Standardizing Diagnostic Models for System Test and Diagnosis

John W. Sheppard
ARINC Research Corporation
2551 Riva Road
Annapolis, MD 21401
Phone (410) 266-2099, FAX (410) 266-4010, E-mail: sheppard @arinc.com

Abstract: Recent standardization activities by the IEEE are
focusing on defining test specification languages, services between
components of test environments, and most recently, interfaces
and interchange formats for intelligent test systems. Currently,
the Artificial Intelligence and Expert System Tie to Automatic
Test Equipment (AI-ESTATE) set of standards (P1232) is
defining formats and services for exchanging diagnostic
knowledge between reasoners on next generation test systems.
In this paper, we will describe the theoretical underpinnings of
the first knowledge format being standardized by the Data and
Knowledge Representation Working Group of AI-ESTATE. We
will also provide a progress report on the standards activity.

I1. INTRODUCTION

Recent initiatives by the IEEE and the Department of Defense
on standardizing automatic test equipment architectures have
provided a unique opportunity to improve the development of
test systems. The ‘‘A Broad Based Environment for Test”
(ABBET™) initiative (IEEE PAR 1226) is attempting to
provide the next generation in ATE and TPS development by
standardizing test services and test development tools [1]. By
using standardized methodologies in developing test
executives, test programs, and communication protocols,
ABBET conformant test systems will be interoperable, have
transportable software, and move beyond vendor/product
specific test stations. Further, the ‘‘Artificial Intelligence and
Expert System Tie to Automatic Test Equipment’” (Al-
ESTATE) initiative (IEEE PAR 1232) will provide
architectures for standardizing the test services of reasoning
systems (including traditional fault trees, expert systems,
model based systems, simulation based systems, and neural
networks) and provide guidance on the test strategy services
for the ABBET architecture [2].

Central to the ABBET/AI-ESTATE initiatives is the desire to
incorporate the object oriented paradigm in specifying test
resources, test programs, and test services. The various
component standards of ABBET and AI-ESTATE are using
information modeling based on the ISO Express object
oriented modeling language. In this paper we will focus on

343

one of the standards proposed under AI-ESTATE for
developing diagnostic models. This particular standard
proposes models for the object oriented design of fault trees
and enhanced diagnostic inference models (EDIM). In
addition, the proposed standard includes specifications of
attribute models and common element models. These
correspond to specific classes of objects that would be
specified for a particular test architecture. The focus of the
paper will be on the theoretical basis for the EDIM and its
use in the industry.

The ISO Express models proposed for AI-ESTATE provide
a standard representation of the common data elements
required for test strategy optimization at the system level.
Together with other standards within AI-ESTATE and
ABBET, this will insure portability of test strategy related
knowledge bases for intelligent equipment test and diagnosis.
The specific goals of the component standard include
incorporating domain specific terminology, providing
extensibility, insuring portability of test executives and
reasoning systems, enforcing interoperability of test resources
and test equipment, providing traceability of the test process
and the test development process, and permitting object
oriented testing through the use of test encapsulation.

II. AI-LESTATE

The *‘Artificial Intelligence and Expert System Tie to ATE”’
(AI-ESTATE) standard P1232 is being developed to
standardize on the interfaces between test systems and
artificial intelligence based systems. In addition, AI-ESTATE
is including standard representations for several types of
knowledge bases and databases. Currently, the standard
specifies representations for fault tree models (FTMs) and
enhanced diagnostic inference models (EDIMs).

Currently, AI-ESTATE is being developed using a cooperative
processing model [3]. Under this model, all processes
communicate across a communications pathway or bus and
access other parts of the system through a set of services.

0-7803-1910-9/94 $3.00 © IEEE

COMMUNICATION PATHWAY

Presentation Reasoner Test Malot. Data Informetion Operating
System System System System Sysem System
User Interface Reasoner Test & Diagnostic Maintenance Information Operating System
Services Services Services Data Services Services Services
Implementation Implementation Phys. Resources DBMS DBMS

Fig 1. Architecture for an AI-ESTATE test system.

Specifically, each functional block is defined by the
operations that can be performed on or by that block. The
attributes of the block are specified in a class lattice in order
to maximize reuse of components. If one functional block
needs to interact with another, it does so by using the services
provided by that block. Using this architectural concept, the
objects communicating in an AI-ESTATE system include the
test system, the reasoner, the human presentation system, a
maintenance data collection system, the unit under test, and
the operating system. This architectural concept is depicted
in Fig. 1. Any data that is used by the objects on the
pathway will be specified in some standard representation.
Even though we currently have specifications for only the
FTM and the EDIM, we anticipate defining or referencing
standards for maintenance data collection databases and other
databases and knowledge bases.

The current model representations defined by the AI-ESTATE
P1232.1 Data and Knowledge Specification are specified
using the Express modeling language. Currently, AI-ESTATE
has specified four models including a common element model
(a collection of entities used by all models), an attribute
model (a collection of attributes inherited by several of the
models), a fault tree model (a standard representation for a
static fault tree), and the Enhanced Diagnostic Inference
Model (a standard representation that extends the concepts of
the dependency model and the information flow model as
discussed below).

The structure of a fault tree can be viewed as a decision tree
or table [4]. Each node of the tree corresponds to a test with
some set of outcomes. The outcomes of the tests are
branches extending from the test node to other tests or fault
isolation conclusions. Typically, TPSs are designed around
static fault trees; therefore, the AI-ESTATE subcommittee
decided it was prudent to include a representation for the fault
tree in its standard even though fault trees are not typically

344

considered Al systems. The fault tree will serve as a minimal
representation for test related data.

The AI-ESTATE fault tree model inherits elements and
attributes of the common element model and the attribute
model. The fault tree is processed by starting at the first test
step, executing the indicated test, and traversing the branch
corresponding to the test’s outcome. The procedure is
followed recursively until a leaf is reached in the tree
indicating a fault isolation has occurred.

The EDIM is based on concepts of dependency modeling [5]
and information flow modeling {6]. As with the FTM, the
EDIM inherits elements and attributes from the common
element model and the attribute model. In the EDIM,
diagnostic test outcomes have been generalized beyond pass
and fail outcomes to multiple outcomes for a diagnostic test.
Inferences are identified between particular test outcomes and
other test outcomes and diagnostic conclusions.

The set of inferences associated with a particular test outcome
are represented in disjunctive normal form. This
representation provides flexibility and consistency in the
logical expression of the inferences. No negations are
permitted within the AI-ESTATE representation since
negative terms are expressly specified as atoms in the
conjunctions. In other words, each conjunction consists of a
set of positive and negative inference atoms, and the negative
inference atoms are assumed to be negated.

The EDIM can be used by an Al system in several ways.
The most basic approach is to limit test outcomes to pass and
fail and to assume the test outcomes are symmetric. This
leads to a traditional dependency model as used by several
diagnostic tools in the industry. By allowing multiple failure
inference, various grouping operations, asymmetric inference,
and reasoning under uncertainty, the model extends to the

information flow model as described in ref. 6. Finally, the
EDIM extends further by permitting more detailed
specification of test and UUT data, multiple test outcomes,
and an extension mechanism (called the EXTEND schema)
similar to the EXTEND verb of ATLAS [7]. The EXTEND
schema provides tremendous expressive power while still
controlling conformance to the standard. For example, using
the EXTEND schema, causal relationships between fault
isolation conclusions can be specified, thus extending the
EDIM to include a causal model. For example, the EXTEND
schema can also be used to include constraint information in
case constraint satisfaction is used for diagnosis. Thus the
EDIM has great power to provide many Al based solutions.

An important notion in developing object oriented test systems
that include Al for test sequencing and inference is the ability
to isolate a test from the remainder of the test set. This test
isolation is referred to as test encapsulation [8]. An
encapsulated test is an atomic test element defined to be
independent of the current state of the UUT and the tester. In
order to define an encapsulated test, preconditions of the tests
and postconditions of the test need to be defined. The
preconditions indicate the steps necessary to set up the test for
execution, and the postconditions indicate the steps necessary
to return the state to neutral. Individual tests and groups of
tests can be encapsulated depending on the specific
requirements of the tester and the UUT.

I1I. DIAGNOSTIC MODELING

The primary model under development in the current draft of
P1232.1 is called the Enhanced Diagnostic Inference Model
(EDIM). The EDIM has its basis in the dependency model of
the 1980s. Historically, the dependency model was used to
map relationships between functional entities in a system
under test and tests that determine whether or not these
functions are indeed being performed [9]. Typically, the
model characterized the connectivity of the system under test
from a functional perspective using observation points (or test
points) as the junctions joining the functional entities together.
If a portion of the system fed a test point, then it was claimed
that the test associated with the test point depended on the
function defined by that part of the system. This type of
model is also referred to as a causal model [10], {11].

More recently, researchers and practitioners of diagnostic
modeling found that this approach to modeling was
problematic and could lead to inaccurate models. Thus,
models developed under the functional or connectivity
paradigm often led to inaccurate diagnostics. At this point,
believing the algorithms processing the models were correct,
work was done to identify the problems with the modeling
approach and determine how to capitalize on the power of the

345

algorithms processing these models without inventing a new
approach to model-based diagnosis.

It was found that the focus of the model should be on the
tests rather than on the functions or failures that may exist in
the system [12]. In particular, the focus shifted from
modeling functional or physical connectivity to relating
inferences that can be drawn from real tests and their
respective outcomes. From this focus, it was found that the
dependency model was actually a representation of logical
relationships between test information and diagnoses in the
system under test. Such a representation can draw directly on
principles from first order logic, and indeed the underlying
algorithms processing these models do just that. It was at this
point that the community began to recognize that the name
dependency model was inappropriate.

In one of the first papers to address the issue of defining a
diagnostic model, a new name was proposed for the
modelthe information flow model (IFM) [6]. The emphasis
intended by using this name was to focus on the information
provided by tests and how this information propagates via
logical inference through a network of information sources in
a diagnostic model.

An information flow model has two primitive elements: fests
and fault-isolation conclusions. Tests include any source of
information that can be used to determine the health state of
a system. Fault isolation conclusions include failures of
functionality, specific non-hardware failures (such as bus
timing), specific multiple failures, and the absence of a failure
indication. The information obtained may be a consequence
of the system operation or a response to a test stimulus.
Thus, we include observable symptoms of failure processes in
the information flow model as tests. Doing this allows us to
analyze situations that involve information sources other than
formally defined tests. The purpose of the model, of course,
is to combine these information sources (tests) to derive
conclusions about the system being diagnosed.

After specifying the primitive elements of the model, the next
step is to determine the logical relationships among the tests
and between the tests and the conclusions (mostly the latter).
The basic representation of the information flow model is a
logical representation of the system being analyzed. In this
representation, we define logical values for tests and fault-
isolation conclusions. Specifically, if a test fails, it has a
logic value of true; if a test passes, it is false. An asserted
conclusion is true; a conclusion eliminated from consideration
is false. To determine the logical relationships, an analyst
will consider the following for each test:

e What inferences can be drawn from observing a
test failing?

» What inferences can be drawn from observing a
test passing?

In the initial stages of modeling, the first issue is more
important. The modeler is interested in listing conclusions
that, corresponding to a failure, would explain the considered
test failure. The modeler is also interested in listing tests that,
should they fail, would cause the current test to fail. If such
tests do exist, we say that the current test observes tests that
detect failure and conclusions that may fail. The second
question is important in determining the type of test (e.g.,
whether the information provided is symmetric).

1V. THE DIAGNOSTIC INFERENCE MODEL

Several commercial and military tools process models based
on the dependency model and the information flow model.
One of these models is the Weapon System Testability
Analyzer (WSTA) of the Integrated Diagnostic Support
System (IDSS) owned by the U.S. Navy. Currently, the Navy
is producing a handbook describing how to develop models
fitting the description of section 3. Recognizing the problems
associated with calling these models *‘dependency models,”’
the Navy has also opted to change the name of their model,
and they chose the name Diagnostic Inference Model. Again,
the emphasis intended behind the name change was the
relationship of information provided by tests and the
inferences about diagnosis that can be drawn from specific
test outcomes.

The DIM is an abstract representation of the information
yielded by a unit under test when subjected to a well defined
set of tests. This model is used to predict various system
maintenance characteristics and derive optimum diagnostic test
sequences that minimize maintenance costs. The DIM
contains inference elements and maintenance specific
elements. Tests and conclusions represent the inference
elements of the DIM.

A test is an inference element of the DIM. It establishes a
physical fact about the operation of a UUT from which UUT
failure conclusions and other test conclusions are inferred.
For the DIM, only two facts or outcomes are established by
a test-pass and fail. The conclusions that can be inferred
from these test outcomes cannot be determined until three
physical characteristics of the test are defined-stimuli
provided to the UUT, parameters to be observed, and pass/fail
criteria.

In most physical systems, there is a range of values for
observed parameters that are considered to be within an
acceptable tolerance window for normal operation of the

UUT. The range of values are used to establish the outcomes
to be associated with performance of a test. Variations in real
UUT component parameter values that remain within
specified component tolerances are responsible for the range
of expected values (as opposed to a single value) that are
within the test limits. The range of values outside of the test
limits are associated with UUTSs containing failure modes that
have a cause/effect relationship with the observed parameter.

The conclusion is a diagnostic element of the DIM. The
conclusion represents the inference that can be drawn from a
test outcome—that a component failure exists or does not exist
and/or that another test should pass or should fail. DIM
conclusions are assigned to test outcomes as inferences during
model preparation. The conclusions are then processed by
various testability algorithms to close the inference model and
to evaluate UUT testability characteristics and compute
optimized diagnostic test sequences.

The conclusion also can assume one of two values—true and
false. A true value indicates that the associated component or
input parameter is healthy according to the criteria of the
conclusion. A false value indicates that the associated
component or input parameter is faulty (note that this is
opposite to the truth value assignments in the IFM). Inferred
conclusion can be demonstrated by inserting faults into the
system and observing test outcomes. A system contains a
finite number of output parameters, component parameters and
input parameters. Therefore, there are a finite number of
conclusions for a system (one for each component parameter
and input parameter and associated evaluation criteria).
Combinations of conclusions can be incorporated directly or
handled by the diagnostic algorithm of the tool used.

In the context of the DIM, a component failure mode is
defined as a component parameter value that fails the
evaluation criteria established in the associated conclusion.
For a properly defined conclusion, the system no longer
performs one or more of its functions in accordance with
specified requirements when the component parameter
associated with the conclusion fails the evaluation criteria.
Therefore, a conclusion value of false establishes the existence
of a component failure mode. In a well designed system, the
component parameter value must fall outside the specified
tolerance range for the associated component failure mode to
exist. However, some systems have provision for alignment
to bring a system up to specified performance when a
parameter is not out of tolerance but the cumulative effect of
all tolerance build-up is failure. Like component failures,
alignment is treated as a conclusion within the DIM.

Components often have multiple failure modes. For example,
a wirewound resistor may fail open, shorted, out of tolerance

346

low resistance (but not completely shorted). Because each
system output parameter can be expressed as a function of the
. input and component parameters and the sensitivity of each
system output parameter to changes in a component value can
vary markedly, system outputs may respond differently to
various failure modes of the same component. Furthermore,
if there are multiple failure modes related to a single
component, the failure modes may be able to exist
independently, each with its own effect on overall system
performance. A conclusion must be prepared for each
component and input failure mode.

V. THE EDIM

The AI-ESTATE subcommittee of SCC20 is working to
standardize a neutral interchange format for models based on
the information flow model or the diagnostic inference model.
Because they recognize the modeling being standardized is an
extension of the IFM and DIM; therefore, the committee has
opted to name their model the enhanced DIM (EDIM). The
purpose of this paper is not to provide the specification of the
model since this can be found in the standard itself. Instead,
we relate the EDIM to the DIM by pointing out the relevant
parts of the standard and some of the enhancements.

In addition to the EDIM, AI-ESTATE defines two additional
models intended to be references by all models specified in
P1232.1. First, AI-ESTATE defines a Common Element
Model which includes entities common to the domain of
equipment test and diagnosis. They are intended to serve as
the basic entities to be used by other model specifications in
this document. The Common Element Model include the
following entities.

ENTITY diagnosis;
name:
description:
corresponds_to:
repairable_at:
failure_information:
members:

END_ENTITY;

string;

optional string;
system_aspect;

optional repair_level
optional failure_probability;
set [0:?] of diagnosis;

Thus diagnosis is a part-whole hierarchy consisting of
additional diagnoses. These diagnoses are referred to as
diagnostic units in the DIM and have been called by other
names including aspects, components, fault isolation
conclusions, or failure modes (depending on the model).
Because the entity is defined to be a hierarchy, it also
encompasses concepts such as line replaceable unit, line
replaceable module, shop replaceable unit, weapon replaceable
assembly, shop replaceable assembly, subsystem, etc.

Two additional attributes of the entity diagnosis should be
noted. First, diagnosis ‘‘corresponds to’’ a system_aspect.

347

The system_aspect is intended to represent a real physical part
of the item tested so that appropriate repair actions can be
identified. The system_aspect is defined by the following
entity.

ENTITY system_aspect;
name:
description:
failure_information:
repaired_using:
members:
END_ENTITY;

string;

optional string;

optional failure_rate;
repair_action;

set [0:?] of system_aspect;

The second attribute of the entity diagnosis is the repair_level.
This relates to the repair action attribute of the entity
system_aspect. The repair_level describes the level in a
maintenance hierarchy that is appropriate for repairing the
fault corresponding to the system aspect of the diagnosis. The
repair_action is the set of actions to be taken on that
system_aspect. These two attributes are described with the
following entity definitions.

ENTITY repair_level;

name: string;

description: optional string;

next_lower_level: set [0:?] of repair_level;
END_ENTITY;

ENTITY repair_action;
name:
description:
requires_resources:
requires_parts:

string;

optional string;

set [1:7] of resource;
set [0:7] of part;

applicable_at: repair_level;
costs: set [0:7] of cost_attribute;
END_ENTITY;

Central to the EDIM (as well as the DIM) is the concept of
a test. Therefore, we can expect a definition of a test to be
included in the model specification. Because of the
fundamental importance of the test in any diagnostic process,
the Common Element Model includes the test definition.

ENTITY test;

name: string;
description: optional string;
costs: set [0:7] of cost_attribute;

set [1:7] of resource;
select (pass, fail);
set [0:7] of test;

requires_resources:

has_outcome:

members:
END_ENTITY;

Once again, the test entity is a part-whole hierarchy where a
given test may consist of a collection of several simpler tests.
This hierarchy provides the ability to group tests together and
infer information from a value assigned to the whole group
(as well as individuals within the group). Since the DIM does
not include the concept of a test inference from a group of

tests, this notes the first enhancement of the EDIM over the
DIM. We also point out that the EDIM extends the
has_outcome attribute to be arbitrary. Also, a confidence can
be associated with an outcome in the EDIM. The DIM
restricts it to be one of a set of two possible outcomes
corresponding to either pass or fail with an assumed
confidence of 1.0.

We have seen in both the entity repair_action and test that
resources are required to perform the necessary actions.
Specific resources are not generally considered a part of the
DIM, but we recommend specifying them to track the
correlation of resources to model elements. The definition of
the entity is very simple:

ENTITY resource;

name: string;

deséription: optional string;

. COStS: set [1:7] of cost_attribute;
END_ENTITY; !

In addition to the Common Element Model, AI-ESTATE
includes a specification of an Attribute Model. The Al-
ESTATE Attribute Model lists several specific attributes that
can be associated with tests, diagnoses, and resources.
Specifically, the AI-ESTATE Attribute Model includes the
following types of attributes: cost attributes, cost bounds, and
failure rate.

The Diagnostic Inference Model is more than just a definition
of tests, diagnoses, and cost attributes. Central to the DIM is
the definition of inferences that are possible between tests and
diagnoses. This is true of the EDIM as well. AI-ESTATE
defines the EDIM as follows:

SCHEMA Enhanced_Diagnostic_Inference_Model;

REFERENCE FROM AI_ESTATE_Common_Element_Model(diagnosis, test,
outcome, system_aspect, repair_level);

REFERENCE FROM AI_ESTATE_Attribute_Model (cost attributes);

ENTITY Enhanced_Diagnostic_Inference_Model,
diagnostic_model: set [1:7] of diagnosis;
test_model: set [1:7] of test;
system_model: set [1:7] of system_aspect;
repair_structure: set [1:7] of repair_level;
outcome_model: set [1:7] of outcome_infers;
infer_structure: set [0:7] of related_inference_group;
END_ENTITY;
END_SCHEMA;

The first four structures are self explanatory given the
discussions of the Common Element Model and the Attribute
Model. The entities in these two models are inherited by the
EDIM, and additional entities are defined for the entities
outcome_infers and related_inference_group. The
outcome_infers entity is central to define the inferences that
can be drawn from test outcomes. As described above, the

DIM only permits two test outcomes—pass and fail. Further,
the DIM differentiates between symmetric inferences,
asymmetric inferences, and cross-linked inferences. The
EDIM implicitly allows all of these through a general
inference structure based on disjunctive normal form.

Disjunctive normal form (DNF) is a way of representing any
boolean expression and consists of expressions of the form,
P, AP, A) V(g Agq A)V . The Express entities for
encoding the DNF inferences are somewhat difficult to follow,
but they can be reduced to the representations in the DIM in
a straightforward way. The outcome_infers and dependent
entities adapted for the DIM are as follows:

ENTITY outcome_infers;

for test: test;

for outcome: select (pass, fail);

infer: set {1:?] of product_term;
END_ENTITY;

ENTITY product_term;

inference: set [0:7] of term;
negative_inference: set [0:7] of term;
END_ENTITY;
TYPE term = select (test_inference, diagnostic_inference,

related_inference_group_inference);
END_TYPE;

ENTITY test_inference;

for_test: test;
has_outcome: select (pass, fail);
END_ENTITY;

ENTITY diagnostic_inference;

for_diagnosis: diagnosis;
assert; select (pass, fail);
END_ENTITY;

ENTITY related_inference_group_inference;
for_inference_group: related_inference_group;
END_ENTITY;

The related_inference_group entity is used to provide a means
of arbitrarily combining tests and diagnoses. The test and
diagnosis entities are set up as part-whole hierarchies and do
not permit groups of tests or diagnoses to overlap. In the case
where we might want to arbitrarily group elements
independent of the structure of the model, we can use this
entity. This entity is not usually considered to be a normal
part of the DIM, but its addition is straightforward. The
related_inference_group entity is defined as follows:

ENTITY related_inference_group;

name: string;

description: optional string;

members: set [1:?] of inference_element;
END_ENTITY;

TYPE inference_element = select (diagnostic_inference, test_inference);
END_TYPE;

VI. THE FUTURE OF AI-ESTATE

The AI-ESTATE subcommittee is currently focusing on two
different models for the current release of the P1232.1
standard—the fault tree model and the EDIM. 1t is the intent
of this committee to expand the scope of the standard to
several other models of diagnostic knowledge including rule
bases, constraint networks, neural networks, frames, etc. We
envision the standard consisting of a base document outlining
the objectives of the standard and a set of normative annexes
providing the specifications for the individual models. The
common element model and attribute model will most likely
appear in the main body with the fault tree model and EDIM
comprising the first two normative annexes. This architecture
will permit additional forms of knowledge representation to be
added to the standard without the need to reballot the standard
with each addition—only the new annexes will need to be
balloted.

In addition to its efforts in developing standard interchange
formats for diagnostic knowledge, AI-ESTATE is also
developing a set of service specifications for use by a test
system to interact with a diagnostic reasoner. This standard
(designated P1232.2) will permit AI-ESTATE conformant
reasoners to be interchanged among testers claiming to use
1232.2. Currently, only initial proposals have been developed
for this standard, so it is expected that the service
specification will receive more attention in the near future.

VII. CONCLUSION

In this paper, we have outlined the efforts of the AI-ESTATE
subcommittee of SCC20 to standardize interchange formats
for diagnostic models in intelligent test systems. We also
provided a theoretical basis for the primary model in the
current release of the standard-the enhanced diagnostic
inference model (EDIM). While the EDIM appears to have
strong ties to the dependency model of the 1980s, it is our
hope that people attempting to use the model will recognize
the intended philosophy for applying the model in diagnosis
and including the knowledge in a standard test environment.
It is also the hope of the AI-ESTATE subcommittee and its

345

working groups that people interested in the standard become
directly involved in its development; we welcome all
interested parties to attend the meetings of the committee.

ACKNOWLEDGMENT

Many thanks to the people who have been involved in writing
the current draft of P1232.1, including William R. Simpson,
Les Orlidge, Sharon Goodall, Bernard Dugas, and Jack
Taylor. We also thank the U.S. Navy for providing valuable
information on their efforts on the DIM handbook: Mike
Lynch and Tim Bearse. Finally, we thank Harry Dill for
providing much of the information that is currently being
incorporated in the DIM handbook and for providing
tremendous insight into the issues involved in developing
accurate and useful diagnostic models.

REFERENCES

[11 IEEE Std 1226-1993, [EEE Trial Use Standard for a Broad-Based
Environment for Test, Overview and Architecture, 1993.

[2) 1EEE Std P1232, IEEE Trial Use Standard for Artificial Intelligence
and Expert System Tie to Automatic Test Equipment, Overview and
Architecture, Draft 5.0, May 1994.

[3] Sheppard, J. W, and G. C. Hadfield, ‘“The Object Oriented Design of
Intelligent Test Systems,”” AUTOTESTCON 93 Conference Record, San
Antonio, TX, 1993.

[4] Simpson, W. R., and J. W. Sheppard, ‘‘Fault Isolation in an Integrated
Diagnostic Environment,”” [EEE Design and Test of Computers,
10(1):52-66, March 1993.

[5] DePaul, R. Jr, ‘“Logic Modeling as a Tool for Testability,”
AUTOTESTCON ’85 Symposium Proceedings, Uniondale, New York,
September 1985.

[6) Sheppard, J. W., and W. R. Simpson, ‘‘A Mathematical Model for
Integrated Diagnostics,”” IEEE Design and Test of Computers, 8(4):25-
38, December 1991.

{71 1EEE Std 716-1989, IEEE Standard C/ATLAS Test Language, 1989.

[8] IEEE Std P1232.1, IEEE Trial Use Standard for Artificial Intelligence
and Expert System Tie to Aut Test Equipment, Data and
Knowledge Specification, Draft 3.2, April 1993.

[9] Simpson, W. R, and H. S. Balaban, *“The ARINC System Testability

and Maintenance Program (STAMP), Proceedings of AUTOTESTCON

’82, Dayton, Ohio, 1982,

Peng, Y., and J. A. Reggia, Abductive Inference Models for Diagnostic

Problem-Solving, New York: Springer-Verlag, 1990.

[11} Pearl, P., Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, San Mateo, Californiaz Morgan-Kaufmann
Publishers, 1988.

[12] Simpson, W. R, and J. W. Sheppard, System Test and Diagnosis,
Kluwer Academic Publishers, in press.

[10

