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ABSTRACT 

Research in machine learning has provided a new 
avenue for developing models and knowledge bases 
for diagnosis. Learning approaches evolve models 
on actual examples of failure and diagnosis. Using 
these examples (and possibly an initial model of the 
system), diagnostic systems learn relationships 
between the tested system tested and the faults 
causing anomalous behavior. We discw an 
approach to identifying and correcting errors in 
diagnostic models using explanation based learning. 
The approach uses a model of the system to be 
diagnosed that may be missing information about 
the relationships between tests and possible 
diagnoses. In particular, we will use what has 
become known as a structural model or information 
flow model to guide diagnosis. When misdiagnosis 
occurs, we will use the model to determine how to 
search for the actual fault through additional testing. 
When we finally identify the fault, we will construct 
an explanation from the original misdiagnosis and 
modify the model to compensate for the incorrect 
behavior of the system. 

INTRODUCTION 

Intelligent, computer assisted diagnosis has been a 
popular area of research for many years. Medical 
doctors have been interested in how to use the 
computer to consult in medical diagnosis. 
Maintenance technicians and testability engineers in 
airline maintenance shops and military maintenance 
depots have been searching for better ways for 
finding faults in the systems they maintain. 
Controllers in nuclear power plants have been 
looking for ways to use the computer to monitor 
and predict when failure may occur so that they 
can anticipate and correct the problem before it 
occurs. Artificial intelligence researchers have 
found that the general category of diagnosis offers 
fertile ground for exploring the issues of computer- 
based reasoning. 

In response to these needs, several approaches to 
computer-based diagnosis have arisen. Shortliffe' 
demonstrated that rule-based systems could be 
applied successfully to complex medical problems 
with his MYCIN system. Davis* described a model 
based on the structure and behavior of a system for 
diagnosing digital circuits. More recently, Cantone, 
et. a13, Simpson and Sheppard', and Pattipati and 
Alexandridd have developed generic architectures 
for fault diagnosis using dependency-based 
structural models. 

One area with tremendous research potential in 
computer-based diagnosis is in the area of 
developing the knowledge bases for the diagnostic 
systems. In the past, knowledge bases were 
constructed through a cycle of interviewing experts, 
coding rules, generating prototypes, and testing the 
prototypes against the experts. The process 
continues until the resulting diagnostic system 
performs according to some set of user 
requirements. Unfortunately, this approach is 
generally ad hoc and incomplete. 

Other approaches include developing complex 
models of the system to be tested. Modelers study 
design documents and existing technical manuals to 
learn the "physics" of the system to be diagnosed. 
The resulting models then become the knowledge 
base for diagnosis. Though more rigorous in their 
development, models constructed in this way are 
highly prone to error due to the inherent complexity 
of the systems modeled. Also, with advances in 
technology, complexity is not going to decrease. 
Therefore, a need exists for controlling the 
complexity of the problem while still producing 
robust and efficient models for diagnosis. 

Research in machine learning has provided a new 
avenue for developing models and knowledge bases 
for diagnosis. Resulting approaches evolve models 
based on actual examples of failure and diagnosis. 
Using these examples (and possible an initial model 
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of the system), diagnostic systems learn the 
relationships between the system being tested and 
the faults causing anomalous behavior. 

The problem with this approach is that the 
evolution of models can span a long period of time. 
An alternative approach would be to begin with a 
relatively complete model produced by traditional 
methods and include a learning system that would 
enable the knowledge base to adapt when errors are 
identified. As a result, modelers can construct 
diagnostic systems relatively quickly. Complexity is 
reduced since the model can be incomplete. Then, 
through the process of actual diagnosis and repair, 
problems are identified and corrected through the 
interactions of a maintenance technician a id  the 
diagnostic system. 

In this paper, we will discuss an approach to 
identifying and correcting errors in diagnostic 
models using explanation-based learning. The 
approach uses a structural model of a system to be 
diagnosed that may be missing information about 
the relationships between tests and possible 
diagnoses. When a misdiagnosis occurs, the 
approach continues to search the model for the 
fault through testing. When the fault is finally 
identified, an explanation for the original 
misdiagnosis is generated, and the model is 
modified to compensate for the incorrect behavior 
of the system. 

MODEL-BASED FAULT DIAGNOSIS 

Fault diagnosis has evolved from analyzing simple 
combinational circuits to'analyziug complex systems 
consisting of combinations of electrical, mechanical, 
and even hydraulic systems. Diagnostic systems are 
being developed that monitor the performance of 
avionic systems in aircraft and reconfigure the 
avionics suite when a fault occurs. The task of fault 
diagnosis is to detect when a fault occurs and then, 
by performing a sequence of tests, isolates the failed 
element in the system. 

In model-based diagnosis, system specifications and 
design data can be used to define a mathematical 
model. This model includes information about the 
structure or the behavior of the system. In more 
advanced models, both structural information and 
behavior information are provided. This model 
then becomes the knowledge base in the diagnostic 
system. As a result, analysts and engineers can 
build diagnostic models without a maintenance 

expert, and new and complex systems can be 
diagnosed efficiently and effectively. A discussion of 
the different types of models can be found in 
reference 6. 

LEARNING IN FAULT DIAGNOSIS 

A problem common to all computer-aided 
diagnostic systems is that knowledge bases (whether 
rule-bases or models) are difficult to develop. As a 
result, errors are common. This leads to inefficient 
and even incorrect diagnosis. Further, as the 
complexity of systems increase, the likelihood of 
erroneous models increases. The questions that 
naturally follow from this problem include: . 

1. How does one develop models that minimize the 
chance of error? 

2. In the event errors occur, how does one identify 
and correct the errors? 

Work in the area of machine learning provides 
potential solutions to both of these proh'a,ms. 
Through a process of simulation or fault inseition, 
examples can be generated in which the failed 
behavior is captured and its relationship to the 
available tests is determined. Also, discrepancies in 
repair recommendations and actions taken to repair 
the system can be used to identify the errors in the 
model. In addition to determining the structure of 
the system, learning can be applied to improving 
diagnostic performance. 

Learning Optimization Parameters 

One of the advantages of model-based diagnosis is 
that the diagnostic process can be optimized. 
Unfortunately, the process of determining the most 
efficient diagnostic strategy for an arbitrary system 
is NP-Complete'. Nevertheless, some steps can be 
taken to improve diagnosis. In particular, Pattipati 
and Alexandridis' and Simpson and Sheppars 
have described algorithms using Shannon's 
information theory to optimize binary decision trees. 
These algorithms select tests that maximize 
information gained per unit cost where cost may be 
given in terms of combinations of time, failure 
probability, etc. 

When applying cost criteria to optimize diagnosis, 
diagnostic performance can be improved by 
updating cost estimates. Following diagnosis the 
reported costs can be used to modify the original 
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weights thereby modifying the optimization 
procedure to reflect actual diagnostic history. A 
detailed discussion of our approach to learning 
optimization parameters is given in reference 6. 

Connectionist Learning 

Another approach to learning that is becoming 
popular in fault diagnosis involves connectionism 
(i.e., neural networks). Diagnostic neural networks 
map test results to diagnoses through a process of 
training. When training a diagnostic neural 
network, the network processes several example 
test-fault combinations and learns by minimiking the 
error in its output through a hill-climbmg 
algorithm.' Neural networks have been developed 
that map test results (inputs) to diagnoses 
(outputs)? In addition, neural- networks have been 
trained to interpret signals generated from running 
a test to determine if a test has passed or failed." 
Neural networks have also been developed to 
interpret the results of the inference process (under 
uncertainty) to determine if additional testing 
is necessary." 

Similarity-Based Learning 

The learning method applied for neural networks 
frequently falls in the category of similarity-based 
learning (SBL). DeJong describes SBL as 
"discovering a combination of features that best 
classifies the regularities in a set of examples. The 
resulting generalization over the examples is the 
new concept'*." In general, SBL is characterized 
by presenting several examples and by not requiring 
much domain knowledge. The trainimg examples 
contain most of the required knowledge. 

Explanation-Based Learning 

In the event domain knowledge is available, this 
knowledge can be used to reduce the number of 
training instances in learning. Explanation-based 
learning (EBL) is characterized by using a detailed 
domain theory and a detailed functional 
specification of the concepts to be learned. Using 
the domain knowledge, single training examples can 
be used to learn concepts12. In the domain of fault 
diagnosis, and example of a misdiagnosis together 
with a model of the physics for the technology 
employed in the system can be used to derive an 
explanation of an appropriate diagnosis. From this 
explanation, the diagnostic model can be modified 
to include the knowledge of the correct diagnosis. 

The remainder of this paper will be devoted to a 
discussion of an approach to using EBL in fault 
diagnosis. The approach uses a theory of fault 
diagnosis based on a structural model in which the 
physics of diagnosis is specified in the test design. 
This permits the problem to be reduced to 
identifying appropriate dependency relationships 
between tests and components. 

LEARNING STRUCTURAL MODELS USING 
EXPLANATION-BASED LEARNING 

One approach to incorporating explanation-based 
learning in diagnosis takes advantage of the form of 
the structural model. The central idea behind this 
approach involves following a misdiagnosis with 
additional testing until a correct diagnosis is made. 
Once the correct diagnosis has been made, the 
knowledge obtained from testing can be used to 
modify the structure of the model so that the 
correct diagnosis is consistent with the testing. 
Ultimately, this should lead to a correct model. 

Assumptions for the Model 

As indicated above, this study applied EBL to 
structural diagnostic models. Inherent in these 
models and in the approach are several 
assumptions. For the purposes of the following 
discussion, we define the following notation and 
concepts. In these discussions, we will associate a 
conclusion to be drawn with each component in the 
model. We will use the terms conclusion and 
component interchangeably. Let 

M =  

M =  
Me = 
M,' = 
c*, = 

Cbd = 

c, = 

t, = 

A cov-;t input model consisting of fitst 
order dependencies. 
The transitive and logical closure of M. 
An input model containing the error(s). 
The transitive and logical closure of Me. 
The conclusion associated with a failed 
component in the system. 
The conclusion associated with the isolated 
component in the model. 
The conclusion associated with the i* 
component in the model. 
Thej* test in the model. 

We also define the following. 

Def.l: A test r, depends on U component c, iff 
when c, fails, ti will be bud. 
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Def2: A test t, depends on a rest t, iff when fi is 
bad, r, is also bad and when ti is good, t, is 
also good. 
A conclusion c, is a nondefecrion iff no tests 
depend on ci. 
An ambiguity group is a set of components 
in either M or Me' such that the set of 
tests that depend on each component in the 
ambiguity group is identical. 

DeN: 

Def.4: 

Given these definitions, we wish to develop a 
strategy to apply to fault diagnosis in which an 
erroneous or incomplete model can be modified to 
correct or complete the model. In other words, as 
a result of performing a sequence of tests iqwhich 
cbOr is incorrectly isolated, we wish to perform 
additional tests so as to isolate cltal thus enabling M,' 
to be transformed into bf. As a first step in 
addressing this problem, we will consider the 
problem under the following assumptions. 

First, as is typical in fault diagnosis, we assume a 
single failure exists in the system. As described 
earlier, this limits the search space; although, 
certain extensions to the model and to the inference 
rules applied to the model permit this assumption to 
be relaxed. Second, we assume that the tests 
specified for the model provide complete and 
accurate information about the system. This means 
that if we say that a test depends on a component, 
then if the component fails, the test will detect the 
failure, and if the test passes, then the component 
has not failed. Finally, we assume that only tests 
have dependencies, and that they can only depend 
on components or other tests. To say that a 
component depends on another component or on a 
test (from the structural perspective) makes no 
sense. This is because tests are simply information 
carriers and have no impact on the behavior of the 
system it is testing. 

Inference Rules 

The diagnostic system we will use to implement the 
described learning approach incorporates several 
inference rules specifically tailored to the diagnosis 
problem. In particular, the following rules are used. 

Rule 1: If t, is declared to be iintestable, then make 
t, unavailable for evaluation. 

Rule 2 If f, is declared to be good, then declare 
every test upon which i, depends to be 
good. 

Rule 3: If t, is declared to be good, then declare 
every conclusion upon which C, depends to 
be false. 

Rule 4 If f, is declared to be bad, then declare 
every test that depends on t,  to be bad. 

Rule 5: If ti is declared to be bad and there exists 
a test t, that neither depends on t, nor is 
depended on by ti, and the elimination of t, 
does not create additional ambiguity, then 
declare t, to be not needed. 

Rule 6: If f,  is declared to be bad, then declare 
every conclusion that t, does not depend on 
and that has no test declared not needed 
that depends on it to be false. 

Rule 7: If t,  is declared to be bod, then declare 
every conclusion that ti does not depend on 
and that has at least one test declared not 
needed that depends on it to be not 
relevant. 

Rule 8: If t ,  depends on ail of the unknown 
conclusion, then declare f ,  to be bad. 

Rule 9 If ti depends on only false conclusions, then 
declare t, to be good. 

Identifying Missing Structural Links 

To determine which dependency links have been 
omitted from the model, we need to develop a well- 
defined approach to identifying the correct fault 
following an inappropriate fault isolation. To do 
this, we proved the following claims (proofs omitted 
do to space limitations). 

Claim 1: If a failure, c , ~ ~  is detected, then there 
exists a test r, whose outcome is bad that 
depends on c ~ ,  in M that was 
evaluated. 

This claim should be self evident. Simply, in order 
for a failure to be detected, there must exist some 
test whose outcome is bad when the failure occurs. 

Let us partition the model M,' following fault 
isolation according to inferences or measurements 
made on tests and corresponding values associated 
with conclusions. 

n, = ( ti I val(ri) = good 1 U 
{ ci I val(cJ = good wule 31 
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Figure 1. Helicopter Stability Augmentation System Diagnostic Dependency Model 

n, = ( ti I Val(t,) = bad 1 U 
t c1 I (Val(C,) = unlorown) v 

(val(ci) = good [Rule q) 1 

Claim 2 Given the model Mc-, if there exists a 
missing dependency Link, then some test 
t, that was declared bod must depend on 
some conclusion cW z c’,d in M that 
was declared nor relevont. 

Recall that M,’ represents the model that is missing 
the dependency link. Thus if cW # clrd we must 
have isolated the wrong failure. This means clrd was 
eliminated from consideration. A component can 
be eliminated from consideration by being declared 
false or not relevant. A false declaration only occurs 
by either Rule 3 or Rule 6. This claim shows that 
neither of these are possible. 

Obs. 1: When all tests have some value 
assignments (i.e. good, bod, or not needed), 
then the drawn conclusion, c’,d, is the 
conclusion (or ambiguity group) that is still 
unknown (i.e. does not have value 
assignments of folse or not relevant). 

This observation follows directly from the fact that 
the set of unknown conclusions is, by definition, the 
set of candidate failures. Thus, when all other 
information is known, the remaining candidate set 
must be the isolation. 

O b i  2: Let S be the set of conclusions ci that have 
all bod tests depending on them. cbd is in 
S .  

Since the model specifies which tests are expected 
to fail given a fault in the system, then the drawn 
conclusion must have all of the bad tests depending 
on it. If any test is bad and does not depend on the 
drawn conclusion, some other failure must have 
been detected in the system. 
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Obs. I: Let F, be the set of tests that depend on 
conclusion c,. Then I F, I = mer( IF, I ,  Vc, 
E S}. 

Obviously, since all of the bad tests depend on the 
drawn conclusion, any other conclusion in which all 
of its dependent are bad tests must have fewer 
dependents (unless that co.nclusion is ambiguous 
with the drawn conclusion). Using these 
observations, we can make the following claim. 

Claim 3: The head of the missing link enters a 
test that depends on cbd yet does not 
depend on any other conclusion in l&. 

With this claim, we have identified the best point in 
which to attach one end of the missing dependency. 
The proof shows that any other appropriate location 
will still leave the model with missing links, even if 
these locations are consistent. In the worst case, 
any other location may create an inappropriate link. 

Claim 4 Given an incorrect isolation, c,,,,,, fault 
isolating in partition n, will result in 
isolating cfiI. 

This claim allows us to identify which partition 
contains the actual fault. Clearly, c.+, cannot be in 
U, since a test that does depend on cy, would have 
eliminated cMI from consideration. This is a 
contradiction. Further, c , ~ ~  cannot be in 112 since 
this would be c,,.=,. Now we only need to find where 
in ll, the tail of the link needs to be placed. 

Claim 2: The tail of the missing link is on the 
path from cfil. 

This claim is obvious but is stated (and has been 
proven) for completeness. 

Obs. 4 Let C, be the set of conclusions that r, 
depends on and let Cj be the set of 
conclusions that tj depends on. If C, E CJ 
then tJ depends on ti. 

This observation allows us to prove the correctness 
of an algorithm called lo@col clo~itre.'~ Effectively, 
this algorithm allows us to limit the specification of 
new dependencies to be between tests and 
conclusions. Test-to-test dependencies are inferred 
from test-to-conclusion dependencies. 

Claim 6: An iterative application of isolating 
prope: faults given a missing link will 
reduce n, and approach identifying the 
missing link. 

This claim is one which declares that the process 
will eventually terminate with the correct model, iW. 
As such, it is an important claim that declares the 
Completeness of the algorithm. 

Claim 7 When a link is added to the model, it 
does not need to be removed, even if it 
is not the required link. 

To prove the soundness of the algorithm, we had to 
show that no inappropriate links would be specified. 
This claim serves that function. 

An Example 

In order to illustrate the procedure described in the 
previous section, we developed a diagnostic model 
of the stability augmentation system for a military 
helicopter. See Figure 1 for a pictorial 
representation of this model. Circles in the figure 
correspond to tests in the model, and squares 
correspond to components. The arrows indicate the 
flow of failure information through the system. For 
example, if the Roll Converter fails, then the Roll 
Attitude Check, the Roll Servo Output, and the Roll 
Motion tests will all be bad. 

As an example of how one might find a missing 
link, suppose the model should include a 
dependency of the Airspeed Transducer test on the 
Roll Converter. The following sequence of tests 
will inappropriately isolate the Airspeed Switch as 
the failure. 

Test: Yaw Servo Output declared bad. 
Test: Lateral Accelerometer declared good. 
Test: Simulated Yaw declared good. 
Test: Airspeed Transducer declared bad. 
Component Airspeed Switch isolated. 

Once we determine that we isolated the wrong 
component, we perform additional tests to isolate 
the correct fault-the Roll Converter. 

Test: Roll Motion Output declared bad. 
Test: Roll Attitude Check declared bad. 
Test: Simulated Roll declared good. 
Test: Roll Input Test declared good. 
Component Roll Converter isolated. 

As a result of the testing performed to isolate the 
Roll Converter, we can determine that the Yaw 
Servo Output test, the Airspeed Transducer test, the 
Roll Motion Output test, and the Roll Attitude 
Check test must depend on the Roll Converter. 
The dependence of the Airspeed Transducer test on 
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the Roll Converter is the missing link, and the 
dependence of the Yaw Servo Output can be 
determined from the transitivity of dependence. 
The other two dependencies already existed in 
the model. Thus, we correctly identified the 
missing link. 

FUTURE WORK 

This paper has described an approach to identifying 
missing dependency links in structural diagnostic 
models using an approach to explanation-based 
learning. Using the results of diagnostic testing, 
explanations for discrepancies in fault isolation and 
failure are generated in the form of needed 
dependencies. These needed dependencies ar,e then 
used to determine which dependencies are missing. 
This section describes two ,additional applications 
areas based on technique. . 

Identifling Inappropriate Structural Links 

A difficult problem to be considered is the one 
where errors in the model may include additional, 
inappropriate dependency links. We can partition 
the system in a way similar to the partitions for 
missing links, but we face the problem of what to 
do when the extra link is to a position downstream 
from the isolated failure. It appears that identifying 
the fault in this situation may result in a directed 
search down the dependency chain, considering each 
component in sequence. 

Another interesting problem, given an algorithm for 
identifying extra links can be developed, is how to 
combine the two techniques. Initial research 
suggests that the first step should be to identify 
missing links. Since this procedure has been proven 
to terminate (under the assumptions described), if 
the correct component is not isolated, then we can 
recycle and use the "extra link" algorithm. This 
procedure would begin from the point the initial 
fault isolation was completed. 

Creating Structural Models through Learning 

Ultimately, we would like to develop a means for 
easily developing complete and robust models. If 
we can associate some test with each component in 
a system, then we can specify this as an initial 
structural model. This model has several missing 
dependency links and no extra links. Then through 
a process of fault insertion and fault isolation, we 

can identify additional dependency links until a 
complete, functional model is generated. 

Alternatively, we could begin by claiming each test 
depends on all the components. Then we could 
apply the "extra link" algorithm to determine which 
links should be removed. Again, through a process 
of fault insertion and fault isolation, the extra links 
are gradually identified and removed until a 
complete and functional model results. 

CONCLUSION 

This paper has considered an approach to 
explanation-based learning in which erroneous or 
incomplete structural diagnostic models are 
corrected through the standard fault isolation 
process. When an inappropriate fault is isolated, 
additional tests are performed until the correct fault 
is isolated. Since tests are assumed to provide 
complete and reliable information (which has been 
reasonable for many "real" diagnostic problems), the 
test results indicate where dependencies are 
appropriate and where they are inappropriate. 
Whenever, such desigc::an disagrees with the 
model, a change to the model is warranted. 

Several issues related to diagnostic learning need to 
be considered. The first is model configuration 
control. If the model is non-stationary, how does 
one control the configuration of the model used by 
technicians in the field? In addition, how does one 
verify that the modified model is correct? 
(Obviously, if the approach has a proof of 
correctness such as the one described here, then 
this problem is straightforward to consider.) 
Finally, should the diagnostic system modify the 
model directly, or should the system offer 
recommendations to be considered for 
modification? Although not directly pertinent to the 
problem of learning diagnostic models, these issues 
must be considered for any system that is to move 
from the laboratory into practice. 
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