UNCERTAINTY COMPUTATIONS IN MODEL-BASED DIAGNOSTICS

John W. Sheppard and William R. Simpson
ARINC Research Corporation
2551 Riva Road
Annapolis, Maryland 21401

ABSTRACT

A number of model-based diagnostic reasoning systems
have been developed that are based on an inferential
approach to fault isolation where the system model provides
the diagnostic rules of inference. Field applications of
reasoning - systems have revealed that model-based
techniques are preferable to traditional diagnosis methods,
and in some cases these systems are performing at or above
the level of the system experts. There exists a class of
problems for which the inferential process is inadequate and
must be supplemented with forms of reasoning under
- uncertainty. This class of problems is typified by uncertain
test outcomes, inadequate technician skill levels to test and
interpret the results, and even uncertain elements in the
model.: These difficulties are amplified in that, even in a
nominally well-behaved problem, small portions involving
these shortcomings dictate that the entire problem be
treated: as a reasoning-under-uncertainty or evidence-
gathering problem.

A number of paradigms exist for reasoning with
knowledge bases that are incomplete, inaccurate, or
conflicting. In this paper, we describe an approach to
reasoning under uncertainty that combines several basic
computational procedures of artificial intelligence with
. information modeling approaches used in the System
Testability and Maintenance Program (STAMP®). These
techniques ‘have been incorporated into the Portable
Interactive Troubleshooter (POINTER™) to provide a
model-based diagnostic reasoning system that handles
inaccurate, incomplete, and conflicting data.

We briefly describe the computational methods used in
uncertainty data gathering (modified fuzzy logic), evidence
accumulation (modified Dempster-Shafer), and termination
of the evidence-gathering process (back-propagation neural
network) as they are implemented in the POINTER system.

INTRODUCTION

The 1980s saw a revolution in the approach to field
maintenance for complex systems. The testability and
diagnosis techniques are now being placed deeper and
deeper into the system design itself. Even with the
increased emphasis on testability and diagnosis, there still
exist shortcomings in the field maintenance process.
ARINC developed two tools to assist in designing testable
systems and in streamlining the maintenance process—

233

STAMP and POINTER. STAMP is a model-based
reasoning system that can conduct testability analyses and
develop fault-isolation strategies to improve system
maintenance. The information modeling approach
incorporated by STAMP permits analysis of a wide range of
systems, including digital, analog, digital/analog hybrid,
electrohydraulic, and electromechanical. STAMP has been
used to analyze systems in various stages of the acquisition
process (e.g., preliminary design, prototype, redesign, and
operational). Several of these applications have included
analyses of built-in test (BIT), and some have used built-in
test equipment (BITE) and other forms of automatic and
semiautomatic test equipment. In addition, the particular
levels of analysis have varied from macro (full system) to
micro (piece-part), with several levels in between—for
example, line and shop replaceable units (LRUs and SRUs)
or weapon and shop replaceable assemblies (WRAs and
SRAs).

For many systems analyzed using STAMP, significant
improvements have been achieved, and for some systems,
order-of-magnitude improvements have been achieved [1, 2].
The software is mature and has been applied to more than
200 systems. It is currently being used by ARINC in several
applications. POINTER, which was derived from STAMP,
uses the system model generated in STAMP for its
knowledge base. With the system model, POINTER
interactively presents test material and guides the
maintenance process through diagnosis and repair. At each
step, POINTER examines the current system state to
determine the next best test to perform. The basic
processes of modeling and knowledge-base development, as
well as the testability and fault-isolation output, are
described in depth in the literature [3-5] and are not
discussed in this paper. .

The process of diagnosing complex systems requires
determining the tests available, how to perform the tests, the
appropriate order for sequencing tests, and the conclusions
to be drawn from the test outcomes. In many diagnostic
systems, test outcomes are assumed to be 100% certain, and
diagnosis proceeds through a partitioning of the answer set
into feasible and infeasible conclusions. Frequently, this
approach does not adequately solve the problem because of
uncertainty in the testing process.

In the artificial intelligence community, problems in
which information available for reasoning is incomplete or
uncertain are addressed using techniques referred to as
“reasoning under uncertainty,” and several approaches exist.

CH2941-3/91/0000-0233 $1.00 ©1991 |IEEE

Some of the basic formulations of the problem use certainty
factors, Bayesian probability, and weighted causal networks.
In addition, there are various forms of logic that allow some
aspects of uncertainty to be considered, such as predicate
calculus, multivalued logics, modal logics, nonmonotonic
logics, and intuitional logics. As part of its 1990 internal
research and development program, the ARINC Advanced
Research and Development Group incorporated an
approach to “reasoning under uncertainty” into the
POINTER system. The approach is based on a modified
form of Dempster-Shafer evidential reasoning, which we
describe in this paper [6-10]. Three areas of research in
particular have influenced our approach to uncertainty:
fuzzy logic [11-12], the theory of evidence [6-7], and neural
networks [10, 13].

FUZZY LOGIC

In traditional set theory, some element either does or
does not belong to a given set. More formally, given a set
S, a membership function p, and some element x, we say p:
domain(x) - {0,1} where

1, xeS

p(x)={0;x ¢S

Unfortunately, traditional set theory is usually too limiting
in its application to real-world problems. In the area of
fault diagnosis, we traditionally begin with a set theoretic
approach in which we attempt to partition the conclusions
into two sets: feasible and infeasible. We also tend to
partition the tests into two sets: failed and passed. But
frequently, the division between these pairs of sets is not
clear. We therefore need the notion of a “fuzzy set.” In
fuzzy set theory, we replace the traditional set theoretic
membership function with one where we say p: domain(x)
- [0,1]. Thus, 0 < p(x) < 1, and a fuzzy set describes a
class that allows the possibility of partial membership in a
set.

Fuzzy logic proceeds to develop operations to be
performed on fuzzy sets analogous to the operations of
traditional set theory. For example, the union and
intersection operations are defined as follows:

Let S, and S, be two fuzzy sets. Then
us' us, T max(usl’u%), and

Bs,ng, © min(l‘s"llgz)-

These fuzzy operators provide a means for reasoning under
uncertainty with fuzzy sets. We decided to use these
concepts at the user interface and to apply other techniques
for actually reasoning with the fuzzy values provided by
the user.

" The first step in incorporating uncertainty calculations
involved determining an approach for confidence values to
be assigned to a test outcome. Typically, systems
incorporating uncertainty draw on the user’s familiarity with
probability theory and ask for a confidence value such that
0 < Confidence < 1. For our application domain (fault
diagnosis), we believed that this requirement may be
unreasonable for the average user. Therefore, we developed
an alternative approach in which we defined a mapping from
a discrete set of English qualifiers to the interval mentioned
above, i.e., p: Q - [0,1], where p is the mapping and Q is
the set of qualifiers.

The actual implementation allows up to five qualifiers
to be associated with a failed test and up to five qualifiers
to be associated with a passed test. In addition, a base
confidence value may be assigned to each test outcome,
defining an upper bound on the value of the certainty that
the test outcome will ever have. Thus,

0 s p,(x) s pass_base, and
0 < ux) < fail_base,

where pass_base is the base confidence for a passed test,
and fail_base is the base confidence for a failed test. The
qualifiers are specified in decreasing order of confidence
(e.g., <Certain, Somewhat Certain, Marginal, Somewhat
Uncertain, Uncertain>). This may be represented as an

- array of qualifiers:

234

Q = <qb ooy qn>’

The corresponding confidence value associated with a
qualifier is then computed as

(basc—%(n—i)

Confidence
n-1

+ ’

0=

where Confidence is the confidence value, base is the
appropriate base confidence, n is the number of qualifiers
in Q, and i is the index of the selected qualifier. This form
of user interface has proved to be more acceptable than
those forms in which the user provides the outcome
confidences.

DEMPSTER-SHAFER EVIDENTIAL REASONING

Having a method for determining the user-supplied
confidence associated with a particular test outcome, we
must use that confidence in the inference process to
determine what has failed. Qur approach consists of five
steps:

1. Select a test to perform.
2. Obtain the test outcome and confidence.

3. Draw inferences based on the test outcome.

4. Derive hypotheses.

5. Determine if sufficient evidence has been gathered
to draw a conclusion.

Selecting a Test

The process of selecting a test to perform is conducted
in two phases, which follow an entropy-based approach and
an evidence-based approach, respectively. During the first
phase, tests are selected under the assumption that tests
provide perfect information, even though they may not. To
choose a test, we use information theory to determine the
amount of information to be gained by each test,
independent of test outcome. The amount of information
is further modified by a cost parameter. From information
theory [14], we know that the expected value of information
gained by an information source (called the information
entropy) can be computed from the following equation.

H(O) = Y -Pr(0) log, Pr(0),
i=1

where H is the information entropy, O is the set of possiblc
outcomes, O; is the ith member of set O, and m is the
number of possible outcomes in O. In the case where there
are only two outcomes (pass or fail), this reduces to

H(r) = -Pr(t=pass) log, Pr(¢=pass)
- - Pr(t=fail) ~10ng Pr(t=fail).

If we assume that the probability that a test will pass
or fail is 0.5, then we find that the problem of computing
information entropy is reduced to the following:

H(® = -05 log, 0.5 - 0.5 log, 0.5
=05 +05 =

Using a dependency-based formulation, this means that
we can compute the information gained by counting test
inferences. We can ensure that we obtain the most robust
information by choosmg the test with the highest minimum

value, given by

I¢) = max{mm {
j
, and

g
b,{—{

Note that we assume a test depends on itself.

Y85, Zl: 8
£

i=1

1; if ¢, depends on ¢,

0; othetmse

1;if ¢ depends on tl
0 ; otherwise

235

For many applications, this approach to selecting a test
is too limited. In particular, we are interested in optimizing
the diagnostic process according to some cost criterion (or
set of cost criteria). Our approach is to combine whatever
cost criteria are specified into a single test weight that is
then applied to the information count of the corresponding
test. Test costs in general do not differ on the basis of
expected outcome; however, one cost weight may be the test
base confidence, which may differ for pass and fail
outcomes. This fact results in a minor modification to the
preceding equation. Using a cost weight, the test choice
algorithm becomes choosing a test such that

!

where wf is the cost apphed to test j being passed, and w/
is the cost applied to test j being failed.

When a value (i.e., pass, fail, unavailable, unneeded)
has been determined for each test in the model, then the
test-choice process passes into the second phase. At this
point, a fault hypothesis, H, is determined for the system
based on the testing performed (see Deriving Hypotheses),
and this hypothesis is used as the basis for the test choice.
This process considers four alternatives:

Splitting multiple hypotheses

Increasing support for a single hypothesis
Decreasing support for a single hypothesis
Arbitrarily selecting a test

el .

Any one of these alternatives can fail to select a test for
various reasons. The most important reason, however, is
that we impose a limit on the number of times a test can be
chosen. Once that limit is exceeded, we remove the test
from consideration and perform the selection algorithm on
the remaining tests. If no tests are available to meet the
requirements of a particular option, then the next option is
considered.

Splitting Multiple Hypotheses. When two or more
hypotheses are being considered, POINTER attempts to
choose a test that will support some of the hypotheses and
deny other hypotheses. The approach taken is similar to the
entropy-based approach described for the first phase. The
primary difference is that dependency relationships between
tests and conclusions are considered rather than the
relationships between tests and tests. A test is chosen such

e)

where E(f) is the expected evidence to be gained by
performing test ¢, and, given that &, is the ith member of the
hypothesis set, H, :

P2 Ebu

i=1

1 _ l;if{,.dependsonh,
% _{ 0 ; otherwise » and
82 = O;iftjdependsonh,.'

y 1 ; otherwise

Increasing Support for a Single Hypothesis. When
only one hypothesis exists (or multiple hypotheses are in an
ambiguity group) and the first alternative fails to select a
test, then POINTER attempts to identify a test that will
increase the support for the current hypothesis. For this
alternative, POINTER selects a test such that

E(r) = max {Zﬁi;} ,
J is1
where

1; if ¢, depends on c; and H .

& = 0 ; otherwise

ij

{

Decreasing Support for a Single Hypothesis. If
POINTER does not choose a test from either of the first
two alternatives, then it is possible that the current
hypothesis is a poor one. On the other hand, it is possible
to improve upon the current hypothesis if we select a test
that, should it fail, decreases support for the hypothesis. So
we choose a test that considers as many conclusions in the
system as possible other than the current hypothesis. In
other words, we choose a test such that

E(f) = max {ia;}} ,
J i=1

where

1 ; if ¢; depends on c; but not H '

3d =
0 ; otherwise

ij

{

Arbitrary Test Selection. Finally, if none of the
procedures discussed results in a test being chosen,
POINTER picks the last test in the list of available tests to
be performed. This results in some test being chosen so
that additional evidence can be gathered. If this option fails,
then there are no tests left to be evaluated, and the user is
offered the option of choosing a test or terminating.

Obtaining a Test Outcome and Confidence

At this point, POINTER presents the test for
evaluation, and the test is then performed. In automatic
testing, the test confidence may be provided by the program
run by the ATE, or it may be defaulted to the base
confidence. If field maintenance is being conducted, then

236

the technician is responsible for performing the test and
providing the result. The method for specifying confidence
in the outcome for manual testing is discussed under Fuzzy
Logic.

Drawing Inferences Based on the Test Outcome

In the section on fuzzy logic, we discussed the notion
of a test confidence. The test confidence is intended to be
a measure of the tester’s confidence that the outcome
obtained is correct. For example, a 0.9 confidence in a test
outcome means that we believe there is a 90% chance that
the test outcome is correct. Because we associate
confidences with both pass and fail outcomes, it may be
possible that we will have a 90% confidence in a passed test
but only an 80% confidence in a failed test. Thus, the two
confidences are not necessarily complementary or
equivalent. A 50% confidence in any test outcome is
considered to be a totally uncertain outcome.

These confidence values can be used to perform a
statistical inference procedure on the set of conclusions in
the model. The Dempster-Shafer approach to reasoning
with uncertain data has its roots in Bayesian inference. If
we assume we know the probability that each component
may fail (Pr[c;], which is also the probability that each
conclusion will be drawn) and the probability that some
symptom will occur with the corresponding failure
(Pr[symptom|c]), then we can apply Baye’s rule to
determine the probability that the component is indeed the
failure, given the symptoms, as follows:

Prlc] Prfs|c]

Prlc,ls] = ————,
Y Prc,] Prisic,]
I3

where ¢; is the ith possible conclusion in the set of
conclusions and s is the combination of all evidence
gathered so far (i.e., the set of symptoms known).

Shafer added the concept of uncertainty to the
Bayesian approach, which resulted in applying two measures
to a conclusion—support and plausibility [6]. The evidence
generated by a test is assigned to each related conclusion as
either support evidence or denial evidence. A test supports
a conclusion when the test outcome is consistent with the
component that is concluded to be the fault. A test denies
a conclusion when the test outcome is not consistent with
the component that is concluded to be the fault. Support
functions allocate evidence gathered by a test measurement
to a set of one or more conclusions. Each test has two
support functions, one for each type of evidence (support
and denial). These functions identify the conclusions related
to a given test and allocate the evidence provided by that
test. The values for Support and Plausibility define a
credibility interval for belief in some conclusion and have
the property Support; < Prlc]] < Plausibility,. Further, both
support and plausibility are limited to the closed interval

[0,1]. Support represents the degree to which the evidence
supports the conclusion, and plausibility represents the
degree to which the evidence fails to refute the conclusion.
It should also be clear that, because Support; < Plausibility,,
Support, + (1 - Plausibility) < 1. (Note: Plausibility is
simply 1 - Denial, where Denial is given below.)

In determining the support and plausibility for a
conclusion, Shafer began with the confidence value. In
- determining the support for a conclusion, we find that a
piece of information may support multiple conclusions; thus
the evidence in support of these conclusions is distributed
over the set of supported conclusions. For our formulation,
we uniformly distribute the support that yields the following:

Confidence

Support; = IC.|
]

where C, is the set of conclusions supported by the evidence.
In addition, any evidence that denies a conclusion may deny
multiple conclusions. 'However, rather than distribute the
denial uniformly, we apply the full weight of denial on every
conclusion in the set. Thus,

Denial, = Confidence.

Note that, to attribute support or denial because of
some confidence in the connection between an information
source and conclusion, we may simply apply a weight to
these two expressions, yielding the following equations:

Confidence

, and
IC,|

3
Wi

Support; =

Deniali = w,." Confidence,

where w; is a weight indicating the amount of confidence we
have that a piece of evidence supports c;, and w;” is a weight
indicating the amount of confidence we have that a piece of
evidence denies c;.

Unfortunately, these calculations are not sufficient for
drawing inferences with multiple pieces of evidence. This
fact led to the development of the rule of combinations by
Dempster [7]. If we assume we have a probability mass for
a conclusion set associated with a single source of evidence,
,(C,), and a probability mass for another conclusion set
associated with a second single source of evidence, p,(C,),
then we can compute the probability mass associated with
the intersections of these two sets based on the two sources
of evidence as follows:

>
q .
1- E B(Cp 1y(CH

cne

Pl(Cl) Pz(CQ)

#,(C, ncy =

237

As tests are performed, Dempster’s rule is applied
iteratively rather than all at once, allowing evidence to be
accumulated serially, which in turn allows the diagnostic
process to be optimized. The actual implementation of
Dempster’s rule is performed in three steps. First, the
intersections of the two sets, C, and C,, are found. Next,
the two measures of evidence corresponding to these two
sets are combined, using a modification of Dempster’s rule.
Finally, the combined evidence is adjusted for each
proposition in the intersection to reflect the difference of the
evidence from the two original sets. Let K represent a
normalizing constant for Dempster’s rule, given simply as

K= Z B,(Cy) 1,(Cy .
ne

G

Then the first step in computing combined support is as
follows:

TSupport, = TSupport, (Support, + Uncertainty)
+ Support, (1 - Confidence),

where TSupport, is the accumulated support for ¢, for this
test, and Uncertainty is a measure of uncertainty
accumulated so far. Uncertainty is then updated with the
following:

Uncertainty: = Uncertainty 1 - Confidence IConﬁI?e nee

Also, in order to reduce the influence of conclusions with
very low support, we gradually reduce the support if
TSupport, is less than |C|™. This reduction is performed by
reducing the combined support by 25%.

A given fault-isolation problem is initialized to have
100% uncertainty with each answer, given no support and no
denial (i.e., 0% support and 100% plausibility). This is one
of many approaches that could have been used to begin
diagnosis. One possible alternative is to initialize the
support values based on the probability of failure given by
failure rate data. The problem with this approach is that
these probabilities may unduly weight the evidence-gathering
process such that - inconsistent conclusions are still
considered as hypotheses.

The Dempster-Shafer technique is not without flaws.
One of the greatest flaws in the technique lies in the way it
records total uncertainty (computed as above). If any test
is performed that provides any evidence in support of some
conclusion, then uncertainty is reduced—even in the event of
a conflict with known information! Ultimately, uncertainty
disappears altogether. This is not satisfactory, so we
included a new conclusion in our approach: the
unanticipated result. The unanticipated result is never
denied (ie., it always has a plausibility of 1.0), and it is
supported only when a test outcome is inconsistent (i.e.,
conflicts) with previous test outcomes. Thus, uncertainty

becomes a combination of Dempster-Shafer uncertainty and
the support for the unanticipated result.

To compute the support for the unanticipated result,
we need to choose a hypothesis. We discuss the process of
selecting a hypothesis in the next section. Given a
hypothesis H ¢ C* (a non-empty set of conclusions), a
conflict results when a test outcome denies all members of
H. The support for the unanticipated result (Support,) is
computed in two steps. First, the unanticipated result is
apportioned over the number of tests executed so that the

overall conflict is reduced by the number of tests. We
gradually reduce Support, as follows:

Support, = Support, T—;l s
where T is the number of tests performed so far. If a

conflict has resulted (from a test denying all conclusions in
H), Support, is updated to reflect this.

Conflicts K Confidence

Support, = Support, + T ,

where Conflicts is the number of times a conflict has
occurred.

The final values for support and plausibility are
calculated as follows:
Support, (1 - Support)

Y Support,
VeeC

Support, =

Denial; = Denial; + TDenial,, and

Denial,

Plausibility, = 1 -

where Denial; is the total denial for ¢; € C, and TDenial; is
the total denial accumulated from this test for c;.

Derive the Hypotheses

A key element in computing the evidential statistics is
the determination of a hypothesis. In order for tests to be
selected, we must consider the nature of the hypothesis to
determine if the set contains one or more elements. We
must also consider the effects of performing tests on the
change in confidence in the hypothesis. The new
conclusion—the unanticipated result—addresses the problem
of disappearing uncertainty and conflict management but
receives support only in the event a test denied all members
of a hypothesis set, H. Therefore, the problem now is to
construct this hypothesis set.

238

To choose conclusions for H, we first compute an
approximation for the Bayesian probability associated with
each conclusion. This result will also be used later in
determining if sufficient evidence has been gathered to
terminate fault isolation. Thus, we are defining a mapping,
p:<Support, Plausibility> - [0,1]:

Py = % (Plausibility, - Support) (1 - Plausibility, Support)
+ Support;.

Given this mapping, the first conclusion to be included
in H is simply the conclusion with the maximum value for p.
Let

Py = miax {p}.

Then we can define a threshold, 6, for determining if
additional conclusions should be included in H.

05 p, 5 Py <01
6=1 p, (04 +p);01<p <05,
09 p, ; Py 205

Any conclusion, c;,, such that p; > 6, results in ¢, being
included in H.

Determine if Sufficient Evidence Has Been Gathered to
Draw a Conclusion

The final step in the uncertainty approach incorporated
into POINTER involves examining the confidences in the
conclusions of the model and determining if a conclusion
can be drawn. We found that the termination problem [10]
was actually a pattern-recognition problem. Therefore, this
step was based on a neural network approach, which is not
considered a part of the Dempster-Shafer calculations.

NEURAL NETWORKS

Research in the field of neural networks has been
ongoing since the early 1950s. Much of the early work
attempted to combine research in neurobiology, psychology,
mathematics, and computer science to model cognitive
processes in the brain. The resulting models were structures
that were highly parallel and highly connected. These
“artificial neural networks” consist of many simple
processing elements. Each element has a set of inputs that
can be represented as a vector (or an array), X, of values.
Generally, each element also has a single output. The
connections between the elements in the network have
“strengths” associated with them, represented in the form of
a vector, W, of weights. Let x; € X be the ith input to the
current processing element. Let w; € W be the jth
connection weight between input x; and the processing

element. Then the output of the element is the weighted
sum of the inputs. This corresponds to the inner product of
the two vectors, X and W. Thus,

»-1
y= Ewl X
=

To control the activity of these neural processing
elements as signals pass through the network, certain
functions have been applied to the outputs of the elements.
As a result, the output of an element is determined by

n-1

Q=fp)=f [§w, x‘),

where Q is the activation function of the element. These
functions are referred to as activation functions because they
regulate the activity of the neurons (clements) in the
network, The particular activation function we used is the
logistic function because is simulates a threshold function
.and is differentiable:

1
~E w, % '
1+e'!

1 =
1+e”

fo) =

We selected the back-propagation neural network to
solve the termination problem. The back-propagation
network is called a mapping network because it solves
the following type of problem. Assume we have a
function, f, that maps a set of inputs, I, into a set of targets,
T (ie, f: I ~ T). Assume also that it is impossible to
present all instances of T for training (perhaps because I is
an infinite set). We want to learn f, using a subset of I,
which can then be used to generalize to all instances of L.

As a practical approach to the problem, we can choose
I, < I and the corresponding T, ¢ T. We will use these two
sets to learn the map f: I, ~ T, We then want to present
somei ¢ L;i €1, to f, as follows:

f.i-T.
This corresponds to the generalization described above.

The back-propagation neural network solves this
problem in the following way. A layered network is
constructed in which the first layer receives the input data,
and the last layer provides the output of the network. Zero
or more “hidden” layers are positioned between the input
and output layers. All of the nodes at a given layer are
connected to every node at the next higher layer.
Associated with each of these connections is a weight that
is initially set to random values. The process of training the
network involves modifying the weights so that the inputs
are transformed to the outputs as the signal is propagated.

The term “back propagation” comes from the learning
algorithm. The first time an input is passed through a

239

network, the output has a very low probability of being
correct. Back propagation involves computing an error
value corresponding to how much the actual output differs
from the expected output. The weights of the network are
then modified gradually, following the error surface defined
by the weight space down the gradient of the surface to a
local minimum. The idea is to reduce the error between the
actual and expected outputs, and when the network settles,
it should contain a solution to the mapping problem. '

The termination problem in POINTER was addressed
with a three-step solution. The first step uses the back-
propagation neural network we previously described [10].
This network was trained with data analyzed by 15 testability
“experts” and validated with an additional data set analyzed
by both the network and five testability experts. The test
revealed a 95% agreement between the network and the
experts.

In addition to the neural network, the activation values
of the network were kept, and trending analysis was
performed. If we consider Q(f) to be the activation value of
the network at time ¢, then we can consider a sequence of
activation values, Q(t), .., Q(f). If the values in this
sequence are such that

Q) < Q) s - < Q) < QE),

then it is clear no progress is being made toward finding an
answer. As a result, POINTER terminates fault isolation.
As a final termination criterion, given that the first two steps
fail to terminate the process, POINTER terminates fault
isolation in the event every test in the model has been
executed n times or has been labeled untestable or
unavailable. In this case, n may vary, depending on the base
confidences associated with each respective test.

EXAMPLE

As an example of how one might use this approach to
reasoning under uncertainty, we use the simple serial system
given in Figure 1.- For this example, we perform tests t, and
t; and assume that ¢, passes but ¢; fails. If this is all of the
testing we perform, we would find that components c, and
c; are ambiguous (i.e., at least one of these two components
is bad). Now suppose that ¢, has a 0.8 confidence associated
with it that it will pass. This results in the support and
plausibility values listed in the top third of Table 1. In
addition, if we assume that the confidence in t; failing is 0.9,
we have the support and plausibility values given in the
second third of Table 1.

To illustrate the-effect of conflict, suppose we retest ¢,
and the test passes with a confidence of 0.8. In this case, if
we assume that the current hypothesis is ¢, and ¢; (assume
t, is untestable), then we find that the test denies all
members of the hypothesis set H. Thus, we have a conflict.
This results in the support values rising for the unanticipated

t
¢ F—w ¢ 3 o | ¢ | s —RTOK

Figure 1. A Simple System for Example Purposes

Table 1. Evidential Values for Example

Component Support Plausibility Probability*

t, = Pass (confident 0.8)

¢ 0.00 0.20 0.037
c,/cs 0.16 1.00 0241
¢, 0.16 1.00 0.241
cs 0.16 1.00 0.241
RTOK 0.16 1.00 0.241
UR 0.00 1.00 0.000

t; = Fail (confidence 0.9)

¢ 0.13 0.60 0211
e,/cs 037 1.00 0362
¢ 0.03 0.55 0.142
cs 0.03 0.55 0.142
RTOK 0.03 055 0.142
UR 0.00 1.00 0.000

t; = Pass (confidence 0.8)

¢ 0.06 0.47 0.127
e,/c; 0.24 0.73 0256
cs 0.08 0.70 0.179
cs 0.08 0.70 0.179
RTOK 0.08 0.70 0.179
UR 020 1.00 0.080

*The probability values are normalized to sum to 1.0.

240

result and each of the components downstream of t;, and the
support values decreasing for each of the components
upstream. of ¢;, as given in the bottom third of Table 1.

SUMMARY

An approach to reasoning under uncertainty exists that
incorporates methods from fuzzy logic, Dempster-Shafer
evidential reasoning, and neural networks. We were
concerned with developing an approach that behaves well
and readily adapts to the needs of the user while
maintaining a friendly user interface. The fuzzy logic
qualifiers permit a technician to provide confidence
information without understanding confidence values or
probability. The modified Dempster-Shafer approach
permits multiple measures of certainty to be maintained and
includes a straightforward conversion to a Bayesian
interpretation. Finally, the neural network in combination
with a simple trend analysis identifies when an answer has
been obtained, thus signaling POINTER to display the
results to the technician with confidence indicators. We also
have reversed the process on the back end, converting
confidence values back into fuzzy qualifiers, again avoiding
the necessity for the user to become familiar with
probability terminology. - The result is a fully integrated,
multidisciplinary approach to reasoning with incomplete and
uncertain data.

REFERENCES

Simpson, W. R, “STAMP Testability and Fault
Isolation Applications 1981-1984,” AUTOTESTCON
1985 Symposium Proceedings, Uniondale, Long Island,
New York, October 1985.

[

Esker, E. A., “Testability Analysis: Applications in the
Real World,” Proceedings of the IEEE Integrated
Diagnostics Symposium, Dayton, Ohio, December 1985.

2

Simpson, W. R., “Testability and Fault Diagnosis of
Airline Avionics,” special edition of PLANE TALK,
AMC Open Forum, Houston, Texas, March 1983.

3]

Simpson, W. R., and B. A. Kelley, “Multidimensional
Context Representation of Knowledge-Base
Information,” Proceedings of 1987 Data Fusion
Symposium, Laurel, Maryland, June 1987.

(4]

241

(3]

(6]

|

(8]

9]

[10]

1]

[12]

(13]

[14]

Kelley, B. A.,, and W. R. Simpson, “The Use of
Information Theory in Propositional Calculus,”
Proceedings of 1987 Data Fusion Symposium, Laurel,
Maryland, June 1987.

Shafer, G., A Mathematical Theory of Evidence,
Princeton University Press, Princeton, New Jersey,
1976.

Dempster, A. P., “A Generalization of Bayesian
Inference,” Journal of the Royal Statistical Society,
Series B, 1968, pp. 205-247.

Simpson, W. R., and J. W. Sheppard, “The Application
of Evidential Reasoning in a Portable Maintenance
Aid,” AUTOTESTCON 1990 Conference Record, San
Antonio, Texas, September 1990.

Simpson, W. R,, and J. L. Graham, “Notes on
Evidential Reasoning,” STAMP Technical Note
No. 0343, ARINC Research Corporation, August 1989.

Sheppard, John W., and William R. Simpson, “A
Neural Network for Evaluating Diagnostic Evidence,”
Proceedings of the National Aerospace Electronics
Conference, Dayton, Ohio, May 1991.

Zadeh, L. A., “Possibility Theory and Soft Data
Analysis,” in. L. Cobb and R. M. Thrall (eds.),
Mathematical Frontiers of the Social and Policy
Sciences, Westview Press, Boulder, Colorado, 1981, pp.
69-129.

Kandel, A., Fuzzy Techniques in Pattern Recognition,
John Wiley and Sons, New York, 1982.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams,
“Learning Internal Representations by Error
Propagation,” in D. E. Rumelhart and J. L.

McClelland, Parallel Distributed Processing, MIT Press,
Cambridge, Massachusetts, 1986, pp. 318-362.

Shannon, C. E. “A Mathematical Theory of
Communications,” Bell Systems Technical Journal, Vol.
27, 1948, pp. 379-423.

