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ABSTRACT 

Currently, intelligent diagnostic systems are applied 
to problems in which the state of the system is 
fmd.  Unfortunately, with systems increasing in 
complexity at high rates coupled with aichitectures 
promoting concurrence and fault tolerance, 
diagnosis in a temporal context is becoming 
imperative. In this paper we describe an approach 
to associating temporal knowledge with a diagnostic 
system using the propositional calculus to represent 
temporal relationships that allows efficient 
propagation of time constraints through the 
knowledge network. We conclude the paper with a 
brief discussion of bo*.-:-. this work can be applied to 
the diagnostic domain. 

INTRODUCTION 

Research in artificial intelligence has advanced to 
the point where we can develop software capable of 
diagnosing complex systems at whatever level of 
detail required. The most common forms of 
artificial intelligence systems include rule based 
approaches, in which if then structures are used to 
describe the diagnostic problem, and model based 
systems, in which either the structure or the 
behavior of the system is represented 
mathematically to facilitate efficient and effective 
fault diagnosis. Several diMerent problems relating 
to fault diagnosis concern representation of 
information and knowledge about the system to be 
diagnosed. A signXcant representation problem 
relates to how one represents information about 
time constraints in relation to the diagnostic 
situation. 

Typically reasoning systems operate on an 
instantiation or a “snapshot” of some problem 
domain and deal specifically with logical relations 
between facts in thc !.::-ledge base. These logical 
relations often take the form of production rules 
that define linkages in a howledge network. Yet 
typically these knowledge networks omit information 
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about time. Specifically, some of the concerns 
relating to temporal knowledge include efficiently 
ordering tests so that various time constraints can 
be met. For example, suppose a piece of test 
equipment has a video display that requires a 
warming up period. If some tests can be performed 
immediately without the display, the desirability of 
performing these tests while we are waiting 
increases. This construct would be typically given as 
Test Group A cannot be performed prior to x 
minutes. Other constructs would deal with Test 
Group A before/after/during Test Group B and 
Test Group A within/before/after time interval y. 

When considering the task of reasoning about time, 
two problems arise. The first is the problem of 
representing the temporal information. What is the 
primitive unit of time? How do these primitives 
combine to form an event? How do temporal 
events relate to one another? How are events and 
their interrelationships represented in a computer? 
These questions are fundamental to the problem of 
developing a temporal knowledge base. Once we 
determine initial interrelationships between events, 
we can pursue the propagation of constraints 
imposed by these events and their basic 
interrelationships throughout the network. “his is 
the second problem and is referred to as constraint 
propagation. Once we determine a method for 
representing time and temporal relationships, 
together with an algorithm for performing the 
constraint propagation, we can construct a 
knowledge network of temporal events for an 
inference system such as a diagnostic engine. 

REPRESENTING TEMPORAL INFORMATION 

Primitives used in representing time events are 
either time points or time intervals. If we assume 
that points in time are primitive, then we can 
combine the points into a time interval with the end 
points delimiting the interval. On the other hand, 
many have felt that time interval is more reasonable 
primitive unit. In this case, the primitive is the 
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event. There is some disagreement among 
researchers over which primitive is best. We will 
therefore begin with a brief discussion of each type 
of representation. 

Point Based Representations 

If we assume the time point is primitive, then we 
can define an interval of time to consist of the set of 
all pointsp between to endpoints. Let Z = <I;> = 
(p I I < p 4 r} where Z represents a time interval 
and < I t >  is an ordered pair such that I is the left 
endpoint and r is the right endpoint. (Note that, by 
transitivity, I 5 r.) Also, we can define a time 
interval as the set of points p that occur within 
some time limit following a start point. Let Z = 
<s,6> = @ I s s p 4 s + 6 )  where Z represents 
a time interval as above and cs,6> is an ordered 
pair such that s is the starting point and 6 is the 
interval’s duration. 

Interval Based Representations 

James Allen raised several questions regarding the 
time-point primitive and decided to assume the 
interval was primitive. (See reference 1 for his 
discussion on the point/interval issue.) He then 
developed a set of 13 binary relations on these 
intervals and a constraint propagation algorithm to 
compute the transitive closure of these relations 
through a network of intervals. 

A nice feature of the interval primitive is that the 
interval is completely self-contained. Thus, the 
concern is simply with events, and specific points in 
time become irrelevant unless they, again, are 
specific events. Another nice feature is the ease in 
representing ambiguity. Consider the two examples 
in the previous section. These two situations may 
be represented as Za (Equals Starts Is-Started-By) 
Zb and Za (Before After) 1,. 

On the other hand, a major disadvantage appears 
when one performs the transitive closure. Vilain 
and Kautz showed that the closure of intervals is 
reducible to the satisfiability problem which is 
known to be NP-complete? Although Allen’s 
algorithm for propagating time constraints executes 
in polynomial time, Allen took certain shortcuts to 
achieve this result. He avoided the combinatorial 
explosion by verifying consistency through only three 
adjacent intervals. Viain and Kautz, on the other 
hand, adopt algorithms employing a point-based 

representation and find the algorithms to be more 
efficient than those operating on an interval-based 
representation. 

REPRESENTING END POINT RELATIONS 
WITH INEQUALITIES 

Because of the intractability of closure on 
interval-based networks, we will proceed from a 
point-based representation. In particular, we will 
represent a time interval by its endpoints and, for 
the time being, we will not concern ourselves with 
the problem of two intervals overlapping by a single 
point or the problem of representing all ambiguities. 

Matrix Representation OF Point Relations 

We are now ready to address the question, “How 
do temporal events relate to one another?” First, 
consider two arbitrary points, po and p,. There are 
only three waysp, is able to relate top, @, before 
p,p, afterp, andp, at the same time asp,). Thus, 
given pa re1 pb where re1 E { <, >, =}, we can 
define the following. 

Pa < P b  
Pa ’ P b  

jE Pa beforepb 

SE pa afterpb 

pa = P b  pa at the same time asp,. 

Next, consider two intervals, Za = <Ida> = I la 

We can specify all possible relations between the 
endpoints as la rel, l, 1, rel, r,, ra rel, 1, and ro re14 
r, where re& E { c ,  >, = }  and i = 1 ... 4. Without 
considering the limitation imposed that I ,  5 r, (from 
our definition of an interval), with four relations and 
three choices for each relational operator, the total 
possible combinations of relations (which we will 
call relation signatures) is 3‘ or 81. If we impose 
the constraint that I, S r,, we find that the number 
of possible relation signatures reduces to 18. 

4 p < r,} and = = @ I 1, < p 5 rb}. 

BINARY RELATIONS ON TIME INTERVALS 

Proceeding from the 18 relation signatures, which 
we will call the set of relevant relation signatures, 
we will divide the set into two major subsets: the set 
of interval relations and the set of point-interval 
relatiom. Had we proceeded from the assumption 
that the interval was primitive we would have found 
only U relations. These U relations are shown 
with graphical representations and relation 
signatures in Figure 1. Because we combined point 
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Figure l. Temporal Relations 

and interval constructs we were able to identify 5 
additional relations that are special cases of 5 of the 
interval relations. These special cases arise when 
one or both of the intervals are time points. These 
signatures are also shown in figure 1. We chose 
the relation labels shown in Figure 1 because they 
uniquely characterize the corresponding relations. 

CONSTRAINT PROPAGATION ON TEMPORAL 
INTERVALS 

Previous sections described a relational algebra on 
the temporal intervals. Given two intervals we have 
described 18 ways to specify how these intervals 
may relate to one other in terms of their end points. 
The problem discussed in this section k, given a set 
of intervals and relationships between a subset of 

these intervals, how are any two intervals related? 
This problem can further be divided into two 
subproblems. The first may be stated as follows: 
Given two intervals, Ii and 4 in set I such that their 
endpoints are known, how are Ii and 4 related? 
The second problem is similar. Given three 
intervals, I,, & and I, in set I such that the endpoints 
are unknown, I, re1 4 is known, and 4 re1 I, is 
known, how are I, and I, related? Due to space 
constraints, an algorithm for solving only the latter 
problem will be discussed. 

Let us represent the relation signatures as 2x2 
matrices. Fist ,  we define the addition and 
multiplication operators on our relational algebra in 
Figure 2.2 With these operators available, we can 
propagate the intervals' relational constraints by 
multiplying the two intervals' relation matrices 
together (using standard matrix addition and 
subtraction). The matrix multiplication algorithm 
may be used to define a transitivity table for all 
pairwise combinations of interval and point-interval 
relations. We provide this table (Table 1) using our 
relation symbols and including the point-interval 
relations. (Note: Allen gives this table for the 12 
interval relations and excludes Equals.) We can 
then use a constraint propagation algorithm, such as 
the one given in reference 1, to determine higher 
order relations between the intervals. 
Unfortunately, as mentioned earlier, this algorithm 
has exponential complexity which is unacceptable 
for large problems. In the next section, we will 
describe a simpler algorithm that, though 
incomplete, provides a polynomial time solution that 
provides excellent coverage. 

O =  0 
?= ( < > = )  

Figure 2. Relational Algebra Operators 
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REPRESENTING TEMPORAL RELATIONS 
WITH PROPOSITIONAL CALCULUS 

Now that we have an algebra for representing and 
operating on temporal relations, the next step is to 
map this algebra into a knowledge based inference 
system. Given knowledge about how interval end 
points relate to one another, we would like to 
propagate this information throughout the resulting 
knowledge network. 

Propositional Calculus Representation of 
Inequality 

Our relational algebra is a three value logic that is 
cumbersome to work with. Since digital computers 
are binary machines it is desirable for the sake of 

Table 1. Transitivity Table for All 18 Relations' 

efficiency to map this three valued logic into a two 
value logic. As we will soon see this wil l  allow for 
a rapid closure algorithm with respect to the end 
points of the temporal network. Unfortunately, 
mapping from a three space to a two space will 
result in some loss of information. Fortunately, 
there is a way to recover much of this lost 
information. 

As we begin the process of mapping our 
three-valued logic into the two-valued logic, we 
consider two points in time, a and b, such that a 
occurs before b. We represent this, using our 
temporal algebra, as (a < b). We also know that 
the inverse of (a < b) is (b > a); however, this still 

5 M m p  hghl~gbts ambigutlm mdiated by (he mmrponding Inter. A questton mark (?) mdiatn m 
mfomutmo may bc inferred from the corresponding relation Innsitmy. 

leaves us with the three-valued 
logic. Assume now that we use 
the binary relation "e" (i.e., less 
than) to represent the temporal 
relation between a and b. Then, 
if we wish to consider the inverse 
of (a e b), we say b is not before 
a. Therefore, c 3 a y  be after b, or 
a may occur at the same time as 
b. Under this specification, the 
inverse of (a e b) is (b 2 a) .  

Using propositional calculus, the 
above discussion translates into 
the following. We are interested 
in propagating a truth value 
through a logic network. This 
propagation occurs by chaining 
rules of inferencL together. These 
rules of inference correspond to 
an implication in propositional 
calculus. Thus, if we want to say 
"If A is true, then B is true," we 
write (A + B). At the same t h e ,  
we know from propositional 
calculus that (A 4 B) is equivalent 
to (1B -. TA). In other words, 
if B is false, then A is also false. 
Returning to our temporal system, 
we know if (a c b), then for b to 
have occurred, U must also have 
occurred. Thus, the truth of b 
implies the truth of u. Conversely, 
if U has not occurred, b cannot 
have occurred. Therefore, the 
falsity of a implies the falsity of b. 
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This is equivalent to saying (b + U ) .  Note also that 
if (b = U), the above implication still holds. In fact, 
equality would translate into equivalence, i.e., (U i 

b). Therefore, we may use this mapping to 
determine propositional rules for our 18 temporal 
relations. 

Mapping Temporal Relations 

As we begin to determine the propositional rules 
corresponding to each temporal relation, we recall 
the relation signatures defining the relations 
between each of the end points. First we will state 
a couple of obvious rules based on our definition of 
a temporal interval. Then we will delineate the 
propositions that arise from the relation signatures. 

R e d  from our definition that we declared the left 
endpoint of an interval either to be equal to the 
right endpoint (a point interval) or to be before the 
right endpoint (a non-point interval). For point 
intervals, we have (1, -- r,) which translates in 
propositional calculus to (I, ss ri) or, using 
implication, (Z, - r,) A (r, - 1,). For non-point 
intervals, (II c rl); therefore, (r, -. I [ ) .  Another 
obrious observation is that any given point equals 
itself; therefore, (I, + I i )  and (ri -. ri). The reason 
for explicitly stating this tautology will become 
apparent below. The rules corresponding to 
mapping each of the relation signatures are given in 
Table 2. 

Table 2. Propositional Rules for Temporal Relations 

Table 3. Bit Signatures for Temporal Relations 

Bit Matrix Signatures 

Having specified the propositional rules 
corresponding to each of 18 relation matrices, we 
will now represent these logical relations in the 
machine. These logical relations may be 
represented as a two dimensional binary matrix. 
For any given cell in the binary matrix, a zero 
indicates it is not known if the point specified by the 
roh implies the point specified by the column. A 
one, on the other hand, indicates an implication is 
known. For example, a one in row 2, column 3, 
indicates (r,, - Zb). In other words, ( I ,  e r,,). If a 
one is in row 2, column 3 and row 3, column 2, then 
we can say (Z, = ra). This is because (Zb +r,,) A (r,, - I,), i.e., (Z, = rJ .  All the bit matrix signatures for 
the 18 temporal relations are shown in Table 3. 

CONSTRAINT PROPAGATION OF BINARY 
SIGNATURES 

In order to represent a temporal network we will 
now specify a data structure for representing 
t-mnn-al intervals in our system. This data 
structure consists of a 2n x 2n binary matrix where 
n is the number of intervals in the system. The 
relations between the intervals are then entered into 
the matrix according to the relation signatures given 
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in Table 3. Once the matrix is set up we are ready 
to propagate the temporal constraints through the 
knowledge network. 

Transitive Closure of Bit Matrices 

We begin by describing a basic algorithm for the 
transitive closure of a graph. We use this algorithm 
to perform the constraint propagation. The details 
of the algorithm are given in reference 3. Recall, 
however, that by representing the temporal relations 
in a binary form, we have lost information. The 
next section will describe an approach to recovering 
some of the lost information. 

Signature Analysis and Ambiguity 

Following closure, we can determine the 
relationships between any pair of intervals by 
examining their corresponding submatrices and 
comparing the resulting signature with the table of 
primitive signatures. If an exact match is found, 
then the relationship has been identified. In the 
event the relationship is ambiguous (i.e., more than 
one relation is consistent for 2 pair of intervals), 
then an exact match will not be found. In order to 
resolve the ambiguity, the following procedure may 
be followed: 

1. Examine all entries io the matrix above the 
diagonal and compare them with their 
corresponding entries below the diagonal (i.e., 
M(a, b) compared to M(b, a)). 

2. If M(a, b) and M(b, a )  = 0, set both M(a, b) 
and M(b, a )  to 1 in the sti5matrix (not the 
original matrix). 

3. Perform a logical "AND" between the modified 
submatrix and each signature ,matrix. 

4. If the resulting matrix is equivalent to the 
signature matrix, then the relation corresponding 
to the signature matrix is a member of the 
ambiguity group. 

THE APPLICATION OF TEMPORAL 
CONSTRAINT PROPAGATION TO HARDWARE 
TESTABILITY AND FAULT DIAGNOSIS 

Timing in hardware systems has long presented 
problems in testability and fault-isolation analysis. 
We designed the System iestability and 

Maintenance Program (STAMP) to address the 
question of system testability using an information 
flow model approach.' In effect, modeling may 
proceed from an analysis of the functionality of a 
system and the Corresponding failure modes of that 
system. One example of a hardware construct that 
is highly time sensitive is the bus structure. Bus 
structures control the transfer of information 
between points in a system and rely upon proper 
timing of the transfer. In addition, other portions of 
the system rely on the timing of the bus to ensure 
information is arriving at the time needed? 

As a result of this work in temporal reasoning, we 
devised several temporal dependency paradigms that 
take advantage of endpoint relations. (A detailed 
discussion of these paradigms is beyond the scope 
of this paper and will not be discussed here.) Tests 
defined for various endpoint relations resolve 
interval relation ambiguity, so the ambiguity 
propagation drawback is not seen as a problem in 
this area of analysis. 

These temporal paradigms were used in a sample 
system developed for a reconfiguration expert 
system. The system consisted of five major 
functions, two of which had to operate concurrently. 
One of the two functions contained a structure 
similar to a bus which further complicated the 
model by creating a feedback loop. The temporal 
paradigms succeeded in enabling isolation to a 
timing problem and broke up the feedback loop as 
well. Once fault isolation was complete; the 
reconfiguration expert proceeded to locate available 
system components to compensate for the fault and 
reconfigured the system using those components to 
make the system functional again. 

SUMMARY 

This paper presented a summary of work done in 
developing an algebra of relations for temporal 
reasoning. It then proceeded to extend the work 
using an interval based approach, but incorporating 
point intervals in the model. Finally a propositional 
calculus representation of the temporal relations 
was derived and combined with the transitive 
closure algorithm that operates on a bit matrix 
The result was an efficient and relatively simple 
approach to modeling relations between temporal 
intervals and propagating the constraints imposed by 
these relations through the knowledge base. 
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