
Test Strategy Component of an Open Architecture
lor Electronics Design and Support Tools ,

Leonard Haynes. Ph.D.*
Sharon Goodall*
Floyd Phillips*

william simpson. Ph.D.**
John Shcppard**

*Intelligent Automation, Inc **ARINC Research Corp.
Rockville, MD AMapolis. MD

ABSTRACT

This paper describes work being carried out under the
auspices of the Artificial Intelligence, Expert System Tie to
Automatic Test Equipment (AI-ESTATE) Committee of the IEEE
Standards Coordinating Committee 20 (SCC-23). the goal of
which is to develop a formal data model for dependency related
information called an Information Flow Model (IFM). The papa
includes the most important ENTITIES in the model. and a brief
description of the model. The introduction attempts to place the
IFM in the larger context of the Ada-Based Environment for Test,
and briefiy describes other related efforts. The model included in
this paper is not an approved draft of SCC-U). and should be
viewed solely as conmbutions of the authors. Readers having
comments on the model are invited to provide those comments to
the authors, an address for which is included in stction 1 of the
paper.

1. Introduction

Modem systems are becoming increasingly complex.
Because of this increasing complexity, it has become essential to
develop automated tools to assist a designer in the development of
reliable, testable, and maintainable equipment, and to develop
automated tools to help the maintainer test and diagnose that
equipment. During the equipment design phase. there is great
advantage to being able to predict the testability and maintainability
of a design before final commitment is made to full scale
production. Once hardware is fielded, the complexity of a modcm
system may necessitate automated tools which can assist a
technician in both test and diagnosis of suspect equipment.

One of the most popular approaches to predicting the
testability and maintainability of systems including those with both
mechanical and electronic components is based on what is called a
"dependency model." See references 1 and 2. The dependency
model of equipment captures the relationship between the tests
which can be performed at specific test points, and what is learned
from each test. If data concerning the failure rates of individual
components, the time and cost to perform tests. and other similar
data is available, then analysis systems can use that dependency
model and other data to compute the expected time and cost to
diagnose the equipment, sparing requirements, etc. Hence
dependency model based systems can provide valuable information
during design time to predict life cycle costs, and to identify
problems in the design which can be modifed to reduce life cycle
costs, and to increase system availability.

Dependency models can also be used to dynamically
compute an optimal test strategy to diagnose a specific p i a of
equipment. Using a dependency model and the associated
information as described above, the test sequence used to diagnose
equipment can be optimized based on the equipment symptoms.
technicians 4 test equipment available, current priorities, etc.

There are many tools available c o e a l l y which exploit
dependency models. Companies which market dependency model
based tools include ARINC Research Corporation (reference 1 and
2). DETEX Incorporated (reference 4). Automated Reasoning
Corp (reference 5). Harris Corp., and BITE Inc. None of these
tools interoperate. and the models used by one of these companies
will not work with the products of any other companies. The lack
of interoperability or portability of models is not due to complex
technical problems. All of the tools which have been evaluated
have similar dependency models. Thereare, however, enough

diffennces between the model formats used by the available tools
thatmodclscannotbeportedfromonetooltoanother.

The remainder of this paper describes the efforts of the
Artificial Intelligence, Expert System Tie to Automatic Test
Equipment (AI-ESTATE) Committee of the IEEE Standards
Coordinating Committee U) (SCC-20) to develop a formal data
modcl for dependency related information. The model for a Unit
Under Test 0 must specifically e n d the names of all ~ s t s .
and for each test, encode what is l m e d from each of the possible
test outcomes. In addition, related information includes the cost
and time to perform the test. test equipment and technician skill
levels required, and test reliability. The related information also
includes component information including failure rates, cost to
replace the component, groups of parts which normally fail
together, etc. We call the total model an Information Flow Model
(IFM) and we will use that name henceforth. The IFM must be
generic and neutral in that it is adequate to model the information
required by all the commercially available and U.S. Department of
Defense tools which use dependency information.

The IFM standard will allow portability of dependency
models between tools. The larger goal is to allow reasoners which
use the IFM model to be "plug compatible," in the true sense of the
concept of an open architecture. This will require a set of
SERVICES and a set of PROTOCOLS to be developed and
standardkd. Applications which request only the standard set of
services, and which adhere to the protocols will be able to use any
compliant reasoner. This will still allow reasoners to provide
a d d i t i d non-standard capabilities. Normally, these non-standard
capabilities would be in the form of additional information which
would be provided in response to the standard service requests. In
this case, plug compatibility would not be lost even though
applications might use the non-standard information, as long as
they could function without the additional information if it were not
available. W9rk on the details of a SERVICES interface for IFM
based reasoners is progressing. but space does not allow inclusion
of additional information nlated to that effort.

The Information Flow Model is an absmct model, and will
be represented in the International Standards Organization (EO)
standard language called EXPRESS. EXPRESS is an
implementation independent language. It does not specify how the
data of a particular model will be stored in a computer, what
database system will be used to access the data, etc. In order to
allow the physical exchange of models, some physical structure
must be agrtcd upon, and at this point, it appears that we will use
IS0 STEP 10303.21. the physical file format normally used with
EXPRESS. Given an EXPRESS model, and data for a particular
device. STEP 10303.21 provides the actual exchange format for
data.

Figure 1 diagrams the architecture for the work of the AI-
ESTATE Committee. plus icons which represent the IFM and other
formal data models (the data model icons are not included in the
approved AI-ESTATE architecture diagram.) In addition to the
IFM data model, a fault tree model has been approved for
distribution beyond SCC-20, and initial work has been done to
define a standard SERVICES interface for both an IFM basea
reasoner. and a fault tree reasoner. This ongoing work is indicated
in the figure.

The Information Flow Model is only one small component
of the standanis which will be required to achieve an open system
architecture for system test and diagnosis, and for testability
analysis. There are other standards being developed by the AI-

49 CH3148-4/92/m-0049 $1.0001992 IEEE

ESTATE Committee, and the work of the AI-ESTATE Committee
#will hopefully fit within the larger framework of the Ada Based
Environment for Test (ABET) effort. In this sense, the AI-
ESTATE work can be thought of generally as the Test Strategy

The AI-ESTATE Committee is eager to receive comments
regarding the IFM model, and for expanded participation in all its
efforts. Interested persons can contact Dr. Leonard Haynes.
Resident, Intelligent Automation, Incorporated, 1370 Piccard
Drive, Suite 210, Rockville, MD 20850 or call at (301) 990-2407.

2. Benefits

2.1 Benefits of the IFM Model

Layer of ABET.

Adoption of standards for information models will allow
portability of models between tools. It would allow dependency
model based tools to generate output which could k used directly
by electronic test equipment to automatically perform tests. It
would facilitate feedback of field experience to be used to update
the models to provide improved diagnosis. It would encourage
development of tools for automatically generating information
models because a standard model format would increase the
marketability of such a tool (it would be usable by many
dependency model based tools.) Adoption of the proposed class of
standards would also facilitate integration of "Interactive Elecmic
Technical Manuals'' with the test strategy optimization tools since
the interface to the tools would be standardized. Today, an
information model might be developed during initial design to
facilitate concurrent engineering analysis, but there is little
likelihood that that same model would be usable on field service
diagnosis equipment, again because of the incompatibility of the
models used in the various available tools.

For Concurrent Engineering to be effective. design data
must be sharable and usable by design engineers, by test and
maintenance system developers, by the logistics support
community, by production personnel, and by training and related
personnel. The standards we propose will help facilitate this
sharing because it will allow dependency related information to be
portable over a wide range of tools for both testability and
maintainability analysis, and then will allow the same models to be
used in the field for optimization of diagnosis.

2.2 Benefits of a standard interface for SERVICES

The development of standards appears to be most effective
when individual standards aggregate together into an overall
superstructure which relates each individual standard to the intent
of the entire system. Layered architectuns have been very effective
in providing that superstructure and therc are several examples of a
family of standards which fit within a layered, hierarchical
architecture. The best example of a layered architecture is the
International Standards Organization (ISO) Open System
Interconnection (OSI) architecture. OS1 is composed of seven
layers, each of which defines specific services and protocols
provided at that level. Each layer provides a set of standard
services to the saucture above, independent of the particular
implementation of that layer, and uses a standard set of services
provided by the stn~cture below, again independent of the particular
implementation of that layer. Compliant implementations are plug
compatible, with many proven advantages. In the sense that an
Information Flow Reasoner responds to commands from above,
such as "run the next test" and uses the services of software and
automatic test equipment at lower layers, its analogy with the OS1
model is clear. Our goal is to achieve the same portability and
interchangability which has been achieved by the OS1 model.
Work is progressing on the services and protocols for two classes
of reasoners, however this work is just beginning.

3. Brief Example of a Dependency Model

In dependency models, each of the available tests which can
be performed is identified, and for each of those tests, the

information learned from that test in terms of components known to
be good as a result of a good test outcome, or components st i l l
suspected of being faulty as a result of a bad test outcome are
tabulated. The tl. t2. cmd t3 shown below are tern performed on
units C1. C2, and C3. In the figure, we see that t4 depends on
component C3 and test t3. Also, test t3 depends on C1 and tl.
These are referred to as first oder dependencies. By inference. t4
also depends on c l and tl. This is an example of a higher order
dependency.

13 t2
I

11

The concept of dependency modeling is very powerful,
partly because it can be applied hierarchically. At one level,
components can be single integrated circuits, switches, or similar
individual components. At the next level, components can be
larger aggregates such as a multiplexer. power supply, floating
point multiplier circuit, etc. At yet the next level of aggregation, the
same exact modelling concept can be used to model subsystems,
and assess the testability of the system at that level. References 1
and 2 given much more detail on dependency models, and on the
tools which use these models.

It should be mentioned that dependency models are not
limited to electronic equipment. Dependency-based testability
analysis has been used in many domains with qual success.

The term "dependency" is often used in the context of "fault
dictionary" approaches to electronic system diagnosis, and this has
caused considerable problems in describing the standard we are
proposing to those familiar with fault dictionary based tools. Them
are several very fundamental differences between a dependency
model as described in this paper, and dependency as used in fault
dictionary approaches. In fault dictionary approaches, an extensive
sequence of test vectors are applied to a system under test, and a set
of system outputs are simultaneously monitored. In the presence
of faults, some of the outputs will be incorrect at various points in
time, and the resulting fault v r+x is analyzed after the entire test
sequence is applied to the device under test. In general, for each
failed output, analysis techniques look for which components affect
the failed outputs, and hence for those components whose failure
could cause the output in question to fail. The dependency in this
context is between system output and components. independent of
which test is being executed. There is only one "test" and it tests
all components simultaneously. There is only one set of outputs
and it remains the same through the entire analysis process. For
dependency models as we use the term, there an many tests, each
with its own distinct set of components which are tested by that
test. We assume that for each test, what is learned from each of the
distinct outcomes of that test is known a priori and encoded in the
model. The primary function of e dependency model is to select an
optimal next test in terms of a set of criteria. In a fault dictionary
approach, there is only one test sequence so even at the most basic
level, the two approaches are entirely different. In order to meet
the objective of determination of the optimal sequence of tests to
perform, special inference .'ypes. groups, weights, etc also need to
be considered. When this additional information is added to
dependency information, HG Li ,he result an information flow
model.

4. The Information Flow :.Le1

The IFM is quite compact and elegant. with only 29
ENTITIES. The model is included below. Only the consistency
rules have been excluded to meet the paper page limit, and the
format of normal EXPRESS has been compressed to save space.

BEST COPY AVAILABLE

S(3HEMAIFM~mOdek
TYPE status =ENUMERATION OF (bad, good);
TYPE ~CS-~~- I IO = ENUMERATION OF (yes, no);
TYPE referenCegOint-type =ENUMERATION OF

(input, output, inout, internal-location);
TYPE --type = ENUMERATION OF

(and-op, OLOP, mt-op);
TYPE relation-type = ENUMERATION OF

(before, equals. after);
TYPE multiple-failure-group-id = INTEGER;
TYPE arbitmy-gmup-id = INTEGER;
TYPE unit-id = INTEGER,
TYPE unit-type-id = INTEGER;
TYPE aspect-id = INTEGER;
TYPE encapsulated-test-id = INTEGER,
TYPE test-id = INTEGER

TYPE setup-operation-id = INTEGER
TYPE access-opention-id = INTEGER,
TYPE test-outcome-id = INTEGER
TYPE referencepint-id = INTEGER
TYPE tem-id = INTEGER

(* identifies either an encapsdated test or a unit test *)

ENTITY model;
header-information: h w
unit-model: mc
type-library: SET IO?] OF unit-type;
testlibrary : SET [O?] OF unit-tesc
group-information: groups;
test-related-li braries: libraries;

END-ENTITY;

ENTITY headm,
Pnparer:
organization:
description:
mcdel-requ+ments:
model-creaaon-W
last-modified-date:
classification:
replacement-time-units:
replacement-cost-units:
test-time-units:
test-cost-units:
failure-units:
retest-ok-units:
setup-time-units:
setup-cost-units:
access-time-units:
access-cost-units:

E N D - E m ,

E m ~ U D S :

STRING;
OPTIONAL STRING,
OPTIONAL STRING,
OPTIONAL STRING,
STRING;
STRING;
STRING;
OPTIONAL STRING,
OPTIONAL STRING;
OPTIONAL STRING;
OPTIONAL STRING,
OPTIONAL STRING,
OPTIONAL STRING,
OPTIONAL STRING,
OPTIONAL STRING,
OPTIONAL STRING,
OPTIONAL STRING,

arbikuyz&ups: SET [O?] OF arbiaar)[_group;
mult-failuremps: SET [O ?] OF mult-fadure-group;

E N D - E W ,

ENTITY libraries;
setup-operations: SET [O?] OF setup-operation;
access~opelations: SET [O?] OF acctss_opcration;
reference-points: SET [O?] OF referencepiny
terms: SET [O?] OF tmn;

E N D - E m ,

ENTITY named-element
ABSTRACT SUPERTYPE ;

name: STRING
description:
id:

UNIQUE id;
E N D - E m ,

ENTITY failable-element
ABSTRAm SUPERTYPE ;

OPTIONAL STRING
INTEGER;

replaccmell~level: OPTIONALSTRING;
replacantnt-tim: OPTIONALREAL;
replaccment-mt OPTIONAL REAL;

OPTIONAL INTEGER; replacemen-skill-level:
criticality: OPTIONAL INTEGER;
failm-late: OPTIONALREAL;
retest-& OPTIONAL REAL;

END-ENTITY;

ENTITY unit
SUBTYPE OF(named-element, failable-element);
has-type: STRING;
of-* unit_typc_id;
has-parts: SET [O?] OF unis
has-aspects: SET [O?] OF aspect;

END--

m unit-typc

END--;

m aspcct

SUBTYPE OF(&-element, failable-element);

SUBTYPE OF(named-element);
failm-rate: OPTIONAL REAL;
relative-likelihood: OPTIONAL REAL,

E N D - r n ;

? g % E s L - e l e m e n t) ;

E N D - E r n ;

ENTITY multiple-failuremp

member-aspects: SET [O:?] OF aspect-id;
member-units: SET [O ?] OF unit-id;

SUBTYPE OF(&-element, failable-element);
member-aspects: SET [O ?] OF asy- id ;
member-units: SET [O ?] OF unit-&

END-ENTITY,

m unit-test
SUBTYPE OF(named-element);
has-unit-tests: SET [O?] OF unit-test;
has-encapsulated-tests: SET [O?] OF encapsulated-tess

END-E-,

ENTITY encapsulated-test
SUBTYPE OF (named-element);
is-measurable: yes-or-no;
time-to-perform: OPTIONAL REAL,
cost-to-perfoxm: OPTIONAL REAL,
rcq_setup-operations: SET[O?] OF setup-operation-id;
rcqs-access-ops: SET[o:?] OF acccss-operation-id;
reqs-technickm SET [O ?] OF technician,
rcqs-eqmpment: SET [O?] OF STRING,
has-stimulationqts: SET [O?] OF referencepin-id;
has-infojts: SET [O?] OF referencepint-id,
has-outcomes: SET [l:?] OF test-outcm;
has-rel-to-other-tests: SET [a?] OF test-relatioq

E N D - E m

ENTITY operation-element
ABSTRACT SUPERTYPE;

cost OPTIONAL REAL;
tim: OPTIONALREAL,

END-ENTITY,

ENTITY setup-operation

E N D - E m ,
SUBTYPE OF(&-element, operation-element);

ENTITY access-operation

END-ENTITY,
SUBTYPE OF(&-element, operation-element);

E" technician;

51

INTEGER;
INTEGER;
INTEGER;

requires-skill-level:
rtquires_Ckirrancc:
requins_authority:

E N D _ m ;

E M reference-point
SUBTYPE OF(named-elemnt);

has-type: OPTIONAL refaencegointtype;
location: SET [O?] OF dercnce-point-locatim

E N D - E m ,

ENTlTY refercnccpint_location;

END-E"W

ENTITY test-outmme

on-unit: unit-id;
at-lalxk OpllONAL STRING,

SUBTYPE OF(d-eIement) ;
pmb-false-outcome: OPTIONAL REAL,
base-confidence: OPTIONALREAL;
implies-good-list: OPTIONAL expression;
implies-bad-list: OPTIONAL expression;
exclude-for-safety : SET [O?] OF test-id;

END-ENTITY;

ENTITY expression;
isa-term: OPTIONAL tcrm_id;
isa-parenthesized-expr: OPTIONAL expression;
isa-tuple: OpIlONAL tupk

onlv one enw:
WHERE

~ ~ i S ~ ~ (i s a - t ; r m) XOK
EXlSTS(isa-parenthesi~-exprj
XOR EXISTS(isa-tuple);

E N D - E m ,

E N n n tuple;
expression 1 : expression;
OpCIXtOK operator-type;
expression2: OPTIONAL expression;

not-is-unw-optor:
(EXISTS(expression2) AND operator o not-op) OR
(operator = not-op) AND (NOT (EXISTS (expression2))));

WHERE

END-ENTITY;

ENTITY term
SUBTYPE OF(named-element);
is-test-status: OPnONAL test-status
iS-aspeCt-StaNS: OPTIONAL aspect-status;
iS-Ult-StaNS: OPTIONAL unit-status
is-arb-gmup-status: OPTIONAL

is-mult-failure~up-status: OPTIONqL

only-one-entry :
EXISTS(is-test-status) XOR
EXISTS(is-aspect-status) XOR
EXISTS(is-unit-status) XOR
EXISTS(is-arbinary_group-status)
XOR EXISTS(is_mult iple-f~l~~up_status);

arb_group-staNs;

mult-fdure-gmup-status;
WHERE

END-ENTITY;

ENTITY test-status
for-test: encapsulated-test-id;
ccnainty: OPTIONAL REAL;
has-outcome: test-outcome-id;

END-ENTITY;

ENTITY aspect-status;
for-aspect aspect_id;
certainty: OPTIONAL REAL,
has-status: status;

END-ENTITY;

E " Y unit-status;
for-unit
certainty:
has-status:

E N D - E m

unit-id;
OPTIONAL REAL,
status;

ENTITY multiple-failuresup-status;
for-mult-failure-gmup: multiple-failun-group-id;
catainty: OPTIONALREAL;
has-status: -;

E"TITy;

ENlTIY arbitmypp-status;
for-arbitmysup: arbitmysup-id;
certainty: OPTIONALREAL;
has-status: status;

E N D - E r n ,

ENTITY testrelation;
OCcUIs: relation-typc;
related-tests:

END-ENTITY,
END-SCHEMA,

SET [1 :?I OF test-id;

S. Discussion of the IFM Model

A few key points related to the model are included below:

UNIT

The most essential element of the IFM is the Unit. Since
Unit is a Named Element, it includes attributes such as name, a
textual description of the equipment, and a unique id (see ENTITY
Named-Element in the IFM). The strucm of the equipment being
modelled is expressed recursively: Units can be composed of parts
which are themselves unique units. The format of the has-parts
attribute for Units forces the hierarchy of Unit entities to be unique,
exclusive and untangled. A Unit which is a part of one particular
Unit entity will never appear as part of another Unit entity.

Each unit entity is associated with a Unit Type entity. Type
information for units in the IFM is stored in the library of Unit
Types. General information common to all units of the particular
type relating to replacement of the unit and statistics on failure rates
is included in the Unit Type entity (both Unit and Unit Type entities
are subtypes of the Failable Element entity). Multiple Unit entities
may reference the same Unit Type entity. Sometimes it may be
necessary to override the Unit Type information which is
automatically inherited by a Unit entity. For this purpose optional
infomation about replacement level, replacement cost, replacement
skill level, criticality, failure rate and Retest OK rate may be
spectfied for a Unit entity.

UNIT TYPE

A library of Unit Type information is pan of the
Information Flow Model. Type information inc!udes attributes
related to failure such as the maintenance level at which it is
replaceable, time, cost and skill level required to replace units of
this type and the Criticality of this type of unit. Additional type
infomanon pertains to unit failure statistics and includes attributes
such as failure rate, and Retest OK rate of units of this type. This
information is inherited by Units of this type unless the Unit entity
specifically includes values for the replacement and failure statistic
related attributes which are common to both entities.

A S P E a

Units are modelled by dividing their failure modes from a
test perspective into aspects. An example of an aspect would be a
counterkhift register combination which can function as a counter
or shift register. That unit can fail by not being able to count, or by
not being able to shift, or both. Certain tests will test the counter
function and others will test the shift register function and still other

52

tests may test both so the model must allow modelling of the single
physical unit as two separate "virtual units." An Aspect is a
subtype of the Named Element entity and has additional attributes
for a failure rate and a relative likelihood. The failure rate is a book
value for this aspect. The relative likelihood indicates how likely
this unit is to fail in this failure mode with respect to other failure
modes for the unit.

ARBITRARY GROUP

Entity Arbitrary Group provides a means of grouping Unit
entities in the IFM. Note that while units and aspects of the Unit
hierarchy are distinct entities, the concept of an arbitrary group in
the IFM is specifically designed to provide an alternative
partitioning of the Units and Aspects in the Unit hierarchy. Having
the has-parts attribute contain a set of unit-ids instead of Units,
forces the Arbitrary Group to reference Unit entities previously
defined in the Unit hierarchy; the same holds true for Aspects.

The Arbitrary Group entity includes attributes which
identify its name, a description of the group, a unique identifier
number and the list of Aspect and Unit entities which define the
group. Dependencies in the model can be established between test
outcomes and arbitrary groups.

MULTIPLE FAILURE GROUP

Entity Multiple Failure Group provides another means of
grouping Unit entities. In this case, however, the grouping is not
purely arbitrary but indicates that the Unit and Aspect entity group
members tend to fail together within the system being modelled.
By grouping the set of Unit and Aspect failures together, they can
be treated as a single failure in the modeL Attributes of the Multiple
Failure Group include the group name, a description of the group,
a unique identifier number (used in establishing dependencies
within test outcomes) and a list of Unit and Aspect entities which
comprise the group. Also included in the Multiple Failure Group
entity are attributes for describing failure statistics and xcplacement
infomution for the group.

UNIT TEST

The third major category of Entities in this model are those
related to specific tests. The basic premise on which the IFM is
based is that tests are encapsulated tests. This means that a test is
identified primarily by a unique identifier and that the details of the
test itself are contained in other models which are referenced
through a symbolic name, but not otherwise included in the IFM.

As far as any inference mechanism which uses the model is
concerned, all tests are encapsulated tests. Entity Unit Test allows
encapsulated tests to be identified, for naming purposes. with
higher level aggregations. This is solely for convenience and the
information in entity Unit Test will not be used during inference.
Entity Unit Test allows tests to be identifed as a subtype of Named
Element, and any Unit Test can be composed of other Unit Tests
and/or Encapsulated Tests.

ENCAPSULATEDTEST

An encapsulated test is an atomic element It is modclled as
a subtype of the Named Element entity. along with optional
information regarding the time and cost to perform the test.

Reference points have been added to the IFM so that the co-
l xality of various tests can be identified. Each encapsulated test
may optionally have a set of stimulation (input) points and a set of
information gathering (output) points. The Reference h i n t may
k-ve a type identified (one of input, output, inout, or
internal-location) and optionally have a set of Locations. Each
Reference Point Location optionally identifies a particular unit on
which the point is located and a textual description further labelling
the reference point.

An encapsulated test includes entities which define access

time and cost. and setup time and cost. The model allows any
number of access operation and setup operation attributes to be
specitled. The physical interpretation of the sets is that several
operations may be feasible to provide access to a specific test.
Some may also provide access to other tests so there is an
optimization issue. The assumption is that any of the operations
identified in the set of acccs-opemtions will provide access for the
requixed test. The same is true for setup-opemtions.

Encapsulated Tests also include a set of required technicians
and a set of requkd test equipment. This information is required
by the inference mechanism in order for it to be aware of what
resources are required to execute what tests. In the event that some
resources are not available, the inference mechanism can still
proceed with the diagnosis using the tests for which the required
resources are available. An attribute identifying whether a test is a
built-in test or not has not h e n included in the IFM since this
information is derivable from the model: if a test requires neither
technicians nor equipment it must be a built-in test.

The attribute has-relation-to-other-tests provides a means
of expressing how a test relates temporally to other tests. This
attribute contains a set of Test Relation entities which specify the
set of related tests and the temporal relationship to those tests. The
tests identifed in the list of related tests may either refer to specific
encapsulated tests or to unit tests.

The kemel relationships for the Encapsulated Test is the set
of two or more Test Outcomes. It is in this relationship that the
dependency information is modelled. This will be explained under
the entity Test Outcome.

TEST_OUTCOME

The IFM does not restrict test outcomes to GOOD or BAD.
It allows any number of test cutcomes. each identified as a Named
Element, alon- with attributes identifying the probability of this
outcome o c c d h g falsely and the base confidence in this particular
oufcomc.

The essence of a dependency model is "what is learned
from each possible outcome of each test." IFM models this learned
information in the most general way, so that redundant systems can
be modelled as well as conventional systems. The two attributes
which capture the dependency information are requiresjood-list
and requires-bad-list. The interpretation of the good l i t is that the
resulting expression defines what is learned to be good as a result
of that particular test outcome. The interpretation of the bad list is
that the nsulting expression defines what is learned to be bad as a

Test outcomes are formulated in logical expressions in the
good list and bad list attribiites. The entities Expression, Tuple and
Term implement the logical expression, shown below in BNF
form, in the EXPRESS language:

result of that particular test outcome.

expression := term I (expression) ltuple
tuple := unary-operator expression I expression

binary-operator expression
term := test-status I aspect-status I unit-status I

multiple-failure-group-status 1

unary_operator := NOT
binary_operator := OR I AND

arbimy-gmup-status

where AND has precedence over OR, NOT has precedence over
AND and parentheses have the highest precedence. The three
attributes of the entity Expression capture the three possible forms
of a logical expression in this syntax: an expression is either a
Tam. a parenthesized Expression or a Tuple.

The notion of a "symptom" is not included in the model as a
unique type of Test Outcome. There appcars to be great differenas
between the way different tools handle symptoms, and even in the
meaning of the word. The model attempts to be as general as

53

feasible. so we have decided not to distinguish symptoms as a
separate category because the data which is generally used to
identify symptoms is alnady available in the model. Tests include
the information as to the number and skill levels of technicians
requiredtoperformatest.thetimeandcostofeochtesfandthe
test quipment nquired to perform a test. If a particular tool
(WSTA for example) defines a Symptom as the result of a "cheap
test" by some definition of "cheap" then this information is
available and ''symptoms" can be distinguished from other tests by
these measures. Information available at no cost will be modelled
as a test regardless of other information. symptom not
withstanding.

ASPECT STATUS, UNlT STATUS,
MULTIPLE FAILURE GROUP STATUS.
ARBITRARY GROUP STATUS

All of these entities allow specification of the particular
aspect, unit or group as being GOOD or BAD, and the certainty
with which this information is known.

TEST STATUS

This entity allows the results of tests to be included in the
logical expression described above, permitting first order
dependencies to be described in the IFM. It is not clear at this time
whether a certainty value is required.

TECHNICIAN
TEST EQUIPMENT

Tests shall be further modelled to include the set of Test
Equipment and the set of Technicians required to perform the test.
For entity Technician, the number and skill levels of the technicians
required to perform a test is included.

The equipment required to perform a test is included in the
model so that in the event specific equipment is not available, the
system can proceed with diagnosis by recommending other tests
which can be performed. Links to other models for description of
test equipment can be provided exteanal to the IFM.
6. Services Interface

As described in section 2.2 of this paper, one of the goals
of the AI-ESTATE Committee of SCC-20 is to develop a set of
standards which support plug compatibility between components of
an AI-ESTATE compliant system. In order to achieve this goal, it
is essential to define the SERVICES which components of the
system provide to other components. The following discussion
deals with the SERVICES interface to an IFM-based reasoner
which will provide test strategy services to the levels above, and
exploit the test equipment at the lower levels to actually perform
tests.

The SERVICES interface to an IFM-based reasoner must
not restrict the manner in which services arc provided, nor can it
prevent components from providing non-standard capabilities. Our
standards should allow competitive advantage and flexibility to be
creative. yet conforming components must still be plug compatible.
We believe these goals can be achieved, and our initial approach is
discussed below.

There are several paradigms possible to specify
SERVICES, and the AI-ESTATE Committee is still evaluating
possibilities. No formal decisions have been made, even as to the
basic paradigm for the specification of SERVICES. There has also
been no formal discussion as to what SERVICES should be
included in the standard. There has, in fact, not been a formal vote
even as to the need for a SERVICES interface so this work is in its
infancy. With these strong caviots, the following paragraphs
describe the au tho r s ' current thinking on these issues.
Specifically, the following is not approved by the SCC-20 or by
the AI-ESTATE Committee.

6.1 Services Paradigm

Our cumnt view of the services interface is that an IFM-
based reasoner provides information regarding optimal test
strategy, and can be viewed as an abstract knowledge base. We
can represent the required ENTITLES and their relationships in
EXPRESS just as we described the IFM model itself in
EXPRESS. EXPRESS is implementation independent. Any
language can be used to store the actual data, and any query
language can be used to access the data. In order to achieve plug
compatibility, some decisions must be made as to the specific
command formats, but this is a mvial problem compared to the
issue of what information must be provided to an IFM reasoner,
and what results are produced. SQL, for example, could be
adopted as the standard method for accessing the IFM-reasoner.

Using this paradigm, a l l rcquests for service an equivalent
to reads and writes into the "knowledge base." The writes to this
data base art used to pass parameters to the reasoner, and to
establish the Criterion for a given session. As an example, assume
it is desired to set the priority for diagnosis to emphasize the time
required to diagnose a problem. Setting this priority would be
equivalent to writing a value into the priority values defined below.
An SQL command could be used to effect this write.

ENTlTY reasoner-paramete-data;
conmuer~model~#
maintenance-level:
m a x ~ ~ t ~ f o r ~ C a l l 0 U t
max-amb_group-size-for-callou
m a x ~ r e p l ~ t i m c ~ f o r ~ ~ o u t
m&c&ty-for-dout:
pnonty -on-repair-mt:
priority-OIl-Rpair_dme:
priority-on-diagnosis-cost:
priority-on-diagnosis-time:
priority-OIl-total-liXIh%
priority-on-total-cost:
pnority-on-repair-accmc y :
non-standard_pars:

END--,

STRING;
STRING;
C O X

it: INTEGER
time;

REAL;
REAL;
REAL;
REAL;
REAL;
REAL;
non-standard_d;

E!-

A command to compute the next test to execute would be
equivalent to a read from the value next-test in the following entity
structure. The reasoner would then compute the value which was
retumed as a result of the query.

ENTITY nasoncr_dagnosis-datata;
predicted-*-to-diag:
pre+cted-tlme-to-repair
prcd+d-cost-to-diag:
PrCdlcted-cost-to-Rp~
current-amb-gmup:
unit-type:
unit-selial-#
ament-best-dout
explaination:
last-test
last-test-result
Ilext-test:
tCSt-reSulC
non-standard-data:

END-ENTITY,

It can be seen that the ENTITY reasoner-diagnostic-data
includes non-standard-data as an atmbute. This non-stan- &ta
can represent additional functionality. or it can represent additional
information provided in response to the standard functionality
beyond the standardized response data. If the non-standard
features are in the form of additional information beyond the
required answers, then these non-standard capabilities do not even
result in a loss of plug compatibility. As an example, a reasoner
computes and then provides the test-id of the next test to
execute in response to a "read" from the next-test attribute. This
is the standard response. A specific reasoner uses non-standard

54

attributes to provide a set of other tests which could be executed
next with close to equal efficiency. An application using this
capability would read these values and might exploit one of the
alternative choices. If the reasoner were replaced with a compliant
reasoner which did not provide that additional information, then
when the reasoner tried to access the alternative choices, it would
receive "null" responses which it would then ignore. hence plug
compatibility has not been lost.

The current "strawman" list of "services" is shown below
although we must emphasize again that this list is incomplete, has
not been approved by any Committee. and is to be interpreted only
as the opinion of the authors.

6.2 Service Interface ENTITIES

ENTITY nasoner-admin-da@
reasoner-id
user-list:
curren t-user-logon:
current-time:
current-date:
replacement-level:
non-standard-admin-data:

END-ENTITY,

ENTITY user-list-&
user-name:
User-kk
userjassword:
user-skill-level:
clearance:
authority:
non-standard-user-data:

E N D - E m

ENTITY mner- i&
reasoner-name:
reasoner-version-number:
reasoner-serial-number
reasoner-contact-name:
reasoner-wntactj hone-#

END-ENlTl-Y

ENTITY user-admin-data;
user-logon-data:

END-ENTlTY;

ENTITY reasoner-status-data;
status:
cant-ta&
expected-time-to-complete:
time-expended-cant-task
time-expended-this-session:
time-since-last-backup:
allowable-user-options:
non-standard-status-dam

END-ENlllY

STRING;
SET[&?] OF user-list-&
user-list-&
cumnt-fime-&
current-date-&
STRING;
non-standard-&

STRING,
STRING,
STRING:
INTEGER;
INTEGER
INTEGER
non-standard_&

STRING;
INTEGER
STRING,
STRING;
STRING;

user-list-d

status-&
curren t-task-k

amz
time:
t

ENTITY status-&

END-ENTTI'Y

status: ENUMERATION-OF(executing, waiting for task.
error requires restart, no model loaded);

ENTITY current-task-&
taskid; INTEGER
task~namei STRING,
task-descnption: STRING;

END-ENTITY

E"Y user~rcsource-dam
tech-available: tech-available-&
equipment-available: Swl:?] OF equipment-id;
parts-inventory: parts-inventory-&
equipment-unavailable: Sml:?] OF equipment-id;

ENTITY technician-available-&

ENTITY mner-archive-da@
session-archive:

E N D - m

ENTlTY archivegortion;
a d 6 v e - k
archive-evenc
archive-text
archi-J-annotaIim:
non-standard-=hive-data:

E N D - m .

ENTITY archive-event-&
test-event
callout-event

annmand-event
logon_Cvent

END-ENTITY

ENTITY nasoner-mdc-u
session-mdc:
annoration:
mdc-since-last-sent:

END-ENTITY,

SET[l:?] technician;

SmOn OF archive-portion;

archive-event-d;
STRING;
STRING.

OPTIONAL test-id;
OFTXONAL unit-id;
OPTIONAL usa-id:
OPTIONAL command_id

S h K
ENTITY mck-unit-data;

specifies-unit-id-to-repair:
spccifies-unit-said-no-to-tepak
specifies-unit-type-to-repair S"g.
spccifies_tcchnician-kk s m g .
has-unit-test-data: SET[O:?] OF mdc-test&@
initiation_tim:
total~isoMm-time:
total-repail-time:
units-@aced:
final-unit-status:
non-standard-&-dam

END-ENTITY;

E " Y mdc-daa
reasoner-id
IFM-model-id
unit-id
unit-type:
technician-id
session-#
test-dam
initiation-linE
 isolation^^
total-=pair-fjmc
units-=placed:
find-unit-status:

END-ENlTlY

E " Y mdc-test-daw
test-namc:
test-kk
result:
callout
action-taken:

timt;

SET(O?] OF unit-id;
status;
non-standard-&

2

S h g .
String.
outcome-id;
set [O ?] of unit-callout;
set [O ?] of unit-*,

note:
uni t-status-after-action:
action_time:
aEtim-mr
non-standard-mdc-test-dam

E N D - r n ;

ENnn unit-rq&,
component-id:
Compon~t-type:
old-component-serial-no:
new-component-serial-no:
rcplaced:
~-rt?air-action:
=pa!r-t=:
repalr-cost
non-standanl-repair-data:

END-ENTITY,

ENTITY unit-callouc
unit-id

END-ENTITY;

ENTITY reasoner-parameter-der_data;

unit-type

controller-model-#
maintenance-level:

controller_model-#-&
STRING;

priority-on-repair-time:
priori ty-on-diagnosis-cost :
priority-on-diagnosis-time:
*ty-on_w-time:
pnonty-on-total-cost :
priority-on-repair-accuracy :
non-standard_parameter-data:

END-ENTITY,

E N " msoner-diagnosis-daw
@cted-time-to-diag:
predlcted-time-to-repo_repair:
predicted-cost-to-diag :
predicted-cost-to-repair:
current-ambituitymup:
unit-type:
uni t-seriaI-#
current-best-callout:
explaination:
last-test:
last-test-result:
next-test:
non-standard-diagdata:

END-ENTITY,

ENTITY user-diagnosis-data;
run-test
manual-test-result:

E N D - E m ,

E " I Y ATE-diagnosis-&&
run-test:
test-result:

END-E"Y

encapsuIated-test-i&
manuaI-test-result-&

ENTITY non-standard_d;
STRING; non-std-item-name:

an y-strings: SEl70?] of STRING;
any-ld.X SEITO?] of REAL;
any-integers: SET[o:?] of INTEGER,

E N D - E m ,

7. Conclusions

The Information Row Model and the Services model are
two key elements required to achieve an Open Architecture for
dependency-based test strategy tools. Similar models have also
been developed for fault we-based reasoners. Other work will -
attempt to develop standard models and services for other types of
reasoners including rule-based reasoners, neural-net reasoners,
fault dictionary-based reasoners, etc. Most test strategy reasoners
will provide similar services. and the union of these services will
become the general interface for test strategy reasoners. with
conformance classes defmed for the individual reasoner types.

Hopefully, products which conform to the standards
developed by the AI-ESTATE Committee will then be plug
compatible test strategy components within the larger Ada Based
Environment for Test.

8. Acknowledgements

The research which provides the foundation for the model
development described in this paper is funded by the Wright
Laboratory, Air Force Systems Command, Wright-Patterson AFB,
Ohio. Technical Direction is provided by Mr. James Poindexter,
(MRLCWTR). Mr. Poindexter has made many important
suggestions regarding our work, and his contributions are in part
responsible for the project's success to date.

References

1. Simpson, W.. and Sheppard. J., "System Complexity and
Integrated Diagnostics," IEEE Design and Test of Computers,
Volume 8, number 3, Sept. 91, pgs 16-30.

2. Sheppard, J., and Simpson, W.. "A Mathematical Model for
Integrated Diagnostics," EEE Design and Test of Computers,
Volume 8, number 4, Dec. 91, pgs 25-38.

3. Keiner, W.. "A Navy Approach to Integrated Diagnostics,"
AutcTzstCon 90, San Antonio, TX Sept. 1990.

4. "STAMP User's Manual," DETEX Systems Inc., Orange, CA.

5. Cantone. R.. and Caserta. P., "Evaluating the Economic Impact
of an Expert Fault Diagnosis System: The ICAT Experience,"
Roc of the 3rd IEEE Symposium on Intelligent Control, Los
Alamitos, CA, 1988.

Fwn 1 ACESTATE *rrnn

56

