Modeling Diagnostic Constraints with AI-ESTATE

John W. Sheppard
ARINC Incorporated
2551 Riva Road
Annapolis, Maryland 21401 USA
sheppard @arinc.com

Abstract: The Artificial Intelligence and Expert System Tie to
Automatic Test Equipment (AI-ESTATE) subcommittee of the
IEEE Standards Coordinating Committee 20 (SCC20) has been
developing a set of standards for exchanging diagnostic
knowledge in intelligent test systems. To date, AI-ESTATE has
developed models for fault trees and enhanced diagnostic
inference models (EDIMs). Since the start of committee work, it
was believed that AI-ESTATE needed to address the issue of
defining constraint knowledge, which could be used to guide and
refine diagnostics. In this paper, we discuss early efforts by Al-
ESTATE to define such a constraint model.

I. INTRODUCTION

The AI-ESTATE standard P1232 is being developed to
standardize the interfaces between test systems and artificial
intelligence based systems [1]. In addition, AI-ESTATE is
including standard representations for scveral types of
knowledge bascs and databases. So far, the standard has
focused on representing static diagnostic strategies, in the
form of fault trees, and a basic inference mechanism, the
EDIM, usable by several types of reasoning systems [2].

AI-ESTATE 1s being developed using a cooperative
processing model. Under this model, all processes
communicate across a communications pathway or bus and
access other parts of the system through a set of services. The
objects communicating in an AI-ESTATE system include a
test system, a reasoner, a human presentation system, a
maintenance data collection system, a unit under test (UUT),
and an opcrating system. Any data used by the objects on the
pathway will be specified in some standard representation or
accessed through a standard set of services.

The current model representations defined by the AI-ESTATE
P1232.1 Data and Knowledge Specification arc specified
using the Express modeling language. Currently, AI-ESTATE
has specified three models including a common element
model (a collection of entities and attributes used by all
models), a fault tree model (a standard representation for a
static fault tree), and the Enhanced Diagnostic Inference
Model (a standard representation that extends the concepts of
the dependency model and the information flow model [3]).
This paper introduces work being done by the AI-ESTATE

528

0-7803-2621-0/95 $3.00 * 1995 |IEEE

Jonas Astrand
Chalmers University of Technology
Kronotorpsgaten 5
S-418 77 Goteborg, Sweden
dOjon @dtek.chalmers.se

committee to produce a new model representation—the
diagnostic constraint model.

1. MODELING DIAGNOSTIC CONSTRAINTS

The model described in this paper is derived from an
approach for expressing diagnostic knowledge in terms of
constraints. The model is of sufficient power to express all
important diagnostic constraints to be imposed on a test
system, and the model is consistent with current approaches
to modeling constraint satisfaction problems (CSPs) in the
literature [4,5]. The specification was also designed to
facilitate ease of use and natural expression of diagnostic
knowledge.

Constraint-based reasoning is a paradigm for formulating and
reasoning about knowledge as a set of constraints without
specifying the method by which these constraints are to be
satisfied [4]. Formally a constraint satisfaction problem is
composed of:

¢ A sct of variables X = {x,, x,, ... , x,} and their
related domains D = {d,, d,, ..., d,}. Where each x;
takes values from its associated domain d, (i.e., x; =
dl, dj € d).

s Asetof constraints C = {c, ¢,, ..., ¢,,}. Each of the
constraints is expressed as a relation defined on some
subset of variables.

The goal of reasoning by constraint satisfaction is to assign a
unique domain value to each variable without violating any of
the given constraints [6]. In system test and diagnosis, we
have two sets of variables:

« DIAG = {diag,, diag,,

variables.

..., diag,} a set of diagnosis

» TEST = ({test,, test,
variables.

, test,} a set of test

DIAG contains every diagnosis that can be made on the
system. Each diagnosis is tied to a specific system aspect or

group of system aspects in the UUT. The value of each
diagnosis can be good, bad, or unknown. This means that all
diag; have the same domain d*¢ = {good, bad, unknown}.
The goal of diagnosis is to assign each diag; a value d; € d*,
where d, = good identifies a unit in proper working order, d;
= bad identifies a malfunctioning unit, and d; = unknown
identifies a unit whose failure state is indeterminate.

TEST contains all the tests that can be performed on the
UUT. Each fest; can be assigned a value from its own domain
(the different outcomes of the test) d,, i.e., test; = d; where d;
€ d/". Test values are assigned to test; based on testing and
inference which in turn ultimately assign values to each diag,.
In the current model, these two sets of variables are
constrained by three types of constraints—logical, temporal,
and global. Each of these types of constraints are discussed in
the following sections.

III. SOLVING CONSTRAINT SATISFACTION PROBLEMS

Several procedures exist for solving CSPs. Usually these
procedures are categorized as exhaustive, consistency-based,
or structure-driven. The most common exhaustive search
procedure is backtracking, in which labels are assigned
following depth-first search. If a value assignment violates
one or more constraints, the search backtracks to the point
causing the inconsistency and continues with a new label.
This procedure is the easiest to implement, but is
computationally the most expensive.

The most common consistency-based procedure, called arc-
consistency, is based on the concept of i-consistency. The
definition of i-consistency is recursive. For example,
2-consistency verifies that for any value assigned to a single
variable within that variable’s domain, the value assignment
of any other single variable in the network is consistent with
the constraint (if any) between those two variables. This is the
base case of the definition. In general, i-consistency states that
a locally consistent assignment of any i — 1 values to the
variables in a constraint network (CN) is consistent with all
constraints between those i — 1 variables and any i variable.
Arc-consistency is simply 2-consistency. Path-consistency is
3-consistency.

Unfortunately, i-consistency has computational complexity
that is exponential in i, so arc-consistency or path-consistency
is generally all that is implemented. Further, consistency-
based methods are usually combined with backtracking and
heuristics to transform the problem and minimize backtracks.
For many problems, the transformation to eliminate backtracks
(or dead ends) is just as expensive as general i-consistency.
However, it has been demonstrated empirically that arc-

consistency generally eliminates a large number of dead ends,
and path-consistency generally eliminates almost all dead ends
[4]. Backtracking is then applied to the result.

Structure-driven approaches provide a framework for
implementing either exhaustive or consistency-based
algorithms. Their advantage comes in applying graph-theoretic
techniques to perform the transformations mentioned.

Graph theory suggests that any network can be transformed
into an equivalent binary network [4]. A binary constraint
network is defined to be a CN in which every constraint
subset, S, involves at most two variables (i.e.. |S;| <2). A
primal constraint graph is a binary CN in which variables are
nodes, and edges exist between any two nodes with a
constraint between them. General CNs where |S;| > 2
require representation as a hypergraph unless the
transformation to a binary CN takes place. A dual-constraint
graph represents each constraint subset, S, as a node and
associates an edge between any two nodes for which the
constraint subsets share variables. This representation provides
an easy transformation of any CN to an equivalent binary CN.

Next, a binary CN that is a tree (i.e., no cycles exist in the
graph) can be solved in linear time. Several approaches exist
for converting a CN to binary form, applying arc- or path-
consistency, and solving the resulting network by applying
backtracking.

Because of the complexity of the diagnosis problem, anything
that reduces the number of calculations will improve
diagnostic performance. The constraint satisfaction model
provides this capability; but CSP algorithms also have
computational limitations. In particular, labeling a constraint
graph with n nodes by using backtracking can require up to
O(2") time to solve. If we apply i-consistency to a binary
constraint network of n nodes, the time complexity is on2hH
given no backtracking. For i << n, this provides a tremendous
savings over pure backtracking if no dead ends are
encountered, but reduced complexity can be guaranteed
(without transformation of the CN) only if i = n. Otherwise,
complexity associated with backtracking from a dead end
must be traded off with level of consistency. As mentioned
above, typically i = 2 is sufficient to cover most dead ends,
and i = 3 covers almost all dead ends.

Another area that affects complexity is the definition of the
constraints. Well-defined constraints simplify computations by
pruning the search space in the most optimum way. Heuristics
exist for processing constraints (i.e., expanding nodes in the
CN) that provide insight into the definition of constraints.

529

These heuristics include the following:

= Modify constraints in the network by using current
value assignments. This approach is called constraint
propagation.

» Instantiate the variable (expand the node) that
participates in the most constraints. This approach
has the effect of selecting a variable that constrains
the search space the most.

= Assign a value to the selected variable that results in
the greatest number of options for instantiation of
remaining variables. Otherwise, the probability of
finding a dead end increases.

* As dead ends are encountered, add new constraints
that characterize the encountered conflict. As a
result, future encounters of this conflict will be
avoided.

These heuristics suggest that constraints having as many
variables as possible should be defined, resulting in maximum
reductions of the search space. On the other hand, variable
assignments should be made that provide minimal constraints
to maximize options in labeling the constraint network. These
two objectives appear to be inconsistent, but they are not.
Nodes (variables) are labeled with values from the allowable
domain, and these labels restrict other labels that can be
assigned downstream. Applying maximally restrictive labels
may result in over-constraint of the search space. This could
result in missing feasible solutions. As shown in Fig. 1,
labeling the variables in constraint C, more restrictively
eliminates the portion of the search space containing the
solution.

\§§\\\\\“

\

Fig. 1 Over-Restrictive Variable Labeling

530

In defining the constraints for a problem, we actually define
the search space for the problem. Therefore, the constraints
must be general enough to include all of the solutions.
Constraints that eliminate solutions do not represent the true
search space and indicate errors in modeling. On the other
hand, constraints that are too general unduly increase the size
of the search space, thus increasing the complexity of the
algorithm. In Fig. 2, the appropriate constraints for the
problem are represented by lines labeled C, to Cs. The lines
labeled S, to S represent constraints that are too general and
include an inordinately large search space.

Determining proper constraints is a modeling problem. The
easiest constraints to specify are numeric constraints, and if all
constraints are numeric and linear, linear programming can be
applied. For nonlinear numeric constraints, other
“programming” algorithms may be applicable, including
dynamic programming, integer programming, gradient descent,
and polynomial programming. Diagnosis frequently limits test
outcomes to discrete values (e.g., pass or fail) and fault
candidate to either failed or not-failed. This would tend to
indicate that integer programming would be applicable.

IV. LOGICAL CONSTRAINTS

We call the first type of constraint the “logical constraint.” In
the current draft of the P1232.1 standard [2], the model of the
enhanced diagnostic inference model (EDIM) is intended to
address most logical inference problems. However, it is
possible that some diagnostic reasoners will operate from an
equivalent constraint model. The logical constraints provide an
equivalent representation for many of the constructs in the
EDIM using the CSP formalism.

S5 Sy

Solution \

S3

Fig. 2 Under-Restrictive Constraint Specification

Let CL = {cl,, cl,, ..., cl,} be a set of logical constraints
where a logical constraint is a constraint that has to be
satisfied to be able to assign a value to a variable. Each ¢/, =
[(v,d), {(v),dy), (vpdy), ... , (v,,d,)}] consists of (a) a single
attribute-value pair where the attribute corresponds to the
variable v, and the value of the attribute is d (this value can
be assigned only if the logical constraint is true) and (b) a set
of pairs (v,,d;) of variables and their associated values. All
pairs in the set (b) must be valid to make the assignments in
set (a).

A. Example 1

Suppose we have the constraint cl, = [(fests, fail), {(test,,
fail)}]. This can be interpreted as the following: If fest, has
outcome fail, constraint ¢/, is true, resulting in assigning fests
the outcome fail. Of course, a value can always be assigned
to a test variable simply by performing the associated test. But
the constraints make it possible to express inference between
tests or diagnoses.

B. Example 2

Suppose diag; and diag; are diagnosis variables, fest, and fest,
are test variables, and we define the logical constraint ¢/, =
[(diag;, good), {(test,, pass), (test,, 7.8), (diag;, good)}]. This
constraint can be translated to: diag; is good if fest, has
outcome pass, fest, has outcome 7.8, and diag, is good.

C. Example 3
Assume we know the following:
If test; passes then diag, is good and test, will have

outcome 10.3.
If tests fails then diag, is bad and test, will pass.

These rules can be expressed with the following constraints:

L. [(diag,, good), {(test;, pass)}]
IL [(test,, 10.3), {(tests, pass)}]
I [(diag,, bad), {(tests, fail)}]
IV. [(test,, pass), {(tests, fail)}]

Suppose we also have the following constraints:

V. [(diag;, good), {(tests, 10.3)}]
VI [(tests, pass), {(test;, pass)}]

This can be shown graphically in the form of a constraint
network (Fig. 3) where the nodes represent the variables and
the edges represent the constraints. This graph shows that
there exist inference paths from fzest, to both diag, and diag,.
This means that if the constraints associated with the edges
are true, we would be able to assign values to both diag, and
diag, just by performing the test associated with fest,. If the
reasoner decides to perform fest, and test, passes, the graph
would be changed to reflect the propagation of the value
assignments through the constraints (Fig. 4). Observe that all
the constraints that can be no longer satisfied (i.e., constraints
II and III) have been removed.

D. Example 4
Suppose we wish to represent a “conditional” constraint (i.e.,
a constraint for which the value assignment is not completely
specified). For example, suppose we have

If test fails then diag, is bad or diag, is bad.

This constraint is expressed in the following way:

[(diag,, bad), {(tests, fail), (diag,, good)}]
[(diag,, bad), {(tests, fail), (diag,, good)}]

Fig. 3 Diagnostic Constraint Graph

Fig. 4 Revised Diagnostic Constraint Graph

531

V. TEMPORAL CONSTRAINTS

When testing, time relations between tests (or other events)
are often taken as exceptions to a process. For example, tesz,
must precede fest,, or several tests must be performed in a
specific order. These requirements would be treated as
exceptions and overrides in a traditional test process. While
exception handling has worked in many cases in the past, the
increasing complexity of systems suggests that a more robust
method for reasoning about time is needed.

Reasoning about time can be modeled as a constraint
satisfaction problem. By defining the events that may occur
in a test system and the temporal constraints between these
events, a diagnostic planner (i.e., reasoner) can use approaches
to solve CSPs that would assist in reasoning about these
events. The temporal constraint model is intended to address
issues of representing these temporal relations in a diagnostic
model.

Let CT = {ct,, ct,, ..., ct,} be a set of temporal constraints
that indicate constraints on when certain events can occur. A
time event is an event that has a known duration in time or
whose duration can be determined. Examples of time events
could be performing a test, requiring a resource, or some
other action. The time constraints make it possible to define
an ordering between these time events. The ordering is
expressed in terms of the time events themselves, so time
events cannot be ordered in absolute time, just in relation to
cach other.

Time constraints can be specified with a single construct,
TRelate(T,, T,, d,, ,, &,, §,)

where 7, and T, are time events and &, € R is duration

between endpoints of the intervals. T, is the time event that is

being constrained, and T, is the time event that constrains T,.

The §; define the following durations in time and have some
agreed upon and consistent units (Fig. 5):

8, = Star(T,) — Start(T))
&; = Star(T,) — Stop(T)

S, = Stop(T,) — Start(T,)
8, = Stop(T,) - Stop(T)

o4

13|
b |

81 I—!

P
&2

Fig. 5 Interval Endpoint Relations

The TRelate construct specifies that the event associated with

. 1s constrained to start 8, seconds before 7 starts, start 8,
seconds before T, stops, stop &, seconds before T, starts, and
stop &, seconds before T, stops. Note that, in general, each of
the §; can be either positive or negative, but all of the §, must
be consistent (i.e., §, = &, + &, — 8,).

A. Example]

Suppose that for event 7, to occur, T, must start at the same
time as T,. Note, however, that for T, to occur, there is no
constraint on 7. This is represented as TRelate(T,,T,,0,x,x,x).
Here, x is treated as a “don’t care.”

B. Example 2

For event T, to occur, T, must start at the same time as 7,; for
T, to occur, T, must start at the same time as T, In addition,
T, must stop 2.5 seconds before 7, stops. This is represented
using two constraints, 7TRelate(T,,T,,0,x,x,2.5) and
TRelate(T,,T,,0,x,x,—2.5).

C. Example 3

For event T, to occur, T, must be started and the 7, must be
initiated 4 seconds later. In addition, 7, must stop 0.5 seconds
before T), stops. This is represented as TRelate(T,,T;,4,x,x,0.5).

1

D. Example 4

For event T, to occur, T, must start at the same time as T,
starts and 7, must stop at the same time as 7, stops. This is
represented as TRelate(T,,T,,0,x,x,0). This is the same as
defining the equal temporal relation.

E. Example 5

If we wish to combine two constraints, such as
TRelate(T,, T, 1,x,x,x) and TRelate(T,,T,x,x,x,~1), we can
consolidate these constraints into TRelate(T,,T;,1,x,x,—1) (i.e.,
we take the equivalent of a logical OR of the two constraints).

F. Example 6

Suppose we wish to limit the duration of 7, to 10 seconds.
Then we use TRelate(T,,T,,0,10,x,x) which states that to do T,
T, must be started at the same time as 7, (i.e., a tautology on
the start of 7, is given) and stopped 10 seconds after 7, starts.
This actually limits the duration of 7, to 10 seconds. Fully
specifying this constraint yields TRelate(T,,T,,0,10,—10,0).

532

G. Example 7

Suppose we specify the constraint, TRelate(T,,T,,11,x,1,x).
This constraint states that to do 7, 7, must start 11 seconds

a

before T, and stop 1 second before 7), starts. This is depicted
graphically in Fig. 6.

03=1s
al 1"7
-
ol=11s

Fig. 6 Interval Relations with Specific Times

Ib

VI. GLOBAL CONSTRAINTS

It may be necessary to specify constraints on a global basis.
In other words, some constraints may apply to the complete
test process and have no specific bearing on any single,
identifiable event in the test process. Currently, we have
identified three global constraints; however, many more can
be specified. The global constraints CG = {cg,, cg;, cg;}
defined in the model so far include the following:

* c¢g, = analysis_limit. This is a time limit for the
overall diagnosis of the system.

* g, = fest_limit. This is a time limit for the overall
testing of the system. This limit is specified from the
start of the first test to the end of the last test.

* cg, = {cg,cgi’cgs'}. This is a set of constraints
that limits the use of resources. A resource limit
constraint is a pair cg,’ = (r,f) where r is the resource

that is limited, and ¢ is the time in some agreed-upon
units (e.g., seconds). If 7 is not specified, then it is
assumed that t = 0 (i.e. the resource r is not available at
all). For example, if time event T, uses resource r for 25
seconds, T, uses r for 0.5 seconds, and the resource r is
available for only 25 seconds, then the resource limit
constraint is cg,' = (r,25). Note that it is not possible to
perform both 7, and T,, so a resource manager must
select the appropriate event to occur.

VII. CONCLUSION

In this paper, we outlined the efforts of the AI-ESTATE
subcommittee of SCC20 to standardize interchange formats
for diagnostic constraint models in intelligent test systems. We
also provided a theoretical basis for the model and a
description of the model as it is currently specified in the Al-
ESTATE draft standard. It is the hope of the AI-ESTATE
subcommittee and its working groups that people interested in
the standard become directly involved in its development. We
welcome all interested parties to attend the meetings of the
committee.

REFERENCES

[1] IEEE Std 1232-1995. Trial Use Standard for Artificial Intelligence and
Expert System Tie to Automatic Test Equipment (AI-ESTATE):
Overview and Architecture, New York, IEEE Press. 1995.

[21 IEEE P1232.1. Trial Use Standard for Artificial Intelligence and Expert
System Tie to Automatic Test Equipment (AI-ESTATE): Data and
Knowledge Specification, Draft 4.3, (in ballot), New York, IEEE Press.
1995.

[3] William R. Simpson and John W. Sheppard. System Test and
Diagnosis, Norwell, Massachusetts: Kluwer Academic Publishers. 1994.

[4] Rina Dechter. “Constraint Networks: A Survey,” The Encyclopedia of
Artificial Intelligence, Stuart C. Shapiro (ed.), New York: Wiley. 1992.

[5] Judea Pearl. Probabilistic Reasoning in Intelligent Systems, San Mateo,
California: Morgan Kaufmann Publishers, Inc. 1988.

[6] Nils Nilsson. Principles of Artificial Intelligence, San Mateo, California:
Morgan Kaufmann Publishers, Inc. 1980.

533

