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Abstract- Model based diagnostic systems have generally avoided
the issue of multiple failure diagnosis due to the computational
complexity of covering all possible multiple faults and still
providing an efficient diagnostic strategy. Optimization of
decision trees is already known to be NP-complete, and the
number of combinations of multiple faults just serves to
exacerbate the problem. Nevertheless, model based diagnosis is
becoming popular, and the need for multiple failure diagnosis is
real. In this paper, we will provide a formal analysis of the
multiple failure problem in the context of one model based
approach. Specifically, we will discuss algorithms and their
complexity for diagnosing multiple failures using the information
flow model.

1. INTRODUCTION

Recent years have seen the proliferation of a wide
variety of model-based diagnostic systems. ARINC developed
the System Testability and Maintenance Program (STAMP®)
in 1981 to provide a tool for modeling diagnostic information
in complex systems and assessing the system testability [1].
In 1988, the Portable Interactive Troubleshooter
(POINTER™,) was developed to process models from STAMP
for interactive diagnosis {2]. The model used by STAMP and
POINTER is called the information flow model (described in
section 2) and has been described in detail in [3]. Early
forms of the information flow model are logic model (4],
causal model {S], or dependency model [6] and are processed
by such systems as LOGMOD (Logic Model) [4], STAT
(System Testability Analysis Tool) [7], WSTA (Weapon
System Testability Analyzer) [8], and ADS (Adaptive
Diagnostic System) [9].

This paper presents a discussion on multiple failure
diagnosis using the information flow model. The information
flow model is a failure-oriented diagnostic model in which
specific failure modes of a system are specified as the
possible conclusions to be drawn. Tests detect faults when
they are present in the system. The diagnostic task proceeds
by proving subsystems in the system have not failed.
Diagnosis results by examining the set of candidates
remaining after all test outcomes are known.

From this discussion we can envision multiple tests
detecting the same faults and the failed test outcomes
inferring the presence of a fault. Further, we may be able to
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directly infer the outcomes of tests based on previous testing
thus leading us to a notion of diagnostic information flowing
from a fault through a set of tests. This flow corresponds to
inference traces that may result from testing.

Common to most of the systems mentioned above is the
assumption that diagnosis proceeds from a single failure
assumption. One notable exception is STAT which is able to
perform multiple failure diagnosis by processing a success-
oriented diagnostic model. Such a model tends to contradict
the notion of diagnostic information flow. Tests do not detect
failure; tests verify functionality.  Unfortunately, the
algorithms used by STAT are proprietary, so a description of
the approach used for multiple failure diagnosis is unknown.

II. THE INFORMATION FLOW MODEL

To address the problems of performing system diagnosis
and analyzing system testability, we introduced the concept of
an information flow model [10]. This model-based approach
to system test and diagnosis incorporates techniques from
information fusion and artificial intelligence to guide analysis.
The model represents the problem to be solved as information
flow. Tests provide information and diagnostic inference
combines information from multiple tests using symbolic logic
and pattern recognition.

The structure of the information flow model facilitates
our ability to formulate testability measures and derive
diagnostic strategies. An information flow model has two
primitive elements: tests and fault-isolation conclusions. Tests
include any source of information that can be used to
determine the health state of a system. Fault isolation
conclusions include failures of functionality, specific non-
hardware failures (such as bus timing), specific multiple
failures, and the absence of a failure indication. The
information obtained may be a consequence of the system
operation or a response to a test stimulus. The purpose of the
model, of course, is to combine these information sources
(tests) to derive conclusions about the system being
diagnosed.

The model also includes three special primitive elements:
testable inputs, untestable inputs and No Fault. The inputs
represent information entering the system that may have a
direct bearing on the health state of the system. A testable
input is a conclusion corresponding to an external stimulus
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combined with a test that examines the validity of that
stimulus. If we have an input that cannot be examined for
validity, that element is called an untestable input. Finally,
the model includes a special conclusion corresponding to the
condition that the test set found no fault. The No Fault
conclusion, also sometimes referred to as RTOK (for retest
okay), provides us with a closed-set formulation that includes
anything not directly accounted for.

After specifying the primitive elements of the model,
the next step is to determine the logical relationships among
the tests and between the tests and the conclusions. The basic
representation of the information flow model includes a
logical representa-tion of the system being analyzed. In this
representa-tion, we define logical values for tests and fault-
isolation conclusions. Specifically, if a test fails, it has a
logic value of true; if a test passes, it is false. An asserted
conclusion is true; a conclusion elimin-ated from
consideration is false. To determine the logical relationships,
an analyst will consider the following for each test:

* What inferences can be drawn from
observing a test failing?

* What inferences can be drawn from
observing a test passing?

In the initial stages of modeling, the first issue is
more important. The modeler is interested in listing
conclusions that, corresponding to a failure, would explain the
considered test failure. The modeler is also interested in
listing tests that, should they fail, would imply that current
test fails. If such tests do exist, we say that the current test
observes tests and conclusions that may cause it to fail. That
is, a observational relationship exists. The second question is
important in determining the type of test (e.g., whether the
information provided is symmetric). This type of model is
also referred to as a causal model [5] and [11].

The notion of observation is limited. Because of the
way we have defined observance, we are limited to a logical
interpretation where if a given conclusion is to be drawn (i.e.,
the corresponding element in the system has failed), then all
tests observing that conclusion are also true. This relationship
is represented in the following logical form:

ﬁ*49 (1)

where test ¢; observes conclusion or fault f, and A represents
logical conjunction. This form is also true if we know that a
test has failed. In this case, all tests observed by the failed
test must also fail.

H*Q& @

given t; observes .

Observation also provides information about the possible
cause of a test failure. If a test passes, then all elements
which the test observes (both tests and conclusions) must also
pass. Thus,

~1, 4(/j\~tj)/\(/‘k\~fk) 3)

given ¢; observes ¢ and f,.
We may, however, want to have the correspond-ing
logical expressions with the connectives reversed:

ﬁ~Yg @)
q~yg (5)
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where v represents disjunction.

The information flow model formulation does not
directly handle equations 4-6. Equations 4 and 5 result when
a fault might lead to the failure of one or more other tests.
We call the set of tests that may fail a test-disjunct set.
Equation 6 provides for the inclusion of multiple conclusions
in the model (the subject of this paper). We derived the basic
formulation to limit the combinatorial growth of the search
space. However, it is important to include the logical
relationships because they are a part of real systems. In this
paper, we will address only Equation 6 by describing how to
infer multiple conclusions from the single conclusion based
model. A detailed discussion of modeling these three
equations is given in [3].

III. DEFINITIONS

In preparation for developing algorithms for multiple
failure diagnosis with the information flow model, we begin
with several formal definitions. The definitions are intended
to formalize the discussion in the previous section.

Definition 1. S is a system to be diagnosed.

The definition of system has been problematic for many
researchers exploring system level diagnostics. The definition
we use is intentionally very broad so as to allow analysis at
any required level of detail. Thus a system can consist of an
aircraft, a radar unit, a power supply, a chip or set of chips,
or one Or more active or passive components on a card.
Systems need not be limited to physical items nor to electrical
items. In fact, this is made clear by the next definition.
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Definition 2. F is a set of faults to be detected and isolated
where f; € F is one fault in this set of faults. Also, F c S.
The value of f; (val(f)) € {present, absent}.

Notice that the definition of a set of faults is related
to the definition of a system. Thus we say a system is a
collection of faults to be isolated. This is the basis of the
failure-oriented model described in section 1. Also, since we
are concerned with the detection and isolation of faults we are
really trying to draw conclusions about the health of the
system.

Given the assumption that tests provide information
about the failure characteristics of the system by either
indicting or exonerating possible failure modes, we formally
define the set of tests as follows.

Definition 3. T is a set of tests to be used to detect the
presence of faults f; € F, and ¢; € T is a test such that val(t;)
€ (pass, fail, unknown}.

Given this definition, we do not include the
parameterization (i.e., the formal specification) of the test in
the information flow model. This is abstracted out of the
model by providing a mapping from the test measurements
(i.e., outputs) to the test outcome. We need not limit the
outcomes to the set indicated in the definition, but all tests
can be transformed into tests (or combinations of tests) with
exactly this set of outcomes. For simplicity, we will use the
notion of a binary outcome test extended to include value of
unknown.

The task before us can be stated simply. Given a set
of tests T and a set of possible faults F in a system S,
determine which faults are present in the system. For any f;
€ F, we want to know if val(f}) = present. Since certain tests
detect the presence of a fault, we can examine the complete
set of test outcomes to determine the presence or absence of
a fault. In other words, the presence of a fault is completely
determined by the value assignments of the set of tests. This
value assignment is called a diagnostic signature and is
defined formally as follows.

Definition 4. D is the set of diagnostic signatures where a
diagnostic signature D; € D is the set of ordered pairs (t;, v,)
€ T x V such that [D;| = |T|, v, € V, and v; € (pass,
fail}.

Given a set of diagnostic signatures, the task is to
map each signature to a fault and vice-versa. Indeed, this is
easily formalized as follows.

Definition 5. A diagnosis A is a one-to-one mapping such
that A: D & F (ie. A: D - F and A': F — D).

Definition 6. A observational relationship & exists between
test ¢; and fault f; iff a) the presence of f; results in val(1) =
‘fail’, and b) val(t) = ‘pass’ indicates f; is not present.

Definition 7. A observational relationship & exists between
test +, and test ¢ iff a) val(1) = ‘fail’ indicates val(f;) = ‘fail’,
and b) val(t) = ‘pass’ indicates val(t) = ‘pass’.

The set of faults F, tests T, and diagnostic signatures D
are sufficient to define the core of the information flow model
(known more commonly as a diagnostic inference model).
Note that the set of tests ¢ € T such that for failure f; € F,
val(t) = fail (which essentially characterizes the diagnostic
signature of f)) corresponds to the set of tests that relates to £

IV. INFERENCE META RULES

The literature describes several inference meta rules that
can be used to diagnose a system represented with the
information flow model [12]. A meta rule is a rule that
specifies how a system will process known information.
Before we can apply these meta rules or variants of the meta
rules, we note that the meta rules rely on concepts from
propositional calculus. But we must show a correspondence
between the infor-mation flow model and a model based on
propositional calculus. It turns out this is easy to do.

Observation 1. Observational relation is equivalent to
implication in the propositional calculus.

Proof. Let t; observe f. Let t; = ‘pass’ = ‘false’ and ¢; =
‘fail’ = ‘true’. Let the presence of f; = ‘true’ and absence of
f; = ‘false’. Implication is defined in the propositional
calculus as (A — B) = (~A v B). We therefore construct the
following truth table using pass/fail notation.

t fi L3 f
Pass Present Does not hold (by
definition)
Pass Absent Holds (by definition)
Fail Present Holds (by definition)
Fail Absent Holds (may fail from
other source)
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Translating the table using truth value assignments,
we have

2 5 ;9
False True False
False False True
True True True
True False True

This is clearly equivalent to the truth table for f; — . O

Since we have propositional calculus as the basis for
the information flow model, we are in a position to begin to
define the inference meta rules. The initial meta rules, as we
will see, come directly from the rules available in
propositional calculus. Most logic based systems rely on the
availability of procedures for chaining through a set of rules.
These rules correspond to implications in propositional logic,
and the most common inference rules are modus ponens,
modus tollens, and transitivity.  Another observation
immediately becomes apparent.

Observation 2. Since relates to is the same as implication, all
of the traditional propositional inference meta rules (e.g.,
modus ponens, modus tollens, transitivity) hold.

Proof. By Definition 6.2 we have “‘If f; is present, then ¢,
fails.” This can be reworded as “‘If f; = ‘true’ the ¢, ‘true’.”’
By 6.b we have *If ; passes then f; is absent” which can be
reworded as “‘If «, = ‘false’ then f; = ‘false’. Note that under
implication, (A — B) = (~B —» ~A). Let A= " is ‘true’ ~
and B = ““t; is ‘true’ *’. Then substituting,

(f; is ‘true’ — ¢; is ‘true’) =
(~t; is ‘rue’ — ~f; is ‘true’) =
(t; is “false’ — f; is ‘false’).

Since we are now using propositional calculus, we can apply
the standard rules of inference. This, of course, is sufficient
for the proof, but the following illustrates.

a) Modus Ponens
f; >t If f; is present then ¢ fails.
f; = f; is present.
. t;  Therefore, ¢; fails.
b) Modus Tollens
f; = t; 1f f is present then  fails.
~t; = {; passes.
= ~f; Therefore, f; is not present.
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¢) Transitivity
fi—= If £ is present then ¢ fails.
Lo = If ¢ fails then ¢, fails.
-~ f; = t, Therefore, if f; is present then ¢, fails.
a

Unfortunately, these basic inferences rules are not
expressive enough to address the complexities of diagnosis
(especially multiple failure diagnosis). In a complex domain
such as diagnosis, we search through a large space of possible
solutions until we find the hypothesis that best explains the
known information. In fault diagnosis (whether assuming
single failure or multiple failure), we only need to consider
|T| tests and |F| faults, but the number of ways we can
permute the tests is extremely large (as shown in the
following theorem).

Theorem 1. Given a set of |T| tests, each test having m
outcomes, then at most fim,|T|) test sequences can be
constructed where

fim,|T|) = m"™|T|!. )]

Proof. The proof is by induction on |T'|. For the base case,
suppose |T| = 1. Only one test exists for any sequence, but
that test has m outcomes. Thus, we can construct m
sequences. Note that f(m,1) = m'1! = m. For the inductive
step, assume that the inductive hypothesis holds for test sets
ranging from |T| =2 to |T| = n ~ 1. Assume that |T|
= n. Clearly, we can select any of the n tests to start a
sequence, and that test has m outcomes. Thus, we have mn
starts of sequences. After we choose the initial test, the
subsequences are all of length n — 1 (or less). Therefore, by
the inductive hypothesis, there are fimn-1) = m™'(n-1)!
subsequences. Combining these subsequences with the initial
choice, we have

fimn) = mn) [m™1(n - 1]

=n{m"(n -1
- mnl- 1 =
=m®n!

From this we can extend the calculation to determine the
number of diagnostic strategies that are possible.

Theorem 2. Given a set of |T| tests, each test with m
possible outcomes (|T'| > 1, m > 0), at most g(m,|T|) trees
can be constructed, where assuming g(m,1) = 1,

g(m,|T]) = m"-2(T]. ®
Proof. The proof is by induction on |T'|. For the base case,

when |T| = 1, it is trivially true that there can be only one
tree. This is a singularity in our analysis. Consider |T| =



2. Now we can select either of the two tests as the root
(start) of the fault tree. Each of the subtrees for the m
outcomes is determined (that is, there is only one subtree for
each member of T). This means there are only two possible
trees for for |T| = 2. Note that

gm2) = m*22
m°2!
2
For the inductive step, assume that the inductive hypothesis
holds for test sets of sizes ranging from |T'| =2 to |T| =
n — 1. Assume |T| = n. Clearly, we can select any of the
n tests as the root of the fault tree. There are then m subtrees
off the root (one for each outcome). We know from the
inductive hypothesis that each substree is one of g(m,n—1) =
m*(n-1)! possibilities. Therefore, we have (mn)m™>(n—1)!
= m"?n! = g(m,n) possible fault trees. O

Since these two theorems include all possible
permutations of test sequences and fault trees, the theorems
apply directly to the case where multiple failure diagnosis is
allowed. Obviously, we need to reduce the computational
complexity of the diagnostic process. Many techniques for
reducing complexity and generating efficient trees are
presented in the literature. See for example [12] and [13].
The following discussion will assume all tests are binary
outcome, but much of the discussion can be extended in a
straightforward way to tests with m outcomes.

To further develop the inference meta rules available
for diagnosis (with the intent of reducing complexity), we will
impose an assumption that we are working in a closed
universe. In other words, we assume the model completely
and accurately reflects the set of possible diagnostic
conclusions that can be drawn with the given test set T.
Note, however, that our definition of F (the set of faults to be
detected) does not appear to be complete. In particular, the
absence of all faults in the system is missing. At first, it may
not appear this special conclusion need be explicitly included
in the model; however, we will see in a moment that adding
a conclusion of no fault can be extremely valuable in
processing the model.

Definition 8. nf € F is a special “‘“fault’” in which D,,€ D
= {(t, v) | v = pass). This can be interpreted as a
conclusion that no fault exists in S. This enables a closed
world assumption.

Thus the no fault conclusion, nf, is defined by a
diagnostic signature of all tests in the test set passing.
Clearly, no test relates to nf; otherwise, the lack of faults in
the system would require the subject test to fail. But then D,,
would have at least one test ¢, such that val(t) = fail. This is
a contradiction.

We are now in a position to define two additional
inference rules. These rules will be used to prove a theorem
relating tests together based on the diagnostic signatures given
in the model.

Lemma 1. Let U = {f; | val(f) = true}. If there exists #; €
T such that U c {f; | ¢; observes f;} then val(t)) = true.

Proof. Suppose U < {f; | t; observes f;} and val(r) = false.
By modus tollens all f; € U = false, but if val(f) for all f; €
U = false, then no fault exists and nf = true. But then by
Definition 7 and Observation 1, nf € U. =< O

This lemma says that if a test £; observes U which is the
current set of failure candidates (as well as other faults that
have been eliminated from consideration), then ¢ must fail.
Note that for this rule to work, the presence of nf in the
model is required. If nf is still under consideration, then no
test can exist that observes all of the unknown (i.e., assumed
failed) faults in the model. Some test must fail in order for
nf to be eliminated. At that time, this lemma can only be
applied to f; if t; observes all of the remaining candidate
faults. Then f; must detect the fault. Without nf in the model,
it is possible that some test observes all faults at the outset
thus leading to the test being inferred to fail, even though no
testing has occurred.

Lemma 2. Given test t, € T, let§ = (f; | ; observes f}}. If
|&| > 0, val(f}) = false V f; € €, then val(r) = false.

Proof. Note by Definition 5 that V £, € &, 3 D; 3 A'(f) =
D;. If t; = true then £, € D;. Further £, € D; precisely when
t; observes A(D) = f. Thus 1; > Uy (ie., the disjunction of
all f; € £). Thus ~ugf; > ~, = Ne~f; € § — ~. By our
assumption N~f; € & is true so ~; is true. That is =
false. O

This lemma says that if a test £ observes only faults
known to be absent, then f; must pass. This is because no
other faults exist in the observed list that are candidates for
failure that ¢ can detect.

A common approach to constructing diagnostic models
such as the information flow model is to examine the
diagnostic signatures of the faults in the model and enumerate
these signatures. This corresponds to modeling using cause-
effect analysis which results in the construction of a fault
dictionary [14]. The fault dictionary is simply an enumeration
of the possible faults and all of the expected responses for the
test set and is constructed through simulation of all of the
faults in the system. Diagnosis using a fault dictionary
frequently proceeds by evaluating all of the tests in the test
set and matching the resulting signature with the signatures in
the fault dictionary until the entry with the closest match is
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found. Using assumptions of perfect tests and single faults,
the match should be exact.

Diagnosing complex systems with a fault dictionary
(especially when multiple faults exist) can be very time
consuming. We would like to capitalize on the availability of
the inference rules described above to reduce the amount of
testing. Further, we need a mechanism for identifying
multiple faults within the fault dictionary. The following
theorem provides an approach for identifying relationships
between tests based solely on the fault dictionary.
Discussions in later sections will cover the application of the
inference rules for making the final diagnosis.

Theorem 3. Let C; = {f, | t; observes f,} and C; = {f, | L
observes f;}. If C; ¢ C; then f; observes ;.

Proof. Since observation is identical to implication, we are
trying to prove that t; — #. Suppose ¢; = false. Then all f, C
C, are false. Since C; c C;, all f, € C, are also false. So by
Lemma 2, ¢; is false. Now suppose ¢, is true. Then 3f, € C;
3 f, is true (by Definition 5). Since C; < C.3fie Ciaf;
is true (Lemma 1). Thus {; must be true by Observation 100

Since we can identify test-to-test observations by
examining the fault dictionary, we have a means for applying
the standard inference rules given in Observation 2 to reduce
the search space with every test measurement. This puts us
in a position to develop a diagnostic procedure that is efficient
and identifies the maximum possible single and multiple faults
that may appear in the system (given the test set).
Unfortunately, certain multiple failure conditions present
severe difficulties whether or not we are able to consider all
possible multiple faults. The following section describes two
of these problems in detail.

Y. MULTIPLE FAILURE COMPLICATIONS

Two diagnostic problems arise from the existence of
multiple faults in a system that cannot be directly solved by
cither single-failure inference or multiple-failure inference.
The first problem arises as a result of one fault masking the
detection of another fault. Masking can cause serious
maintenance problems when the masked fault is the root
cause of the isolated fault. We define a root cause failure as
follows.

Definition 9. Given f, f; € T, if f, = true causes f; = true,
then f; is the root cause of failure S

When a root cause failure is masked by the secondary
failure, then both single failure isolation and multiple failure
isolation will identify the secondary failure. This is a direct
result of the masking effect. Of course, if we do have a root
cause failure problem, the inability to isolate the root cause
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leads to ineffective repair since repairing the secondary failure
is futile. The secondary failure recurs when the system is
reinitialized with the same symptoms as before. This places
the maintenance technician in a repair circularity that will not
return the system to operational status. The following Lemma
formalizes this problem.

Lemma 3. Let §; = {1, | 4, observe f}}. Given D; and D, if
A(D) = f, A(D) = f, and §; < {;, then detection of f; will be
masked by a failure of f.

Proof. Suppose f; = true and f; = true. Since f; = true, val(z,)
=true V 4, € . Since f, = true, val(t) = true V 4, € {.
Since § < , all detections of f; correspond exactly to
detections of ., The converse is not true, so detection of f;
must be masked by detection of f,. O

Thus the masking effect of a secondary failure over a
root cause failure makes isolation of the root cause failure
impossible without modifying the test set. Additional testing
is required to prevent the masking effect from occurring.

The second problem in analyzing multiple failures is the
potential for false failures. A false failure occurs when the
symptoms of two or more faults (i.e., the combined diagnostic
signatures of two or more faults) are identical to another
single fault. The following provides a formal definition of a
false failure. This definition is based on the concept of a
subsignature.

Definition 10. Given a fault f;, the subsignature of f,, SD; =
Fl1get)

Definition 11. A false failure of fault f; FF; = {f; | f; € SD)
where {, = |J g -

S;€FF,

The existence of a false failure degrades the testability of
the system. Repairing the indicated single fault has no effect,
and the system is not restored to operational status. In other
words, we have not identified the faulty components, and
maintenance leaves the system in the original failed state.
Multiple failure diagnosis does not eliminate the problem, but
the situation is improved. In particular, we find that with
multiple failure diagnosis, we will be able to identify both the
single fault that would be falsely indicated under single failure
diagnosis and the multiple fault. Unfortunately, we are unable
to tell the difference between the two. We say the two
diagnoses are ambiguous.

Definition 12. An ambiguity A, = (f; | {; = {;} for some
failure f.



Lemma 4. Given f; with false failure indication FF;, FF; €
A,
Proof. By Definition 10, {z = { which indicates an
ambiguity. By Definition 11, § € A, Since § = Crpi Gomi
€ A, ]

VI. MULTIPLE FAILURE DIAGNOSIS

So far, our treatment of multiple failures has been on
an intuitive level. In particular, we have treated multiple
failures as the existence of one or more faults within system
S. (Note that single failure diagnosis is just a special case of
multiple failure diagnosis.) In developing an algorithm to do
multiple failure diagnosis, we need to formalize the definition
of a multiple failure. Therefore, we define multiple failure
formally as follows.

Definition 13. A multiple failure MF, = (f; | f= true} (MF;
# @) where V f, € MF,, f € U A, andVf,f, € MF,
JLEMF,
5*h
£, #f.f, € SD, and VFF; VM c MF, M # FF,, MF,, = the
isolated multiple failure.

This definition can be interpreted as follows. A
multiple failure is a non-empty set of failures in F. This is
the intuitive definition, but it alone is difficult to process.
Therefore, we add the following restrictions to the definition.
First, each member of the multiple failure can belong to an
ambiguity group, but we will only concern ourselves with one
representative of that ambiguity group which we call the
unique representative. (Note that an algorithm will be given
later for identifying multiple failure ambiguities.) Second, for
all pairs of single faults in the multiple failure, no single fault
is masked by another single fault. Finally, no false failures
are included in the multiple failure.

The rationale for this definition can be given in three
parts. First, a multiple failure may include all combinations
of members of an ambiguity group; therefore, it is sufficient
to consider representative faults in an ambiguity group.
Second, a multiple failure may include all combinations of
members in a subsignature of a member of the group. Since
members of a subsignature are masked by the primary
signature, it is sufficient to consider the fault corresponding
to the primary signature only. Third, a multiple failure does
not include any subset comprising a false failure indication
since the false failure indication is ambiguous with that
subset. This third point is covered, of course, by both the
first and the second restriction. Using the first restriction, the
single failure (i.e., the false failure indication) represents the
ambiguity.

Definition 14. (o, = (1; | t; observes MF,}.

Definition 15. Dg, = ((1,v) | if ; observes any f; € MFiq,
v; = fail, else v; = pass.

From Definition 14, {,; is the set of tests that detect the
presence of multiple failure MF,,. From Definition 15, the
diagnostic signature of MF,,, is given by Dy Given either
€,y or Dy, we still need to determine the set of failures f;
comprising MF,,,. This is the general problem of multiple
failure diagnosis. To reduce the size of MF,, to a minimum
(so as to reduce computational complexity), we want 10
identify the smallest set of failures necessary to generate Dg;.
Unfortunately, the task of determining this minimum size
multiple failure is also computationally complex.

Theorem 4. Finding a minimum size multiple failure
matching {,; is NP-complete.

Proof. (By reduction to minimum set covering). Because of
the simple transformation to minimum set covering, this proof
need not be detailed. This problem is clearly in NP since we
need only specify some k and measure the size of matching
with k as an upper bound. Recall that the minimum set
covering problem is given as follows. GivenasetZ and a set
of subsets of Z, ®. Find a minimum size subset C < @ such
that U f,=Z . The correspondence to the multiple failure

sC
problgm is as follows. Let Z = {; which corresponds to the
set of tests that all fail in the presence of multiple failure Z.
Let @ = {{ | f; < MF,}. The task now is to find the set of
failures £ such that U; {; = Z and the number of failures is
minimized. Since each f; is paired with a g, the task is to
find the fewest (i.e., minimum {) to cover Z. a

Due to the NP-completeness of the multiple failure
matching problem, we are now left with the task of finding a
small multiple failure set that matches MF,,, that may not be
optimal. Note that, even so, the number of multiple failures
that need to be considered to generate a complete multiple
failure diagnostic strategy can be quite large (as illustrated by
the following two theorems).

Theorem 5. Given an arbitrary system S, there exist |F|
““multiple’” faults, and the best case performance of multiple
failure diagnosis is O(|F| lg |F|) for constructing a
complete strategy.

Proof. Let S be a set of faults ordered such that for i22,
c {,. This corresponds to a system of serial faults. Thus,
using any multiple failure matching procedure under our
stated assumptions, only single faults will be found (or
ambiguous single faults, depending on the test set). S can be
diagnosed with a balanced binary search tree which can be
constructed in time O(|F| Ig |F}). O
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Theorem 6. Given an arbitrary system S, there exist 2/F!
“‘multiple”’ faults, and the worst case performance of multiple
failure diagnosis is O(|F| 2/F') for constructing a complete
strategy.

Proof. Let S be a set of faults such that V f, f, ; & (.
This corresponds to a system of disjoint faults such as might
be found in a completely parallel system. Transitivity and the
application of Theorem 3 will fail to find any high order
inferences since all of the signatures D,, are disjoint. So the
only applicable inference rules are modus ponens or modus
tollens (Lemmas 1 and 2 will not apply until the leaves of
tree, so they will not significantly reduce complexity). Also,
since all D; are disjoint all D;*e |J D, are also disjoint.
D,eD
Thus the space of multiple failures is defined by D* which
7|
contains Y (Ifl) =2/ fault signatures. Assuming we
i=1
can still construct a balanced binary tree, the depth of the tree
will be Ig 2!l = |F|. Thus the complexity of building
this tree is O(|F| 2F) 0

If there exists a method for anticipating the number
of multiple failure sets to be isolated in a diagnostic strategy,
then we may be able to limit diagnosis to some subset of
multiple faults when the number of sets gets large. We know
from Theorems 5 and 6 that the number of multiple failure
sets for a system S ranges from |F| to 2!,

We propose the following to estimate the complexity
of the multiple failure fault tree. Let ¢, = |{f; | f; masks
f;}| and denote compl(S) the complexity of system §. If S is
serial (by Theorem 5), then compl(S) should equal |F|. On
the other hand, if S is parallel (by Theorem 6), then compl(S)
should equal 2. We define compi(S) formally as follows.

compi(S) = 2! - ¥ mask(f) ©)

fi€F

where

mask(f) = 2% -1 .

This formula clearly meets the restrictions on the bounds and
appears to provide an over-estimate of a relatively small
multiple when applied to models at the extremes.

(10)

VI. MULTIPLE FAILURE ALGORITHM

Given the complexity bounds on computing the set of
multiple failure diagnoses and on generating a minimal
multiple failure matching, we find it is necessary to
approximate the optimal solution. A common approach to
optimizing NP-complete problems is through the use of local
search (called the Greedy heuristicy. The algorithm,
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MultFailFind, is based on a greedy algorithm for minimal set
covering and is given as follows.

Algorithm MultFailFind({,,,)

1.Let cand = {f; | §; G}

2 Initialize MF = &, [z = &

3.Let dist(cand;, MF) = |{a| = |Ceana. Y Curl

4. While {\p # ,, do '
a. Let f,, = arg max; (dist(cand;, MF))
b. MF = MF U (..}
c. b = G U G

5.Return MF

This algorithm requires the definition of a distance
function in which we attempt to determine how well the set
of failing tests for a single conclusion () matches the set of
tests for the multiple failure (). The single conclusion
covering the most unaccounted for tests in {; (ie., the
furthest from the current hypothesis MF) is added to the
multiple failure group in the solution (indicated by ), and
the procedure repeats with the remaining faults.

Recall we also wanted to be able to generate an
ambiguity group for the multiple failure indicated by ;.
The following algorithm provides a means to construct an
ambiguity group (although it is not guaranteed to be
complete). This algorithm can be used to identify false
failures ambiguous with a single fault isolation as well.

Algorithm MultFailAmbig((,,)
1A=, MF =
2.8 = G
3.cand = {f; | § < Gl
4 While ({,, = {;.y) do
a.MF = MultFailFind({, )
b.For all f; € MF cand = cand - {f}}

clw= U,
JfisMF
d Ay = Ay U MF
5.Return A

The algorithm constructs an ambiguity group by applying
MultFailFind to identify the faults matching the target
signature {.;. As members are found by MultFailFind, they
are eliminated from the set under consideration. This leads to
the incompleteness of the algorithm since single conclusions
certainly can participate in several multiple failures that are
ambiguous.

VIII. CONCLUSION

In this paper, we provide a formal analysis of multiple
failure diagnosis using the information flow model. We
limited the scope of the model to the traditional diagnostic
inference model in that we required tests to have binary



outcomes and the relationships to be fully symmetric. In
actual diagnostic problems, these restrictions are t0o severe.
As such, any diagnostic system extended to include multiple
outcome tests and asymmetric inference must extend the
analysis provided here to assess the impact of these
extensions. We have already found that asymmetric inference
has the potential of greatly increasing the size of a diagnostic
strategy, so such extensions are likely to have a severe
negative impact on the general multiple failure diagnosis
problem.

We foresee several extensions to the current research
that should improve multiple failure diagnosis capabilities.
First, the heuristic defined in section 6 can be improved to
provide tighter bounds on diagnostic complexity. Second,
transitioning the multiple failure analysis into a dynamic tool
rather than computing a complete strategy will eliminate the
problems associated with the size of the complete diagnostic
strategy since only a single path through the tree is of interest
and is generated on line. Third, for problems in which the
number of reasonable multiple failures is small, this approach
provides a means of identifying these multiple failures. These
failures can then be represented explicitly in the model to be
used in a multiple failure testability analysis. To our
knowledge, no tool exists that is capable of analyzing directly
the impact of multiple failures on system testability.
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