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ABSTRACT

Developing diagnostic strategies is a difficult task,
complicated by the multicriterion nature of
diagnosis. Sequencing and evaluating tests, as well
as performing subsequent diagnosis, are difficult in
and of themselves, and achieving accurate diagnosis
becomes an ambitious goal. Several new diagnostic
tools can compute accurate decision trees using
many types of assumptions, thus increasing
analytical power. This increased power allows us to
consider the optimization of diagnostic strategies by
following several different approaches. We can also
compare the various tools available. This paper
provides a framework for developing diagnostic
strategies or decision trees according to multiple
criteria, and these criteria and decision trees fall
into three broad categories—preprocessing criteria,
optimization criteria, and postprocessing criteria.
We also discuss guidelines for comparing diagnostic
strategies for differing criteria. Interactions
between many of these criteria make comparisons
difficult or invalid; therefore, we provide rules for
equivalence as prerequisites for making valid
comparisons.

INTRODUCTION

The general problem of diagnosis is extremely
complex, and to successfully perform diagnosis, a
basic strategy must be imposed. A diagnostic
strategy comprises performing diagnostic tests,
evaluating outcomes, and undertaking repair on a
system with a certain set of symptoms and history.
In the recent past, widely divergent diagnostic
strategies were applied to systems having the same
set of symptoms and maintenance history. The
variety was acceptable because it was not clear
whether any particular strategy was optimal.
Unfortunately, generating optimal diagnostic
strategies falls in the class of NP-complete
problems,' thus computing globally optimal trees is
impractical for any moderate or large size problems.
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The problem of optimal design of diagnostic
decision trees was addressed as early as 1960 by R.
A. Johnson?  Johnson proposed constructing
diagnostic decision trees by using the information
gained per dollar expended per test for each
successive diagnostic step. Subsequently, additional
work in applying information theory to diagnostics
has been pursued.**

All current approaches to optimal diagnostic
strategies apply local search or approximate global
search. Given the constraints imposed by local
search, we are still interested in providing efficient
diagnostic strategies, most of which today are
represented by the development of decision trees.
Therefore, we seek to apply several optimization
techniques to continue to improve resulting trees.

Diagnosis is truly a multicriterion problem. By
multicriterion we mean that for any given set of
circumstances, a number of factors will affect
developing diagnostic strategies. Because local
search fails to provide globally optimal solutions,
comparing alternatives tends to be the best and
clearest way to evaluate the worth of a
methodology. Applying several different criteria,
however, makes comparing approaches especially
difficult if we are not precise in our definitions and
do not control each of the optimization factors.

The approaches to diagnosis presented in this paper
have evolved over that last 12 years through more
than 250 real-world applications using a set of tools
called STAMP® and POINTER™ °  Although
developing these tools has shaped our thinking, the
applications themselves have driven the
development of the tools, and the optimization
processes presented here should apply, in one form
or another, to all diagnostic approaches. The
context of diagnosis has led to a number of different
optimization problems that occur at various stages
of diagnostic strategy development and relate to
three broad categories of criteria: preprocessing,
optimization, and postprocessing,.
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Efficiency can be represented in a number of ways.
For example, one interpretation of efficiency is
“best” use of resources. This leaves “best” to be
determined; best can include all of the factors we
discuss here and, thus, any method that ignores any
of these may be inefficient. For purposes of this
paper, we assume efficiency is achieved when we
optimize using a cost factor such as time. Thus a
diagnostic strategy that isolates in an expected time
of 5.0 minutes is more efficient than one that
isolates in an expected time of 10.0 minutes, all
other factors being equal. The last point, as we
shall see is very important.

PREPROCESSING CRITERIA

Preprocessing criteria include those factors that are
undertaken before formulating diagnostic strategies
to condition the problem to match requirements.
As we shall see, these may or may not affect the
efficiency of the resulting strategy. Three
preprocessing criteria discussed here are minimizing
the set of tests performed, developing symptom-
based strategies, and developing false alarm tolerant
strategies.

MINIMUM TEST SET

In assessing the value of a set of tests to perform
diagnosis, one major objective may be to minimize
the number of tests used in the tree. Because each
test must be specified, developed, documented, and
validated, reducing the number of tests can
significantly reduce cost. Frequently, ad hoc
methods for developing diagnostic strategies result
in overtesting. Determining the minimum test set
should reduce development cost, but may increase
life- cycle cost. Minimum test strategies may be
less efficient. Test cases on a moderate-size system
indicate that as much as 10% loss in efficiency (as
measured in time to test or number of tests to
achieved isolation) may occur. Some systems
examined have no degradation.

The degree of development savings or life-cycle-cost
losses depend on several factors, and both types of
strategies need to be developed to project these
costs. In a test case, based upon an environmental
control system with more than 400 fault isolation
conclusions and 300 tests,® the minimum test set was
175 tests and required 9.77 tests on average for
diagnosis. When the full test set was available, 217
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of the these tests were used with an average of 9.66
tests used for diagnosis. The up-front savings of not
developing 43 tests may well be worth the difference
in isolation efficiency.

The approach to computing the minimum test set
depends on the data structure and underlying
optimization philosophy. In STAMP, this is a
selectable [cature, and the analysis simply evaluates
whether eliminating a test will change isolation
capabilities. (Note that the tests are ranked by cost
first.) If the answer is no, the test is eliminated,
and the question is asked of the next test. If the
answer is yes, the test is not eliminated, and the
question is asked of the next test. Precise
algorithms for this analysis are given in reference 5.

SYMPTOM-BASED DIAGNOSIS

For systems that exhibit well-defined symptoms, a
large reduction in diagnostic effort can be achieved
by providing detailed strategies for each symptom.
We can usually fault isolate a system more
efficiently by beginning with a symptom. Beginning
with the symptom actually eliminates many
possibilities while pointing to others, thus reducing
the search space tremendously. Sometimes, a
symptom is so precise that it points directly to the
answer and eliminates diagnosis completely.

This type of diagnostic savings is usually
accompanied by a sizable increase in up-front
diagnostic development costs because we must
generate, document, and verify more strategies,
including one to use when no defined symptoms are
present. These costs can be avoided by using a
reasoner in  devices that can accommodate
symptoms and adjust strategies. When developing
portable maintenance aids, updating the symptoms
should be possible in the field.

FALSE ALARM TOLERANT STRATEGIES

False alarms can become a severe problem for
many systems that are state-of-the-art or that
perform diagnostics with inaccurate test equipment.
A number of other factors also influence the
significance of false alarms.®  Usually three
approaches are possible for compensating for false
alarms:



® Open test tolerances (this runs the risk of
missed detections)

® Repeat poll (allows transients to die out, but
also increases the chance of missed
detections because intermittent indications of
real failures may go away)

® Seek confirmation of detection by performing
additional tests

Such approaches, of course, decrease efficiency
because additional testing is being performed. One
approach to computing what additional testing is
required is by hypothesis verification.” Hypothesis
verification methods chose an additional test based
upon its ability to verify or deny the diagnostic
conclusion. One such approach is dealt with in
detail in reference 5.

OPTIMIZATION CRITERIA

Optimization criteria apply, in the mathematical
sense, after preprocessing is completed. We can
apply a cost function to our data and try to
minimize the value of that cost function. In
diagnosis, we are concerned with three basic types
of cost parameters:

® Information content of a test
® Cost directly affecting tests
e Costs indirectly affecting tests

Information content of tests is addressed by using
information measures for decision processes.
Reference 5 provides an information entropy bascd
approach.

After preprocessing the criteria, we can derive

diagnostic strategies that account for both direct and
indirect cost parameters affecting diagnosis:

® Direct parameters are values assigned to those
factors that are tied to testing.

® Indirect parameters are values assigned o
factors tied to conclusions.

Examples of direct parameters include test cost, test
time, and skill level. In general, the larger the valuc
the less desirable the test. For such factors, we can
define a simple, normalized weight given by:

w, = weight applied to the ith test
d, = the direct cost parameter (inverse
proportionality)
k, = anormalizer defined as:
-1
IT|

1
Kﬁ):-(;
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where
| T| = the size of the set of all tests being
considered
W; = value always lying between 0 and 1,
increasing in value for decreasing values
of d..

Indirect parameters are so named because they have
an indirect effect on the tests. Examples include
failure rate, safety, and criticality. A higher value
usually indicates a more desirable conclusion to
consider, thus tests that examine conclusions with
high values are more desirable. Because the
parameters are indirect, we must first compute a
contribution of conclusion weights on each test as:

|F|
=) ¢
j=1
where
e,, if the test examines conclusion j
a. = j _
I 0, otherwise
x; = contribution of conclusion weights on
the ith test
a, = intermediate value (either the indirect ¢,
or ) of the jth conclusion
|F| = the set of all appropriate conclusions

The actual weight can be then computed as:

Wi=KX
where
w, = weight applied to the ith test
x, = intermediate value (direct
proportionality)

k, = a normalizer defined as:



A third parameter, [,, relates the information
content of a test and must be computed by a
method consistent with the modeling approach. In
STAMP, we use an entropy measure.” The value of
the ith test at any time is given by:

val,=]T owp™
i1

where
Product = performance over n weighting
factors (including information)
o = empbhasis exponent applied to factor j

ISOLATION SEQUENCE CUTOFFS

In conjunction with the indirect parametric
weighting criteria, a number of cutoff criteria may
be applied. For example, time may be limited, and
we may need to terminate diagnosis after time
expires. We apply these cutoffs to isolation
strategies with any weighting schema. Other cutoffs
may include acceptable ambiguity size or numbers
of steps in a sequence. In fact all may be active in
any diagnostic strategy (i.e., quit after 22 minutes or
7 steps or when the ambiguity is reduced to n or
fewer replaceable units). Any premature
termination of a diagnostic sequence will cause a
change in the resolution. Combining isolation
sequence cutoffs and multicriterion optimization
makes comparing competing techniques almost
impossible because of the resolution problem to be
discussed later.

POSTPROCESSING CRITERIA

Once we achieve a complete diagnostic strategy, we
can begin to ask trade-off questions such as “What
if I were willing to sacrifice diagnostic resolution for
isolation efficiency?" or "What if I were willing to
give up some detection capability to get a quicker
go path?" A prime example of this type of analysis
is given by decision tree pruning Lo achieve built-in
tests (BIT) objectives. In spite of the availability of
more and better analysis tools, few if any formal
methods exist for providing optimal BIT
specifications.

392

In response to this need for optimal BIT
specification, at least two approaches to specifying
BIT have been developed. Both approaches are
based on the assumption that BIT resources must
be minimized, and both approaches provide
methods for eliminating “unneeded” tests from the
BIT specifications follows:

® Test point utilization (TPU): Derived from
examining the frequency of test and test
point use in a decision tree to determine
whether or not to include a specific test in
BIT.

® Optimized resolution analysis (ORA):
Focuses on several requirements of BIT to
provide complete detection and maintain
maximum expected ambiguity resolution.

In general, the ORA method provides a more
robust answer than TPU, but with increased
mathematical complexity. A detailed comparison of
two methods is provided in reference 7.

TEST POINT UTILIZATION

To specify BIT for a system, we assume that we
have developed a set of candidate tests to be used
in BIT. The TPU metric is used to determine
which of the tests will be BIT as follows:

1. A diagnostic decision tree is developed with
the candidate BIT tests using some
optimization procedure (e.g., information
gain). The tree may include various cost
weights, but the use of weights at this point
should be considered with care.

2. Once the decision tree has been generated,
the number of times each test is used in an
isolation sequence is counted, and the tests
are sorted based on these counts. If only n
tests can be used in BIT, then the n tests
with the highest counts (i.e., the most
frequently used tests in the tree) are
selected.

The advantage of this approach is its apparent easy
implementation. The disadvantage may be that its
simplistic approach may yield a less robust answer
than ORA.



OPTIMIZED RESOLUTION ANALYSIS
The ORA method proceeds in three steps:

1. Perform an excess test analysis to eliminate
tests providing redundant or excess
information (i.e., elements redundant and
excess tests).

2. Generate a decision tree using all of the
remaining BIT candidate tests.

3. Prune the decision tree except for the go
path.

In the first step, redundant test is defined to be a
test that provides exactly the same information as
another single test. An excess test is defined to be
a test that provides exactly the same information as
a combination of two or more other tests. This is
precisely the analysis for minimum test set,
previously described.

In completing the second step in the ORA
algorithm, generate a decision tree using all of the
remaining BIT candidate tests, the tree may be
optimized according to whatever cost criteria are
appropriate. However, BIT usually has near
uniform cost and time. This means that the most
often used criterion would be failure rate, thus
emphasizing failure probability in deriving the
decision tree. In addition, the tree should be
generated in such a way that the fewest expected
number of tests on the go path are generated.
After the decision tree is generated, the number of
tests on the go path is determined. If this number
exceeds the number allowed, all other tests are
eliminated from the tree, and tests are eliminated
from the go path starting at the end of the path
until the number of tests remaining equals the
allowance specificd.

If available tests are sufficient to construct a
complete go path but insufficient to produce a
complete decision tree, then ambiguity must
increase as a result of eliminating tests to meet the
allowance. In order to minimize expected
ambiguity, the ORA algorithm prunes the tree
starting at the leaves, excluding the go path from
consideration.®® The pruning algorithm maintains
minimum expected ambiguity by examining the
failure probability at the internal nodes of the trees
and pruning the nodes with the lowest probability of
failure.

393

COMPARING DIAGNOSTIC STRATEGIES

With a number of tools now capable of generating
optimized strategies, comparisons are possible. The
general problem of developing an optimal diagnostic
strategy, however, is NP-complete, making global
optimization algorithms computationally complex.
Indeed, because the existing tools use local,
heuristic, or estimating approaches and generate
different answers, they invite comparison.
Comparison, however, is not easy to do, as seen
from the different types of criteria enumerated here.
Comparison becomes more reliable and meaningful
if a few basic rules are applied.

Rule 1: Tools must be accurate. Accuracy is a
requirement, not a basis, for comparing tools.
Any loss in accuracy invalidates further
comparison because strategies are incorrect and
further differences are irrelevant. Improper
diagnosis costs dearly in any environment.
Approaches applying reasoning under uncertainty
further complicate the accuracy issue.

Rule 2: Resolution is more important than
efficiency. The system with the tighter fault
isolation (smaller ambiguity size) probably has a
better inference engine. In fact, for a given
system with a fixed set of tests, resolution should
be computable and independent of isolation
strategy; resolution should be identical for the
algorithms compared. The resolution should not
only be identical, but the ambiguity groups should
be identical. No further comparisons can be
made if the resolutions are different. (Again,
probabilistic or uncertainty-based approaches
complicate this rule.)

Rule 3: Given the same resolution, criteria must
be closely similar. Animportant parameter when
developing diagnostic strategies is the size of the
test set (directly relatable to development cost).
If the size of the test set is not a concern, be sure
that test set minimization is not invoked in any of
the tools. All other factors should remain
constant, such as the need for false alarm
tolerance.

Rule 4: Expected values of time, cost, or other
factors must be compared over the entire test and
conclusion set. There are specific rules that must
be followed to have a statistically valid
comparison of subsets, and they are usually
harder (o satisly than just taking the whole set.



For example, a sample subset must be identically
distributed and representative of the whole set (a
certain number of distribution moments must be
the same).

Rule 5: Differences in efficiency should be
evaluated using significance tests, such as a ¢-test.
This, of course, requires a sufficient number of
comparisons to yield a statistically valid sample.
As a rule-of-thumb, however, differences in
efficiency of 5% or less would tend to indicate
essentially equivalent approaches.

Rule 6: When varying parameters to evaluate
performance, only one parameter should be
changed at any one time to determine its effects
on the outcome. Otherwise, it is difficult (if not
impossible) to account for interacting criteria.

SUMMARY

Diagnostic strategies can be developed that
incorporate a large number of optimization criteria.
Several criteria can be used at the beginning of
diagnosis. One criterion is a minimum number of
different tests in the tree. Often when developing
diagnostic strategies, a single test has substantial
cost associated with developing technical orders,
documentation, verification, or test program sets.
This type of analysis minimizes the tests that arc
used, but often at the expense of efficiency during
optimization. Other preprocessing analyses include
developing symptom-based strategies and false
alarm tolerant strategies.

A large number of criteria can be used during
strategy development. These include minimizing
cost and accounting for other criteria such as time
not to exceed x, steps not to exceed y, or ambiguity
size not to exceed z. The last case may actually
trade off ambiguity resolution for efficiency.
Applying these criteria is not a straightforward
mathematical process.

Poststrategy analyses include decision tree pruning
algorithms and may be directly related to
developing BIT where a finite capacity exists on
board, and we must prune the resulting tree to
match that capacity.

Finally, because of the complexity of developing
diagnostic strategy based on multiple criteria,

394

comparing tools and methodologies employing these
techniques is not straightforward. Several rules
based on applying sound empirical analysis. Most
important of these rules is that tools must provide
equivalent resolution and accurate answers in order
to have a valid basis for comparison.
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