through a
continuous state space to achieve some payoff (Isaacs 1963). This sequence
can be modeled with a set of differential equations which are analyzed to
determine optimal play by the players. We can also interpret differential
games to be a version of optimal control theory in which players’ positions
develop continuously in time, and where the goal is to optimize competing
control laws for the players (Friedman 1971).

3.1. Differential games and pursuit games

Differential game theory originated in the early 1960s (Isaacs 1963) as a
framework for a more formal analysis of competitive games. In a differential
game, the dynamics of the game (i.e., the behaviors of the players) are modeled
with a system of first order differential equations of the form

dkt
j

dt
= ht

j
(kt; at); j = 1; :::; n (1)

where at = (at1; :::; a
t

p) is the set of actions taken by p players at time t,
kt = (kt1; :::; k

t

n
) is a vector in real Euclidean n-space denoting a position in

play (i.e., the state) for the game, and ht
j
() is the history of the game for the

jth dimension of the state space. In other words, the differential equations
model how actions taken by the players in the game change the state of the
game over time. In these games, the initial state of the game k0 is given. The
object of analyzing a differential game is to determine the optimal strategies
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for each player of the game and to determine the value of the game (i.e., the
expected payoff to each player) assuming all of the players follow the optimal
strategies. For more details, see (Sheppard and Salzberg 1993).

A pursuit game is a special type of differential game that has two players,
called the pursuer (P ) and the evader (E). The evader attempts to achieve
an objective, frequently to escape from a fixed playing arena, while the pur-
suer attempts to prevent the evader from achieving that objective. Examples
include such simple games as the children’s game called “tag,” the popular
video game PacMan, and much more complicated predator-prey interactions
in nature. These examples illustrate a common feature of pursuit games –
the pursuer and the evader have different abilities: different speeds, different
defense mechanisms, and different sensing abilities.

One classic pursuit game studied in differential game theory is the homicidal
chauffeur game. In this game, we can think of the playing field being an open
parking lot with a single pedestrian crossing the parking lot and a single
car. The driver of the car (the chauffeur) is trying to run down the pedestrian.
Although the car is much faster than the pedestrian, the pedestrian can change
direction much more quickly than the car. The typical formulation has both
the car and the pedestrian traveling at fixed speeds, with the car having a fixed
minimum radius of curvature, and the pedestrian able to make arbitrarily sharp
turns (i.e., the radius of curvature is zero) (Basar and Olsder 1982).

In analyzing this game, it turns out that the solution is relatively simple
and depends on four parameters – the speed of the car, the speed of the
pedestrian, the radius of curvature of the car and the “lethal envelope” of the
car (i.e., the distance between the car and the pedestrian that is considered to
be “close enough” to hit the pedestrian). Isaacs (1963) shows that, assuming
optimal play by both players, the ability of P to capture E (or conversely for
E to escape) depends on the ratio of the players’ speeds and P ’s radius of
curvature. Intuitively, optimal play for P is to turn randomly if lined up with
E and to turn sharply toward E otherwise. The optimal strategy for E is to
head directly towards P until inside P ’s radius of curvature, and then to turn
sharply. Since E’s strategy is the more interesting, we will focus on learning
to evade in a similar game.

3.2. The evasive maneuvers task

The evasive maneuvers task as a differential game is a variation on the homici-
dal chauffeur game. Even though the solution to the homicidal chauffeur game
is intuitive, the actual surface characterizing the solution is highly nonlinear.
Thus we should reasonably expect the surface for extensions to the problem
(such as those discussed in this paper) to be more difficult to characterize.
Grefenstette et al. (1990) studied the evasive maneuvers task to demonstrate
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the ability of genetic algorithms to solve complex sequential decision making
problems. In their two-dimensional simulation, a single aircraft attempts to
evade a single missile.

We initially implemented the same pursuit game as Grefenstette et al., and
later we extended it to make it substantially more difficult. In this game, play
occurs in a relative coordinate system centered on the evader, E. Because of
the relative frame of reference, the search space is reduced and games are
determined by their starting positions. P uses a fixed control law to attempt
to capture E, while E must learn to evade P . Even the basic game is more
difficult than the homicidal chauffeur game, because the pursuer has variable
speed and the evader has a non-zero radius of curvature. Our extended version
includes a second pursuer, which makes the problem much harder. Unlike the
single-pursuer problems, the two-pursuer problem has no known optimal
strategy (Imado and Ishihara 1993), and for some initial states, there is no
possibility of escape. Second, we gave the evader additional capabilities: in
the one-pursuer game,E only controls its turn angle at each time step. ThusE
basically zigzags back and forth or makes a series of sharp turns into the path
of P to escape. In the two-pursuer game, we gave E the ability to change its
speed, and we also gave E a bag of “smoke bombs,” which will for a limited
time help to hide E from the pursuers.

In our definition of the two-pursuer task, both pursuers (P1 and P2) have
identical maneuvering and sensing abilities. Further, they use the same control
strategy: they anticipate the future location of E and aim for a location where
they can capture in the fewest time steps. They begin the game at random
locations on a fixed-radius circle centered on the evader,E. The initial speeds
of P1 and P2 are much greater than the speed of E, but they lose speed as
they maneuver, in direct proportion to the sharpness of the turns they make.
The maximum speed reduction is 70%, scaled linearly from no turn (with no
reduction in speed) to the maximum turn angle allowed of 135o. They can
regain speed by traveling straight ahead, but they have limited fuel. If the
speed of both P1 and P2 drops below a minimum threshold, then E escapes
and wins the game. E also wins by successfully evading the pursuers for 20
times steps (i.e., both P1 and P2 run out of fuel). If the paths of either P1 or
P2 ever pass within a threshold range of E’s path during the game, then E

loses (i.e., the pursuer will “grab” E) (Figure 1). We use the term “game” to
include a complete simulation run, beginning with the initial placements of
all of the players, and ending when E either wins or loses, at most 20 time
steps later.

When playing against one pursuer, the capabilities of E are identical to
the simulated aircraft used by Grefenstette et al. Against one pursuer, E
controls only its turn angle, which is sufficient to play the game well. With
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Figure 1. A game where E is caught.

two pursuers P1 and P2 in the game, E has additional information about its
opponents. This information includes 13 features describing the state of the
game, including E’s own speed, the angle of its previous turn, a game clock,
the angle defined by P1-E-P2, and the range difference between P1 and
P2. It also has eight features that measure P1 and P2 individually: speed,
bearing, heading, and distance. Bearing measures the position of the pursuer
relative to the direction that E is facing (e.g., if E is facing north and P1 is
due east, then the bearing would be 3 o’clock). Heading is the angle between
E’s direction and the pursuer’s direction. When fleeing two pursuers, E can
adjust its speed and turn angle at each time step, and it can also periodically
release a smoke bomb, which introduces noise into the sensor readings of P1
and P2. If smoke is released, the turn angle of the pursuer is shifted by a
random factor up to 50% of the current turn angle. As the severity of the turn
increases, so does the potential effect from smoke.

4. The Learning Algorithms

The following sections discuss the details of the experiments with the three
learning algorithms and motivate the need for a learning strategy combining
eager learning (as a teacher) and lazy learning (as a performer). We explored
several algorithms to determine the applicability of lazy learning to control
problems in general, and pursuit games in particular. We began by examining
the ability of Q-learning to learn to play the evasive maneuvers game. We
had to adapt Q-learning because of the large, continuous state space, which
resulted in a lazy variant of standard Q-learning. We then tried a traditional
lazy learning approach, k-nearest neighbors. Finally, we experimented with
an eager learning method, genetic algorithms, to compare with the two lazy
methods.
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4.1. Lazy Q-learning for evasive maneuvers

Q-learning solves delayed reinformement learning problems by using a
temporal difference (TD) learning rule (Watkins 1989). TD methods usually
assume that both the feature space and the variables being predicted are
discrete (Sutton 1988; Tesauro 1992). Q-learning represents a problem using
a lookup table that contains all states, which naturally causes problems with
large, continuous state spaces such as those encountered in differential games.
We therefore had to develop a method for predicting the rewards for some
state-action pairs without explicitly generating them. The resulting algorithm
was a lazy version of Q-learning.

Rather than constructing a complete lookup table, our implementation of
Q-learning stores examples similar to the set of instances produced for a lazy
method such as k-NN. It begins by generating a set of actions at random for
a particular game; these actions do not have to result in successful evasion.
Instead, the algorithm applies a payoff function (defined below) to determine
the reward for that sequence of state-action pairs. Initially, it stores the actual
payoff values with these pairs. After generating the first set of pairs, learning
proceeds as follows.

First, assuming that neighboring states will require similar actions, we
specify two distance parameters: one for the states and one for the actions
(d1 = 0:01 and d2 = 0:005 respectively), noting that all distances are normal-
ized. The purpose of these parameters is to guide a search through the instance
database. The system begins an evasive maneuvering game by initializing the
simulator. The simulator passes the first state to the state matcher which
locates all of the states in the database that are within d1 of the current state.
If the state matcher has failed to find any nearby states, the action comparator
selects an action at random. Otherwise, the action comparator examines the
expected rewards associated with each of these states and selects the action
with the highest expected reward. The resulting action is passed to the sim-
ulator, and the game continues until termination. It also has a probability
(0.3) of generating a random action regardless of what it finds in the table.
This permits it to fill in more of the database; i.e., it is exploring the state
space as it is learning. It passes the resulting action to the simulator, and the
game continues until termination, at which point the simulator determines the
payoff. The Q function then updates the database using the complete game.

At the end of a game, the system examines all of the state-action pairs in
the game. It stores in the database any state-action pair that is new, along with
the reward from the game. If the pair already exists, the predicted reward is
updated as follows:

Q(x; a) = Q(x; a) + �[�+ E(y) �Q(x; a)] (2)
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where Q(x; a) is the predicted reward for state x with corresponding action
a, � is a learning rate, � is the actual reward,  is a discount factor, and E(y)

is the maximum Q value for all actions associated with state y. State y is the
state that follows when action a is applied to state x. Reward is determined
using the payoff function in (Grefenstette et al. 1990), namely

� =

�
1000 if E evades the pursuers
10t if E is captured at time t.

(3)

Each of the pairs in the game are then compared with all of the pairs in the
database. If the distance between a stored state and action are less than d1

and d2 respectively for some state-action pair in the game, then the stored
state-action pair’s Q value is updated.

4.2. K-NN for evasive maneuvers

Lazy learning is a classical approach to machine learning and pattern recogni-
tion, most commonly in the form of the k-nearest neighbor algorithm. K-NN
is rarely used for Markov decision problems, so we had to represent the pur-
suit game in a format amenable to this algorithm. Further, to be successful,
a lazy approach must have a database full of correctly labeled examples,
because k-NN expects each example to be labeled with its class name. The
difficulty here, then, is how to determine the correct action to store with each
state.

We formulate Markov decision problems as classification problems by
letting the state variables correspond to features of the examples, and the
actions correspond to classes. Typically, classification tasks assume a small
set of discrete classes to be assigned. We do not require quantization of the
state space or the action space, but instead use interpolation so that any action
can be produced by the k-NN classifier.

In order to know the correct action to store with each state, we must at least
wait until we have determined the outcome of a game before deciding how
to label each step. (One example can be added at each time step). However,
even after a successful game where E evades P , we cannot be sure that the
actions at every time step were the correct ones; in general, they were not.

To construct an initial database of instances, the simulator generated actions
randomly until E evaded P for a complete game. The corresponding state-
action pairs for that engagement were then stored. At that point, k-NN was
used for future games. States were passed by the simulator to a classifier which
searched the database for the k nearest neighbors and selected an action by
averaging the associated actions. If k-NN failed to produce a game that ended
in successful evasion, the game was replayed with the example generator ran-
domly selecting actions until play ended in evasion. Once evasion occurred,
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the corresponding sequence of states and actions (i.e., the complete game)
was stored in the database.

Evasion usually occurred after 20 time steps since it was rare in the lazy
learner that the pursuers’ speeds dropped below the threshold. Thus a stored
game typically consisted of 20 state-action pairs. Our implementation uses
Euclidean distance to find the k nearest neighbors and the arithmetic mean of
their control values to determine the appropriate actions. Distance is computed
as follows:

dist(state; instance) =
s X
8attrib

(stateattrib � instanceattrib)2 (4)

Then the nearest neighbor is determined simply as

nn = arg min
8instance

fdist(state; instance)g (5)

If E fails to evade when using the stored instances, we reset the game to the
starting position and generate actions randomly until E succeeds. We also
generate random actions with probability 0.01 regardless of performance. The
resulting set of examples is added to the database.

For the initial experiments using k-nearest neighbors, we varied k between
1 and 5 and determined that k = 1 yielded the best performance. (This was
not completely surprising in that averaging control values with k > 1 tended
to “cancel out” values that were extreme. For example, if three instances
indicated turns of 90 degrees left, 5 degrees right, and 85 degrees right, the
selected action would have been no turn. Of course, we are averaging “cyclic”
values where, for example, 359 degrees is close to 1 degree. Improving the
averaging process might enable k > 1 to perform better.) Examples consisted
of randomly generated games that resulted in success for E; thus we could
assume that at least some of E’s actions were correct. (In random games,
every action taken by E is random; the database is not checked for nearby
neighbors.)

4.3. GA for evasive maneuvers

Grefenstette, et al. demonstrated that genetic algorithms perform well in
solving the single pursuer game. Typically, GAs use rules called classifiers,
which are simple structures in which terms in the antecedent and the con-
sequent are represented as binary attributes (Booker, Goldberg and Holland
1989; Holland 1975). The knowledge for the evasive maneuvers problem
requires rules in which the terms have numeric values; we therefore modi-
fied the standard GA representation and operators for this problem, using a
formulation similar to (Grefenstette et al. 1990).
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We call a set of rules a plan. For the GA, each plan consists of 20 rules
with the general form:

IF low1 � state1 � high1 ^ : : : ^ lown � staten � high
n

THEN action1; : : : ; actionm

Each clause in the antecedant compares a state variable to a lower and upper
bound. “Don’t care” conditions can be generated by setting the corresponding
range to be maximally general. To map this rule form into a chromosome for
the GA, we store each of the attribute bounds followed by each action. For
example, suppose we have the following rule (for the single pursuer problem):

IF 300 � speed � 350 ^

25 � previous turn � 90 ^

3 � clock � 10 ^

875 � pursuer speed � 950 ^

8 � pursuer bearing � 10 ^

180 � pursuer heading � 270 ^

300 � pursuer range � 400

THEN turn = 45

The chromosome corresponding to this rule would be:

[300 350 25 90 3 10 875 950 8 10 180 270 300 400 45]

Associated with each rule is a rule strength, and associated with each plan
is a plan fitness. A population may contain up to fifty plans, all of which
compete against each other in the GA system. Strength and fitness values,
described below, determine the winners of the competition.

Initially, all rules are maximally general. As a result, all rules will match
all states, and one rule will be selected with uniform probability. Following
each training game, the rules that fired are generalized or specialized by the
GA, using hill-climbing to modify the upper and lower limits of the tests for
each state variable as follows:

LBi = LBi + �(statei � LBi) (6)

UBi = UBi � �(UBi � statei) (7)

where LBi and UBi are the lower and upper bounds, respectively, of the rule
that fired for statei and � is the learning rate. If the current state is within
the bounds of the predicate, the bounds shift closer to the state based on the
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learning rate (� = 0:1 for this study). On the other hand, if the state is outside
the bounds, only the nearer bound is adjusted by shifting it toward the value
statei. Following a game the strengths of the rules that fired are updated based
on the payoff received from the game (the same payoff used in Q-learning).

Given the payoff function, the strength for each rule that fired in a game is
updated using the profit sharing plan (Grefenstette 1988) as follows:

�(t) = (1� c)�(t� 1) + c � (8)

�(t) = (1� c)�(t � 1) + c(�(t)� �) (9)

strength(t) = �(t)� �(t) (10)

where c is the profit sharing rate (c = 0:01 for our experiments), � is the
payoff received, � is an estimate of the mean strength of a rule, and � is an
estimate of the variance of rule strength. Plan fitness is calculated by running
each plan against a set of randomly generated games, and computing the mean
payoff for the set of tests. During testing, the plan with the highest fitness is
used to control E.

The heart of the learning algorithm lies in the application of two genetic
operators: mutation and crossover. Rules within a plan are selected for muta-
tion using fitness proportional selection (Goldberg 1989). Namely, probability
of selection is determined as

Pr(r) =
strength

r
(t)X

8s2rules
strength

s
(t)

(11)

where rules is the set of rules in a plan and r is the rule of interest. Probability
of selection for plans is determined similarly using plan fitness rather than rule
strength. For more details of the implementation, see (Sheppard and Salzberg
1993).

4.4. Results

For each of the algorithms and for both variations of the evasive maneuvers
game, we ran ten experiments. To produce learning curves, we combined the
results of the ten experiments by averaging the algorithm’s performance at
regular intervals. We estimated the accuracy of each algorithm by testing the
results of training on 100 randomly generated games.

The results of the Q-learning experiments were encouraging and led to
the next phase of our study in which we applied a traditional lazy learning
method, k-nearest neighbors (k-NN), to the evasive maneuvers task. When
we found that k-NN did not work well, we considered an eager learning
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Figure 2. Performance of Q-learning on one- and two-player pursuit games.

algorithm, the genetic algorithm. This choice was motivated by the previous
work by Grefenstette et al. which indicated the GA was capable of solving
this type of task. In fact, we were able to replicate those results for the one-
pursuer problem and scale up the GA so that it still worked quite well for the
two-pursuer game.

4.4.1. Performance of lazy Q-learning
In the one-pursuer task, Q-learning did extremely well initially (Figure 2),
reaching 80% evasion within the first 250 games, but then performance flat-
tened out. Peak performance (when the experiments were stopped) was about
90%. There was an apparent plateau between 250 games and 1500 games
where performance remained in the range 80%–85%. Then performance
jumped to another plateau at 90% for the remainder of the experiment.
Q-learning’s performance on the two-pursuer task was also encouraging. It

reached 60% evasion within 250 games and continued to improve until reach-
ing a plateau at 80%. This plateau was maintained throughout the remainder
of the experiment. Since our implementation of Q-learning uses a form of
lazy-learning, these results led us to believe it might be possible to design a
more traditional lazy method (i.e., k-NN) to solve the evasion task. At first,
however, our hypothesis was not supported, as we see in the next section.

4.4.2. Performance of k-NN
Figure 3 shows how well k-NN performed on the two versions of the evasive
maneuvers game as the number of training examples (and games) increased.
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Figure 3. Performance of k-NN on one- and two-player pursuit games.

This figure compares the performance on the two problems with respect to
the number of games stored, where a game contains up to 20 state-action
pairs.

These experiments indicate that the problem of escaping from a single
pursuer is relatively easy to solve.K-NN developed a set of examples that was
95% successful after storing approximately 1,500 games, and it eventually
reached almost perfect performance. The distance between P and E at the
start of the game guarantees that escape is always possible. However, the
results were disappointing when E was given the task of learning how to
escape from two pursuers. In fact, the lazy learning approach had difficulty
achieving a level of performance above 45%. This demonstrates that the
two-pursuer problem is significantly more difficult for k-NN.

One possible reason fork-NN’s poor performance on the two-pursuer task is
presence of irrelevant attributes, which is known to cause problems for nearest
neighbor algorithms (Aha 1992; Salzberg 1991). We experimented with a
method similar to stepwise forward selection (Devijver and Kittler 1982)
to determine the set of relevant attributes. However, determining relevant
attributes in a dynamic environment is difficult for the same reason that
determining good examples is difficult: we do not know which attributes to
use until many successful examples have been generated.

Another possible reason for the poor performance of k-NN on the two
pursuer task is the size of the search space. For the one-pursuer problem, the
state space contains �7:5 � 1015 points, whereas for two-pursuer evasion,
the state space has �2:9� 1033 points. The one-pursuer game showed good
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Figure 4. Performance of the genetic algorithm on one- and two-player pursuit games.

performance after 250 games; to achieve similar coverage of the state space
in the two-pursuer game would require roughly 2:7� 1021 games (assuming
similar distributions of games in the training data).

But the most likely reason for k-NN’s troubles, we concluded, was that
we were generating bad examples in the early phases of the game. As stated
above, a lazy learner needs to have the “correct” action, or something close
to it, stored with almost every state in memory. Our strategy for collecting
examples was to play random games at first, and to store games in which E
succeeded in escaping. However, many of the actions taken in these random
games will be incorrect. E might escape because of one or two particularly
good actions, but a game lasts for 20 time steps, and all 20 state-action pairs
are stored. Since our lazy learning approach had no way (at first – see section
5.2) to throw away examples, if it collected many bad examples it could get
stuck forever at a low level of performance.

4.4.3. Performance of the GA
We show the results of the GA experiments in Figure 4. As with k-NN, the
GA performs well when faced with one pursuer. In fact, it achieves near
perfect performance after 15,000 games and very good performance (above
90%) after only 5,000 games. The number of games is somewhat inflated
for the GA because it evaluates 50 plans during each generation, thus we
counted one generation as 50 games. In fact, the simulation ran for only 500
generations (i.e., 25,000 games) in these experiments.
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Figure 5. Sample games where E successfully evades.

The most striking difference in performance between k-NN and the genetic
algorithm is that the GA learned excellent strategies for the two-pursuer
problem, while nearest neighbor did not. Q-learning’s performance, though
much better than k-NN, is still inferior to the GA. Indeed, the GA achieved
above 90% success after 16,000 games (320 generations) and its success rate
continued to improve until it reached approximately 95%.

4.4.4. Comparing one- and two-pursuer evasion
Figure 5a shows a sample game in which E evades a single pursuer, which
gives some intuition of the strategy that E had to learn. Essentially, E just
keeps turning sharply so that P will be unable to match its changes of direc-
tion. Although all three algorithms did well on this task, a closer examination
of the results reveals some interesting differences.
K-NN eventually reached a successful evasion rate of 97%–98%, and it

reached 93% evasion after only 500 games. This was superior to Q-learning’s
asymptotic performance, and k-NN performed better than the GA through
250 games. Of course, the GA eventually achieved near perfect performance.
Q-learning also learned very rapidly in the beginning, exceeding the GA’s
ability through the first 150 games, but then its learning slowed considerably.
In fact, at the point the GA was performing nearly perfectly, Q-learning’s
performance was only around 85%. After twice as many games as the GA,
Q-learning (now achieving 91% evasion) was still performing considerably
poorer than both the GA and k-NN.

aireda13.tex; 28/05/1997; 13:01; v.5; p.18



A TEACHING STRATEGY FOR MEMORY-BASED CONTROL 361

Table 1. Comparing learning for the evasive maneuvers task at
convergence.

Algorithm One Pursuer Two Pursuers

k-NN 96.9% 42.3%
Q-learning 93.3% 81.7%
GA 99.6% 94.5%

Table 1 shows the results of comparing the three algorithms on the two
evasion tasks at convergence. We considered the algorithms to have converged
when they showed no improvement through 500 games (for k-NN and Q-
learning) or through 100 generations (for the GA). Recognizing the difficulty
of the two-pursuer task (relative to the one-pursuer task), we now see profound
differences in the performance of the three approaches. (See Figure 5b for
a sample game where E evades two pursuers.) As before, the GA started
slowly, being outperformed by both k-NN and Q-learning. After about 3,000
games (60 generations), the GA began to improve rapidly, passing k-NN
almost immediately, and catchingQ-learning after an additional 5,000 games
(100 generations). The end results show the GA surpassing both Q-learning
(by a margin of 11%) and k-NN (by a margin of 52%). The more striking
result, though, is the poor performance of k-NN for the two-pursuer game.
We next set out to improve this figure.

5. Combining the GA with Lazy Learning

Initially, we were surprised with k-NN’s performance on the two-pursuer
task. In an attempt to improve its performance, we considered how to provide
“good” examples to k-NN, based on our hypothesis that the primary cause of
its poor performance is the poor quality of its training experiences. For lazy
learning to work effectively on control tasks, the stored examples must have
a high probability of being good ones; i.e., the action associated with a stored
state should be correct or nearly correct. Because of this credit assignment
problem, and because of the difficulty of the tasks we designed, initial training
is very difficult for a lazy learner. In contrast, a GA initially searches a wide
variety of solutions, and for the problems we studied tends to learn rapidly
in the early stages. These observations suggested the two-phase approach
that we adopted, in which we first trained a GA, and then used it to provide
examplars to bootstrap k-NN.
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algorithm GLL;
init population;
do

run genetic algorithm; /* Run the GA for one generation */
perf = select best plan; /* Determine performance of GA */
if perf � � /* Evaluate performance against � = 0; 50; 90 */

do i = 1; n /* For our experiments n = 100 */
evade = evaluate best; /* Determine if best plan from GA evades */
if evade

store examples; /* Stores up to 20 examples */
evaluate lazy; /* Test on 100 games */

Figure 6. Pseudocode for GLL.

5.1. Bootstrapping nearest neighbor

Our bootstrapping idea requires that one algorithm train on its own for a
time, and then communicate what it has learned to a second algorithm. At
that point, the second algorithm takes over. Later, the first algorithm adds
additional examples. This alternation continues until the combined system
reaches some asymptotic limit. Because the GA learned much better for
the two-pursuer game, we selected it as the first learner, with k-NN second.
Details of the communication or “teaching” phase are given in Figure 6. Using
this approach, the examples continue to accumulate as the genetic algorithm
learns the task.

The results of training k-NN using the GA as the teacher are shown in
Figure 7. We call this system GLL because it first uses a GA and then uses
a lazy learning algorithm (i.e., k-NN). All points shown in the graph are the
averages of 10 trials.

The first threshold was set to 0%, which meant that the GA provided
examples to k-NN from the beginning of its own training. The second
threshold was set to 50% to permit the GA to achieve a level of success
approximately equal to the best performance of k-NN on its own. Thus only
plans that achieved at least 50% evasion were allowed to transmit examples
to k-NN. Finally, the threshold was set at 90% to limit examples for k-NN
to games in which a highly trained GA made the decisions about which
examples to store.

When � = 0%, GLL almost immediately reaches a level equal to the best
performance of k-NN on its own (around 45%). From there, it improves some-
what erratically but steadily until it reaches a performance of approximately
97% success. The figure shows performance plotted against the number of
examples stored. The number of examples stored here is higher than the
number of examples stored for k-NN alone. If we halt learning after 50,000
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Figure 7. Results of GA teaching k-NN.

examples (which is consistent with the earlier k-NN experiments), perfor-
mance would be in the 85% range, still an enormous improvement over
k-NN’s performance, but not better than the GA on its own.

When � = 50%, GLL starts performing at a very high level (above 70%)
and quickly exceeds 90% success. After 50,000 examples, GLL obtained
a success rate above 95%, with some individual trials (on random sets of
100 games) achieving 100% success. In addition, the learning curve is much
smoother, indicating that k-NN is probably not storing many “bad” examples.
This confirms in part our earlier hypothesis that k-NN’s fundamental problem
was the storage of bad examples. If it stores examples with bad actions, it will
take bad actions later, and its performance will continue to be poor whenever
a new state is similar to one of those bad examples.

Finally, with � = 90%, GLL’s performance was always superb, exceeding
the GA’s 90% success rate on its very first set of examples. GLL converged to
near-perfect performance with only 10,000 examples. One striking observa-
tion was that GLL performed better than the GA throughout its learning. For
example, when � = 0%, GLL achieved 50–80% success while the GA was
still only achieving 2–10% success. Further, GLL remained ahead of the GA
throughout training. Even when � = 90%, GLL achieved 98–100% evasion
while the GA was still only achieving around 95% evasion. Neither the GA
nor k-NN were able to obtain such a high success rate on their own, after any
number of trials.
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5.2. Reducing memory size

Our bootstrapping algorithm, GLL, performs well even when only a small
number of examples are provided by the GA, and it even outperforms its own
teacher (the GA) during training. But the amount of knowledge required for
the GA to perform well on the task was quite small – only 20 rules are stored
as a single plan. The number of examples used by GLL, though small in
comparison with k-NN, still requires significantly more space and time than
the rules in the GA. Consequently, we decided to take this study one step
further, and attempted to reduce the size of the memory store during the lazy
learning phase of GLL (Zhang 1992; Skalak 1994).

In the pattern recognition literature, e.g., in (Dasarathy 1991), algorithms
for reducing memory size are known as editing methods. However, because
lazy learning is not usually applied to control tasks, we were not able to find
any editing methods specifically tied to our type of problem. We therefore
modified a known editing algorithm for our problem, and call the resulting
system GLE (GA plus lazy learning plus editing).

GLL performs quite well as described above, and we would like to reduce
its memory requirements without significantly affecting performance. Early
work by Wilson (1972) showed that examples could be removed from a set
used for classification, and suggested that simply editing would frequently
improve classification accuracy (in the same way that pruning improves
decision trees (Mingers 1989)). Wilson’s algorithm classifies each example in
a data set with its own k nearest neighbors. Those points that are incorrectly
classified are deleted from the example set, the idea being that such points
probably represent noise. Tomek (1976) modified this approach by taking
a sample (> 1) of the data and classifying the sample with the remaining
examples. Editing then proceeds using Wilson’s approach. Ritter et al. (1975)
described another editing method, which differs from Wilson in that points
that are correctly classified are discarded. The Ritter method, which is similar
to Hart’s (1968), basically keeps only points near the boundaries between
classes, and eliminates examples that are in the midst of a homogenous
region.

The editing approach we took combined the editing procedure of Ritter et
al. and the sampling idea of Tomek (Devijver 1986). We began by generating
ten example sets with � = 90 where each set consisted of a single set of
examples from the GA. We then selected the set with the best performance
on 10,000 test games, which in this case obtained nearly perfect accuracy
with 1,700 examples. Next we edited the memory base by classifying each
example using all other examples in the set. For this phase, we used the
five nearest neighbors. If a point was correctly classified, we deleted it with
probability 0.25. (This probability was selected arbitrarily, and was used to
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Figure 8. Results of editing examples provided by the genetic algorithm for k-NN.

show how performance changed as editing occurred.) Prior to editing and
after each pass through the data, the example set was tested using 1-NN on
10,000 random games.

One complication in “classifying” the points for editing was that the class
was actually a three-dimensional vector of three different actions, two of
which were real-valued (turn angle and speed) and one of which was binary
(emitting smoke). It was clear that an exact match would be too strict a
constraint. Therefore we specified a range around each 3-vector within which
the system would consider two “classes” to be the same. In addition, the three
values were normalized to equalize their effect on this range measurement.

The results of running GLE on the 1,700 examples are summarized in
Figure 8.

A logarithmic scale is used on the x-axis to highlight the fact that accuracy
decreased very slowly until almost all the examples were edited. When read
from right to left, the graph shows how accuracy decreases as the number
of examples decreases. With as few as 11 examples, GLE achieved better
than 80% evasion, which is substantially better than the best ever achieved
by k-NN alone. With 21 examples (comparable in size to a plan in the GA),
GLE achieved 86% evasion. Performance remained at a high level (greater
than 90% success) with only 66 examples. Thus it is clear that a small,
well chosen set of examples can yield excellent performance on this difficult
task. Furthermore, such a small memory base guarantees that the on-line
performance of k-NN will be quite fast.
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6. Discussion and Conclusions

This study considered approaches to developing strategies for learning to play
differential games. In particular, we examined several methods for learning
evasion strategies in pursuit games. Optimal strategies for differential games
are determined by solving a system of differential equations; for even simple
games, the resulting strategies are complex. Many games do not have known
closed-form solutions. We illustrated the complexity of differential strategies
with the pursuit game.

These experiments demonstrated the ability of three algorithms (GA, k-
NN, and lazy Q-learning) to perform well on a simple task with one pursuer,
and then show how increasing the difficulty by adding a second pursuer
adversely affects two of the algorithms (k-NN and lazy Q-learning). K-NN,
in particular, had considerable difficulty scaling up to the more complex task.
Thus we were left with the question of whether it is even possible for lazy
learning techniques such as k-nearest neighbor to perform well on problems
of this type. This motivated the second phase of the study, in which we used
a GA-based teacher to train k-NN for the two-pursuer task.

The experiments reported here show that it is possible to use genetic
algorithms in conjunction with lazy learning to produce agents that perform
well on difficult delayed reinforcement learning problems. The experiments
also demonstrate clearly the power of having a teacher or other source of
good examples for lazy learning methods. For complex control tasks, such
a teacher is probably a necessary component of any lazy or memory-based
method. Our experiments show how a genetic algorithm can be used to learn
plans or control laws in complex domains, and then to train a lazy learner by
using its learned rules to generate good examples. The result was a hybrid
system that outperformed both of its “parent” systems. This hybrid approach
can of course be applied in many ways; for example, standard Q-learning is
notoriously slow to converge, and approaches such as ours could be used to
accelerate it.

One surprising result was that the performance of GLL outperformed the
GA at the same point in training. We hypothesize this was because only
the best examples of a given generation were passed to k-NN, rather than
all of the experiences of the GA during that generation. The fact that GLL
outperformed GA right away indicates that perhaps it could have been used
to teach the GA, instead of the other way around.

In addition, we found that editing the example set produced a relatively
small set of examples that still play the game extremely well. Again, this
makes sense since editing served to identify the strongest examples in the
database, given that poor examples were still likely to be included in the early
stages of learning. It might be possible with careful editing to reduce the
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size of memory even further. This question is related to theoretical work by
Salzberg et al. (1991) that studies the question of how to find a minimal-size
training set through the use of a “helpful teacher,” which explicitly provides
very good examples. Such a helpful teacher is similar to the oracle used by
Clouse and Utgoff (1992) except that it provides the theoretically minimal
number of examples required for learning.

7. Next Steps

Our current implementation takes only the first step towards a truly combined
learning system in which the two learners would assist each other in learning
the task. Our approach uses one algorithm to start the learning process and
hands off the results of the first algorithm to a second algorithm to continue
learning the task. We envision a more general architecture in which different
learning algorithms take turns learning, depending on which one is learning
most effectively at any given time. Such an architecture should expand the
capabilities of learning algorithms as they tackle increasingly difficult control
problems.

One possible future direction is to use genetic operators (or other methods)
directly on the examples in a lazy learning approach. That is, rather than
producing rules, we can begin with a set of examples and mutate those
directly using genetic operators to evolve a database (i.e., example set) to
perform the task. One such approach might be to examine the frequency with
which the examples are used to successfully evade and then select the n most
frequently used examples. These examples can then be converted into a plan
for the GA by specifying a range about each attribute in each example. This
results in a new set of rules which is sufficient to construct a plan, and the
new plan can be seeded into the population for the GA to use.

The general problem of determining optimal strategies in differential games
is complex. Solving the games involves solving a system of differential
equations. Learning solutions to the games involves simultaneous learning by
all of the players. This means that the players must learn in a highly dynamic
environment. Rather than a player learning to counter a single, constant
strategy, the player must adapt its strategy to the changing strategy of the
opponent. In such an environment, one must avoid prematurely converging
on a fixed solution.

To study these problems, we are building an environment for analyzing
learning algorithms in multi-agent environments. Specifically, we wish to
explore the effects on sequential decision making when several agents are
learning at the same time. We are exploring the ability of an agent to apply
one approach to learn evasion tactics while another agent is using the same
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or perhaps a different approach to develop pursuit strategies. We will also
pit a strategy against itself and study whether a single learning algorithm can
develop multiple solutions for the same reactive control task.
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