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Abstract: Currently, the IEEE Std 1226-1993 (ABBET™) is
undergoing significant revision in preparation for its release as
a “full-use” standard. Much of this work is motivated by a need
to define the interfaces between the various “layers” of the
current architecture and prepare a road map for implementing
those interfaces. To date, little work has been done on the upper
layers of ABBET, yet it is believed that the upper layers offer the
greatest potential for cost savings in developing advanced
automatic test systems. In this paper, we address the issues of the
ABBET upper layers in the context of a new architecture that is
focused on addressing the needs of the upper layers.

1. INTRODUCTION

Recent initiatives by the IEEE toward standardizing test
architectures have provided opportunities to improve the
development of test systems. The “A Broad Based Environ-
ment for Test” (ABBET) initiative (IEEE PAR 1226) is
attempting to usher in the next generation of product test by
standardizing test services and test development tools [1]. By
using standardized methodologies in developing test execu-
tives, test programs, and communication protocols, ABBET
conformant test systems will be interoperable, have transport-
able software, and move beyond vendor- and product-specific
test systems.

Currently, the ABBET architecture is organized around five
layers—a product description layer, a test strategy and
requirements layer, a test procedure layer, a test resource
management layer, and an instrument control layer [1]. To
date, the greatest emphasis has been placed on the latter three
layers due to a procedural decision to focus on the architec-
ture from the “bottom up.” We believe, however, that much
of the cost savings that may be attributable to the ABBET
architecture lies in capitalizing on standardization and integra-
tion in the upper two layers. Describing a process and
architecture for developing upper layer standards is the first
step in their completion. To develop this description, we
reexamined the interfaces in the upper layers of the ABBET
architecture from a different point of view. To facilitate this
reexamination, we began by developing an alternative high-
level information model of the ABBET architecture. In this
paper, we present the new architecture and describe its impact
on the upper layers.
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II. APPROACH

In proceeding from a systems engineering approach, we
focused on several characteristics of a broad test environment
(the stated scope of the ABBET standards) and devised an
architecture that has these characteristics. In particular, we
focused on issues of information and resource reuse, knowl-
edge encapsulation, test encapsulation, and test context. For
test context, we recognized that testing concerns at least three
dimensions: the product life cycle (e.g., design verification,
factory acceptance, or maintenance), the position of a test sub-
ject in the product hierarchy (e.g., system level, board level,
or component level), and the test philosophy applied (e.g.,
built-in test, automatic test, manual test, or combinations).

The perceived scope of the ABBET standards appears to be
limited to maintenance test on automatic test equipment
(ATE) in some application domain with application domain
being defined as the level of test (e.g., card level or system
level) [2]. Where this hierarchical view of test is appropriate,
it is insufficient to cover the true, intended scope of the
standard: design verification, manufacturing test, factory
acceptance test, and operational evaluation as well as mainte-
nance test [3,4]. This means that the information architecture
must be structured to identify information common to these
types of tests as well as information peculiar to a particular
type of test. In this way, one can identify the source and type
of information required for test throughout the product life
cycle. Then this information can also be used in developing
automatic test systems, built-in self-test systems, aided test
systems, and manual test environments. Information can be
developed throughout the life cycle as a “value-added”
development process using previously available information
and adding peculiar or previously unneeded data.

III. TESTING IN CONTEXT

In the broadest possible scope, testing is performed for
various activities, including performance evaluation, mechani-
cal/electrical integrity, periodic and unscheduled maintenance,
process evaluation, operational readiness, and specification
and compliance. In short, the underlying purpose of any
testing process is information discovery. In this reexamination
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Fig. 1 Information model of proposed architecture.

of ABBET, we limited our view of testing to electronics test
for design verification, manufacturing test, and maintenance
test. In our concept, a test is a signal, indication, or other
observable event that provides information about the system
being tested [5]. The observation may be caused to happen (as
with a stimulus/response test) or be part of a normal opera-
tional environment (as in the case of a symptom). The only
purpose a test serves is to provide an outcome that can be
used to infer something about the system being tested. As
such, testing is driven by separate reasoning processes. The
resultant reasoning on test results is context sensitive.

IV. A NEW INFORMATION ARCHITECTURE

Fig. 1 presents a new information model for the ABBET
architecture. Several similarities exist between the proposed
architecture and the architecture currently used by ABBET. In
the following discussion, we focus on the differences,
referring the interested reader to [1] for an explanation of the
existing architecture and to [6] for more detail on the pro-
posed architecture.
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A. Context

The context entity in Fig. 1 is intended to define the
context in which the test is to occur. We anticipate that the
actual context will be defined along the three (at least)
dimensions outlined above. Because the context defines the
type and level of test, and the test subject is an abstract view
of the physical product, we can claim that context
determines test_subject. Further, the test process is
wholly determined by the context, so we assert that context
constrains test.

B. Test Subject

As indicated above, we intend the test subject to continue to
be interpreted as the object of analysis in a test system. One
definition of a system is “any aggregation of related elements
that together form an entity of sufficient complexity for which
it is impractical to treat all of the elements at the lowest level
of detail [5].” From this definition, we see that a test system
can be interpreted hierarchically to be a system, subsystem, or



component within a system. If the test subject is a component,
then diagnostics is less of a concern since it is sufficient to
focus on detection rather than isolation at that point. Thus we
focus our discussion on testing systems like those we have
just defined, and we refer to those systems as the test
subjects.

C. Behavior

What we know about our test subject comes from how the
subject behaves. (Exceptions to this exist with respect to static
and physical properties of the test subject, e.g., discoloration
of a solder joint. Observing these properties can be very
important in diagnostics. Here, however, we limit our discus-
sion to the dynamic properties of the system, recognizing that
behavior can be extended to cover the static properties as
well.) By observing and evaluating the behavior of the test
subject, we can evaluate the state of the test subject and
determine whether a fault exists. Through subsequent testing,
we hope to use behavior to further localize and isolate the
faults. To make this explicit, we say that the
test_subject is_characterized_by SET [1:?]
OF behavior.

D. Observation

Because behavior is the manifestation of the functioning of
the fest subject, we need to be able to observe that behavior
to test the test subject. Thus we say the observation
captures behavior. A possible source of controversy
centers on “where” an observation takes place. We provide for
the possibility that the observation occurs at the defined
interfaces of the test subject (because this is usually what
happens in electronics testing) and state explicitly that
observation is_made_at SET [0:?] OF inter-
face. With the set having a lower bound of zero, we are
allowing observations to occur in ways other than using the
defined interfaces. It is likely, however, that the test inter-
faces to be standardized by ABBET will be limited to

interface.
E. Anomaly

Consistent with the current model, we note that an anomaly
defines the cause of misbehavior of the test subject. For any
number of reasons, a test_subject may_exhibit
SET [1:?] OF anomaly. (Note that the current model
describes anomaly as the misbehavior itself.) We would prefer
to identify the anomaly as the cause of misbehavior, so we
say that an anomaly alters SET [0:?] OF behav-
ior thus putting the burden of evaluating the test subject
back on evaluating the behavior of the test subject. Then
diagnosis is identification of the anomaly or anomalies that
resulted in the misbehavior of the test subject. In addition, we

can avoid treating “No Fault” as a special case by including
it as an instance of anomaly. Also diagnosis maps_to
SET [1:?] OF anomaly. Since anomalies alter behavior,
we allow for “null” alteration in the model (thus the lower
bound of zero).

F. Outcome

Diagnosis usually proceeds by drawing inferences from
specific test outcomes. It is possible to diagnose based on raw
test values, but most practical systems quantize the results of
tests and assign outcomes (e.g., pass, fail low, and fail high).
In this model, we note that a test results_in SET
[2:?] OF outcome. It seems reasonable to expect the test
to have at least two outcomes (e.g., expected and unexpected).

From this we can further assert that the outcome in-
dicts SET [0:?] OF anomaly and the outcome
exonerates SET [0:?] of anomaly. Both of the sets
of anomalies are given a lower bound of zero because it is
possible that a given outcome provides no information about
the anomalies on any particular side. We call tests with these
types of outcome inferences asymmetric tests. Usually (though
not necessarily) a fail outcome indicts and a pass outcome
exonerates; however, situations arise, albeit infrequently,
where the opposite occurs. In any case, we want to allow for
inferences (of indictment or exoneration) to be associated with
arbitrary outcomes beyond simply pass and fail outcomes.

G. Knowledge

We use knowledge to refer to the collective diagnostic
knowledge to be used to diagnose the test subject within an
appropriate context. As such, knowledge includes the diagnos-
tic knowledge and the historical data and knowledge. This
collective knowledge base is a representation of the test
subject and defines the test system view of the test subject.
Thus we say that knowledge models test_subject.
Further, a particular context determines applicable knowledge
in a test problem. For the test subject, we say, thercfore, that
the knowledge applies_in context, referring to the
applicable knowledge.

The relationship between a test outcome and the behavior the
test observes is contained in the knowledge, not in the test or
the test outcomes. Because the relationships between tests and
behaviors are context-dependent, failure to separate this
knowledge from the test entities will severely limit the
reusability of those entities. For example, a test object that
thoroughly examines a chip at the chip testing level may
examine the chip and several “components” between that chip
and an interface when testing at the board level. Further, those
components considered at the board level may modify the
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information presented to the chip or received from the chip,
thus limiting the testing of the chip. This has significant
implications for hierarchical representations of knowledge. In
particular, we find that the hierarchy applies to behavior
rather than inference since inference is not transitive across
the levels of the hierarchy.

H. Diagnostic Controller

In the current ABBET architecture, the diagnostic controller
(which resides in the test procedure layer) is responsible for
invoking test procedures and evaluating the results. Our
proposed architecture is consistent with this view, and we
reinforce the importance of separating explicit test control
(through the test procedures) from the diagnostic process. To
accomplish this, we say that diagnostic_controller
uses knowledge to control the diagnostic process which
is implemented when the diagnostic_controller
test and diagnostic_controller
draws_inferences_from outcome. Finally, once a
diagnosis is made, we say that diagnostic_controller
identifies SET [1:?] of diagnosis. Because the
objective of diagnostics is to identify the cause of anomalous
behavior so as to correct the problem and restore the test
subject to its proper state, diagnostics is central to the process
of determining what the corrective action should be (by way
of identifying the diagnosis). Also, by including No Fault as
a diagnosis, we can tie the absence of 2 fault to the corrective
action of return to service. This would correspond to certify-
ing that a product is ready for issue. Of course, it is possible
that given the data received, no diagnosis can be made, and
we allow for a null diagnosis from the diagnostics (e.g., in
triggering an event for maintenance data collection).

selects

I. Diagnosis

The results of applying the diagnostics to the test process is
the identification of a fault (or not) in the system. The result
of the identification process is called the diagnosis. We
distinguish the diagnosis from the anomaly by noting that the
diagnosis is the conclusion drawn and the anomaly is the
actual cause of behavior that leads to the diagnosis being
made. Because the diagnosis leads to some action (o restore
the test subject to a nominal condition, we say diagnosis
is_associated_with LIST [0:?] OF correc-
tive_action. We use a list instead of a set because the
order of the actions may be significant. Unfortunately,
sometimes the diagnosis has no associated corrective action
(i.e., it may not be possible to restore the test subject to
nominal), and this is reflected by permitting an empty list of
corrective actions.
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J. Corrective Action

The last step in the process of applying a test environment
occurs when a diagnosis is made. At this point, some correc-
tive action (or actions) should be performed to restore the test
subject to a nominal state. Thus we note that correc-
tive_action is_applied_to test_subject and
corrective_action corrects SET [0:?] of
anomaly. Even when a corrective action is recommended by
the diagnostics, it is possible that this corrective action will
still fail to correct the anomaly, and this is the reason for
providing a lower bound of zero on the anomaly set. Also we
wish to abstract the corrective action from the diagnosis just
as we abstract the test procedure from its outcome. That is
what this model supports.

V. TEST ENCAPSULATION

An important concept being considered in the ABBET
architecture (and in test architectures in general) is ftest
encapsulation. In general, an object is encapsulated whenever
it is wholly self-contained and independent of other objects of
the same class. In the context of testing, this means an
encapsulated test is self-contained and wholly independent of
other tests in the test system. Encapsulation can occur at any
phase: test requirement — test specification — test method —
test development.

A. Test Requirement Encapsulation

Since the object of test encapsulation is to make the test we
are encapsulating independent of other tests, we need to
consider, at this level, how one makes test requirements
independent. As described earlier, testing is dependent on
context and on the test subject. It may be possible to specify
high-level attributes of the context which can be inherited by
a given requirement. The goal of standardizing the upper
layers is to identify interfaces as pathways for deriving test
requirements from product data. Identifying the product
characteristics (i.e., behavior) and anomalies in a given test
context is sufficient to define the test requirements for that
product. By abstracting common elements of the test require-
ments to either the test subject or context, the requirements
will be independent since dependence occurs at a higher level
in the class structure.

B. Test Specification Encapsulation
Test specifications are derived from test requirements. By

using encapsulated test requirements (i.e., requirements
derived directly from product specifications), we have



provided a mechanism for deriving specifications. A test
specification should include no more than a description of
input, expected output, and the context for test. This specifi-
cation of context includes the types of interfaces available for
the test. Under this formulation, the input and the output
depend on the test specification, but the test specification
depends on the interfaces as defined by the context for testing.
Once again, common elements for the specifications can be
elevated to the requirements (or above), thus preserving
independence of the actual specifications.

C. Test Method Encapsulation

Test methods are used to meet the test specifications; there-
fore, there is a direct dependence on these specifications. We
envision test methods as being high-level definitions of test
algorithms that can be used in appropriate test contexts and
that the appropriate methods can be derived or mapped from
the specifications. For example, if we are testing the RAM on
a digital signal processing board in the factory on a board
tester, we can use a RAM test method to identify the way we
will test the memory. This same test method may be applica-
ble for testing a PC memory board in a maintenance shop.
Attributes of the test method are inherited from the test
specification that satisfies the test requirement, which is based
on the context and test subject.

D. Test Procedure Encapsulation

At the lowest level of test (in this model), we are concerned
with defining test procedures. The test procedures are imple-
mentations of test methods and implement the means of
acquiring a test observation. Because the test observations are
determined by the input and output of the test, and the test
procedure produces the input, acquires the output, implements
a test method, and satisfies one or more requirements, the
observation ultimately depends on how the test was imple-
mented in the procedure. Also, an outcome of a test ultimately
depends on the test procedure because the test procedure
defines how one determines the outcome. It is at this point
that the advantage of encapsulation becomes most obvious,
even though the greatest cost savings can be anticipated from
encapsulation at higher levels.

E. A Recommendation

The goal of defining an architecture for encapsulation is two-
fold. First, we want to maximize the level of reuse possible in
defining and implementing test assets. Using the dependency
structure described in the previous sections, we can determine
where one receives the information necessary for each of the
entities in the test structure. This provides the needed mecha-
nism for maximizing reuse. The second aspect of encapsula-

tion involves maximizing the effectiveness of the test process
and associated diagnostics. Recall that diagnostics refers to
information that can be inferred from testing (whether to
identify faults or to certify that no faults exist). It is absolutely
essential that the diagnostic knowledge be separated from the
test structure as much as possible. Diagnostic knowledge is
wholly dependent on the test subject, the test context, and the
tests performed. Tests do not depend on diagnostics. Yet
current approaches to testing inextricably tie test and diagnosis
together. For example, most current test requirements docu-
ments (TRDs) include the diagnostic strategy, thus severely
limiting the ability to optimize and improve the diagnostics
associated with a given test subject. A TRD may even tag a
test that calls out an anomaly, but it is the totality of testing
to that point that justifies calling out the anomaly.

To separate the diagnostics from the test, we recommend that
test methods be developed such that the test inferences are not
included. We believe inferences can be determined only by
tracing the effects of anomalies on product behavior and
identifying which aspects of the behavior are observed by a
given test procedure. The implementation of a test procedure
(for a given test subject in a given context) determines the
inferences that can be drawn from associated outcomes. Test
procedures should be derived from the test methods in the
appropriate context, and the inferences can be tied to the
procedures at that point.

An important aspect of test encapsulation relates directly to
tying the diagnostics to the test procedure. We want to
maximize reuse and flexibility; therefore, we want to mini-
mize dependence of test procedures on the state of the test
subject. This corresponds to the definition of test encapsula-
tion from the perspective of the Artificial Intelligence and
Expert System Tie to Automatic Test Equipment (Al
ESTATE) standards [7]. By limiting the dependence of
diagnostic information to tests at the lowest level (i.c., at the
level of the test procedure), we maximize our opportunity to
define encapsulated test objects of this sort. This, in turn,
provides AI-ESTATE with a testing process that permits
flexible inference and test choice.

VI. A ROAD MAP FOR IMPLEMENTING UPPER LAYERS

In developing the proposed architecture, we want to promote
the objectives of concurrent engineering by providing an
environment of cooperation and communication between
design activities and test activities. Ideally, we would like to
capture existing design data and provide a definition of
needed test data that can be generated during product design
with the intent of ultimately reducing cost in test develop-
ment, increasing test effectiveness, and providing a mecha-
nism for iterative process improvement.
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The proposed information architecture provides a mechanism
whereby required engineering design data necessary for test
can be identified and generated during the design phase or
whenever it is created as a value-added process. Recall that
the focus of the test process is on the behavior of the test
subject, and this behavior fully depends on the definition of
the product and impact of anomalies. Thus the key to deter-
mining the behavior of the test subjeci 1s defining the behav-
ior in terms of the product characteristics and the anomaly
characteristics.

Product design frequently provides the following data: system
connectivity and structure, theory of operation, functional
specification and definition, and simulation models. These
data can be represented using many of the existing hardware
description languages (HDLs) such as VHDL, MHDL, or
AHDL. Unfortunately, such data are not sufficient for test. In
addition to these data, the test engineer needs to understand
the types of anomalies that can exist within the system. These
anomalies can be defined with the following types of data:
alterations in structure (e.g., shorts, sneak circuits, or bridging
faults), fault propagation (does not necessarily follow signal
flow paths), “functional” descriptions of the anomalies, and
fault models. Although current use of HDLs is predominantly
for describing structural characteristics, most HDLs have the
ability to model behavior. As a result, we find that anomalies,
too, can be represented using HDLs (either in their current
form or with relatively minor extension or augmentation).
Thus it should be straightforward for design teams to augment
their data packages with specifications of the anomalies using
the design tools already available to them. The data can then
be used to determine the behavior of the product under
nominal and anomalous conditions. Anomalies that are
pertinent to each level of test can be developed at that level
and reused (and added to) at each subsequent level. Thus the
test process is one of “value-added” engineering, where
knowledge bases are supplemented, not replaced.

Recall that the focus of the test is the observation of the test
subject’s behavior. We appear to have a way of representing
the product and anomaly information, and now we need to
process the data to define the observations that can be made.
Once the observations are defined, the test definition follows.
We know that the observation depends on the product
behavior, and the behavior is directly influenced by signals,
data, and the available interfaces in the test subject. The
definitions of the behavior, in conjunction with specifications
of the test requirements (which is the intent of the Test
Requirement Specification Language [TRSL] standardization
effort) can be used to derive test methods that include
definitions of the signals and data to be applied at the product
interfaces.
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Combining the definition of the test subject, the anomalies,
and the test provides all of the information necessary to
construct a diagnostic knowledge base (or model). The test
definition provides information on the observations being
made, and the anomaly definitions explicitly identify the
diagnostic conclusions to be drawn. The product definition is
required for specialized diagnostics, such as constraint-based
reasoning and testing devoted to determining that the product
is functioning properly, as in factory acceptance testing or
product certification. This view is consistent with the Al-
ESTATE initiative [7].

VII. CONCLUSION

This paper provides an alternative architecture for ABBET
that focuses on defining product and anomaly behavior during
design to facilitate automatic synthesis of test and diagnostic
information. The approach further focuses on the behavior as
defining the current state of the test subject and characterizing
whether the state is nominal. From this characterization, tests
are defined to classify the behavior and diagnose problems in
the test subject. The advantage of this architecture over the
current architecture is that a road map for automating the test
engineering process from product design is readily identifi-
able. This road map, with standard representations, will
provide a “value-added” process, and in most cases, standards
already exist to facilitate this process. Where the standards are
lacking, standardization efforts are under way to fill the void.
Since the goal of ABBET is to provide a framework and
define interfaces between existing standards in a test environ-
ment (not necessarily tied to ATE), an architecture that
facilitates integrating existing standards, such as the one
proposed here, is paramount to success.
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