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Abstract-To date, test and diagnosis has been domain
knowledge driven. However, as system complexity grows
and we strive to develop reusable components, the
concept of encapsulation becomes increasingly important.
Encapsulation embodies the concepts of separation and
partitioning. In this paper we deal with encapsulation by
illustration of the fault dictionary approach to digital
electronics. We then extend the concept of encapsulation
to the system test approach as well as the development of
maintenance systems. Finally we develop the concept that
encapsulation is a key element in achieving general
standardization open system architectures.

I. INTRODUCTION

f the work performed in the area of fault diagnosis of

electronic systems, diagnosis of complex digital circuits
continues to be a difficult problem because of the large
number of possible conditions under which a circuit can
operate and fail. Problems related to state dependence, timing
and race conditions, circuit density, design errors,
manufacturing flaws, field failures, and other sources result
in the many failure modes that must be considered in testing
a circuit.

When fully automatic testing is required, test engineers
rely on the fault dictionary to provide the diagnostics. Test
engineering for digital electronics involves using digital
simulation to determine input and output vectors that detect
various faults within the circuit. Through a process of fault
insertion and pattern generation, input vectors and faulty
output vectors can be combined and associated with the
inserted faults that cause the changes in output to occur.
These vectors can be assembled into fault dictionaries to use
for circuit diagnosis.

Because of the complexity associated with building and
running fault simulations, most digital simulations have been
limited to the “single stuck-at” fault model. This assumes that
most failures of a circuit can be detected (and isolated) using
tests designed to look for single stuck-at fauits.

Fault dictionaries work well when fault signatures are
recognized by the fault dictionary. Unfortunately, the
approach fails completely when faults that may be in the

John W. Sheppard
ARINC
2551 Riva Road
Annapolis, Maryland 21122
sheppard@arinc.com

system are not included in the fault dictionary. Under ideal
circumstances, tests applied to digital systems result in fault
signatures that exactly match signatures in the fault
dictionary. These matches uniquely identify the faults in the
system. However, under many conditions, errors may be
introduced, resulting in no exact match being found in the
fault dictionary. This mismatch may be due to errors in
testing, noise present in the system, modeling errors,
violation of the analysis assumptions, the presence of
indeterminate states, and many other factors that are not
addressed here.

A large number of mismatches should be anticipated in
sequential logic circuits where the presence of faults may
actually mask the state of the system. Using the fault
dictionary, configured by a good system paradigm with
distance-based matching algorithms can lead to improper
identification of failures in a system and ineffective repair.

We will first review the basis of fault dictionary
approaches and a simple example where encapsulation is not
an issue (the combinational circuit). We will then discuss
why the encapsulation concept must be controlled in the
sequential circuit and discuss ways to approach the building
of fault dictionaries with encapsulation concepts.

II. DIAGNOSIS WITH FAULT DICTIONARIES

Fault dictionaries define a mapping from combinations
of input vectors and output vectors to faults. Formally, this is
represented as FD:IxO—> F where FD is the fault
dictionary, I is the space of input vectors, O is the space of
output vectors, and F is the space of faults. At a more basic
level, this can be represented as FD:{0,1}" x{0,}" —» F.
This represents the fact that the vectors are binary. In the
simplest case, diagnosis can be performed with a fault
dictionary by finding a direct match between the input/output
vectors and a fault signature in the dictionary. Indeed, with a
proper model, high confidence tests, and a reasonable fault

universe, many faults will be identified in this manner.
For illustration purposes, we use a simple digital circuit

[1]. This circuit is given in Figure 1. From this figure, and
assuming a single stuck-at fault model, we can identify 26
possible stuck-at faults. Each stuck-at fault is denoted as x;
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Figure 1. Sample combinational circuit.

where x is a letter matching the line where the fault
occurs, and i is either 0 or 1 (denoting stuck-at-0 or stuck-at-
1, respectively). We close the fault universe by defining a
special “fault” in which no fault, nf] has been detected. The
fault dictionary would then include the input vectors (i.e., the
patterns applied to lines a, b, and c) and the expected
response vector (in this case the value at m). Also associated
with that entry would be the list of faults detected should the
response be in error.

We see in this circuit (Figure 1) only three input lines
and, therefore, only eight possible input vectors (disregarding
timing and faults other than stuck-ats). For our example, we
can examine all eight input vectors; however in general,
enumerating all possible vectors would be too costly. If the
circuit were sequential, the three input lines might require
several additional tests because of the sensitivity of the circuit
to the previous state of the circuit. Several tools, such as
LASAR [2][3], provide assistance to the modeler in
developing input vectors and detecting stuck-ats and other
faults at output vectors.

Limiting ourselves to the combinational case (and the
example in Figure 1), we begin constructing the fault
dictionary by considering the possible input vectors. Each
input vector can be regarded as a test. For example, one test
might be the vector (0 1 1). Tracing through the circuit, we
would expect the output of the circuit to be (0). If the value is
(1), a fault must be present in the circuit. The question then
becomes, what failure modes (i.e., stuck-at faults) can cause
the erroneous output? Examining the circuit identifies a,, b,,
o dy, fo, 11, P, Ky, 1, OT my as possible causes.

By examining all eight input vectors, we find that several
failure modes are “ambiguous,” meaning no test vectors can
differentiate them. These ambiguity groups, which were
taken from [1] are listed in Table 1. The approach used for
determining these ambiguous faults is called “fault
collapsing” and consists of identifying lines in the circuit that
will have identical values regardless of input or fault because
of the logical nature of the gates in the circuit. For example,
if we examine the initial AND gate with inputs b and ¢, we
note by, ¢, and f; are indistinguishable because either b, or ¢,
(or both) will force f'to have a value of zero, whether or not f

Table 1. Ambiguity groups for sample circuit.

Number | Ambiguity Group | Number | Ambiguity Group
1 a 8 g
2 a 9 iy, Py, Lo, Jo, €4
3 b, 10 iy, hy
4 cy 11 J1s €
5 d 12 ko, dy, 8o
6 Jo» bos Co 13 ky, Iy, my
7 A 14 my

is faulty. This approach to ambiguity analysis provides a first,
but incomplete, cut on the ambiguity in the fault dictionary.

An approach to representing the fault dictionary is to
construct a table, such as Table 2, in which each test (i.e.,
input vector) corresponds to a row in the table. The columns
of the table correspond to the first member of each ambiguity
group in the circuit. Each cell in the table contains the
expected output from the circuit. This dictionary assumes
eight tests as follows:

:011
t:001

L:110
t6:000

$:101
:010

111
;:100

A. Diagnosis with The Fault Dictionary

Given the single stuck-at fault model, we assume that the
circuit simulation accurately reflects the performance of the
actual circuit. In other words, we assume that (1) the only
faults of interest to us are stuck-at faults, (2) these faults are
accurately represented in the circuit model, and (3) only one
of these faults will be encountered at a time. Given these
assumptions and the fact that digital circuit models are
deterministic (i.e., the outputs are directly determined by the
inputs and, in the case of sequential circuits, the internal
state), whenever the fault signature fails to match any
signatures in the fault dictionary, the circuit must be
exhibiting behavior that was not represented in the model
(i.e., the problem lies in the model, not the test results).

Diagnosis matches the results of running the tests with
the columns in the table. For example, suppose we run all
eight tests and get (1 0 0 1 1 1 1 0) as the set of responses.
This pattern would match both d, and iy, indicating ambiguity
between the two associated groups. It is significant that
ambiguity is determined by the actual tests used to test the
circuit, and selecting a subset of possible test vectors could
result in different ambiguity groups. For example, if we
evaluated only #, t,, t;, and 1,, we would find that @, with d,
and i, forms a new ambiguity group.

Debaney and Unkle [4] assert, “In practice, it is very
seldom that an observed fault signature has an exact match in
the fault dictionary.” This assertion points to the need for as
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Table 2. Fault dictionary for sample circuit.

Test Fault Signatures
) a b, < 4, Jo N 81 i i Ji ko k; my nf
1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0
t 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0
1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0
A 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1
ts 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1
t; 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1
t 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1
ty 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0

reconsideration of the fault dictionary process. The current
practice for processing inexact matches in fault dictionaries
applies various distance measures to find the column in the
dictionary that most closely matches the target vector. In the
case where the single nearest vector is used to identify the
fault, we refer to the matching process as single nearest
neighbor classification (i.e., 1-NN). In the general case,
nearest neighbor can be performed by retrieving the £ nearest
neighbors (i.e., k-NN) and voting for one of the
recommended diagnoses. The winner is reported as the
diagnosis [5]. Improvements to this process have been
reported by Sheppard and Simpson [6].

B. Sources of Error In Combinational Circuits

The process of extracting a signature from mismatches
only makes sense for the case of a “noisy” output. If the
mismatch is due to loss of state, then the mismatch cannot be
handled as a misidentification. If we examine the test vectors
that are involved in the combinational circuit, we see that
they are all independent of one another. There is no
sequencing required and each test stands alone. Thus, as in
the fault dictionary, information derived from each test can
be added or combined with information from any other test
without fear of misinformation. The resulting “fusion”
algorithm is a straight forward intersection of sets, and any
error present is probably due to noise in test outputs and/or
inputs. Even so, it has been shown that using a mismatch
algorithm to estimate an answer can lead unnecessarily to
error and is not a good choice for a diagnostic algorithm [6].

C. Sources of Error In a Sequential Circuits

Figure 2 shows a sample sequential circuit. It has been
made deliberately simple for purposes of illustration. The
memory associated with the flip-flop has changed a number of
things about the testing of this circuit. First, a sequence of tests
is no longer independent of its history unless we strive to make

it so. Each time we change the value of a or ¢ we may change
the value of the memory element. Note that we detect an error
in the output of the flip-flop, we have lost the state of the

JK flip-flop
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Figure 2. Sample Sequential Circuit

memory element. In a complex circuit we cannot readily
identify all of the circumstances (or the enumeration is too
high) under which this loss of state occurs. We may, in general
say that the first detection destroys our ability to track state of
the system. Given this, the “good system” paradigm used in
developing the fault dictionary is no longer valid.

An unencapsulated set of test vectors, is only valid up to
the first detection. This is why, after extensive testing of a
circuit, the answer provided is often only a first step in the
diagnostic problem and is followed by probing or technician-
directed diagnostics.

I11. EVOLVING AN APPROACH TO USING FAULT DICTIONARIES
FOR SEQUENTIAL CIRCUITS

What has been missing in the sequential circuit is the
concept of encapsulation. If we had encapsulated test sets we
could then learn information in each instance and “fuse” that
information to arrive at answers. When mismatches occur we
could then make use of pattern matching, uncertainty or other
algorithms to refine the answer. The most straightforward
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approach is to apply one of the many scan architectures [7].
Scan architectures separate the combinational and sequential
parts of the circuit and allow them to be tested separately.
However, for many circuits scan is not an option. The circuit
may already exist, or scan may be too expensive.

A first approach might be to reset the state each time we
apply a test vector. This does encapsulate the tests but may
degrade our ability to detect faults in many circuits because
we may need a sequence of vectors to exercise the memory
elements. Specifically, this approach assumes we can set
detect any of the faults in the circuit with a single vector from
a known initial state. Further, it assumes no preconditioning
of the circuit (other than reset) to put the circuit in that state.
This, however, is unlikely to be the case in most sequential
circuits.

In addition, we may not be able to arbitrarily reset the
state. A faulty circuit may not even be initializable to start the
testing process[8][9]. This makes the design for testability
approaches of using a common reset and a separate rest line
extremely important if we wish to do diagnosis as well as
detection on sequential logic circuits. Even with common
resets, the problem of state degradation in the presence of
faults makes encapsulation extremely difficult. Since a fault
might be detected at any point in the process, to assume that
we will reset the state at that point leads to requiring an
exponential number of paths to be explored, branching from
each of these detections. Otherwise, we would have no way
to match the results from subsequent tests since the state
would no longer be predictable.

The most practical solution appears to take the generated
fault dictionary and rerun the simulation with each inserted
fault to produce a fault dictionary that reflects actual faults
being present. This latter approach can be done incrementally
by tracking the potential state changes generated by faults. It
is anticipated that the fault dictionary created in this manner
will have the same essential detection characteristics, but a
more accurate fault isolation resolution. If unacceptable
ambiguity exists after this rework of the dictionary, it is
recommended that an encapsulation boundary be set and
work proceed on breaking up the ambiguities within
encapsulated sets. The key element of fault insertion, as
opposed to simply backtracing, provides us with a diagnostic
approach and not just a fault detection approach. Most recent
releases of simulation tools such as LASAR may actually
apply this process incrementally in the development of test
vector sets.

Another possibility is the re-evaluation of the way in
which the fault dictionary is applied and encapsulation at a
convenient set of boundaries (perhaps after a sequence that
tests a sensitized path in the circuit). The fault dictionary
would then consist of a series of “encapsulated” test vector
sets, whose results can be fused. The steps outlined in the
previous paragraph should be followed for each encapsulated
set. However, without such rework, the results must be

computed after the first detection and subsequent elements in
the fault dictionary must be ignored. Further, the inability to
reset the circuit or otherwise encapsulate should be
interpreted as a test and applied to the fusion. Once the circuit
is unable to be reset, further work with the fault dictionary is
not likely to be fruitful and probing may be the only way to
proceed.

IV. EXTENDING THE CONCEPT OF ENCAPSULATION

While we have been using the digital fault dictionary as
an example, it is clear that the concepts involved with
encapsulation have a much broader application. Any system
(digital or otherwise) can be viewed as a set of transfer
functions with inputs and outputs between the subsystems.
Figure 3 shows a functional diagram for a hypothetical
system. Each of the transfer functions may be simple,
complex, contain memory, or be based upon prior events.
Testing this system can be based upon independent functions,
(as in the combinational circuit) or dependent functions (as in
the sequential circuit), and the testing of any such system
may require encapsulated tests.

Encapsulation is a key element in a systems approach to
problem solving. The general approach to encapsulation is to
lay down a boundary that separates a piece of the problem
from every other piece of the problem. The use of common
resets will apply, even in non-digital systems. In fact, the
technology of the system (digital, analog, hybrid, mechanical,
pneumatic, etc.) is not a factor in the basic approach. This
boundary we will call an interface. At the interface we will
provide for data exchange with the other elements of the
problem and provide services to each of the other elements.
Each encapsulated piece will also demand services. A perfect
encapsulation occurs when all external dependencies can be
severed. This latter seldom happens, and underscores the
importance of the precise definition of the interface and its
information “dependencies”.

For test and diagnosis, encapsulation means developing
tests (or sets of tests) that can be used as independent
information sources. The key is separation of one problem
detail from another so that they can be treated independently.
The independence means a reduction in overall complexity
that would otherwise be unachievable because of the system
structure, hierarchy and design philosophy. A key element in
system level approaches is the management of the complexity
issue which often dominates in modern systems. Effective
encapsulation can help manage system complexity.

For maintenance systems, encapsulation can mean the
development of an open architecture that allows multiple
vendors to participate. The advantage is that what goes on
within an encapsulation boundary is unimportant to the
overall functioning of the system. Thus, for a maintenance
system such as the Aviation Maintenance Integrated
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Figure 3. Functional Diagram for Hypothetical System

Diagnostics Demonstration (AMIDD) [10], encapsulation
means being able to plug and play essential elements of the
system. In the latter case, the diagnostic reasoner was
encapsulated and as a result, the type of diagnostic reasoner
was able to be changed during the demonstration without
impact on the maintenance operations or pilot debriefs. The
change-over was transparent. The encapsulation was not an
accident, but specified. In fact, the diagnostic reasoners were
not even of the same type with the former being a CLIPS rule
set and associated software, and the latter being a model-
based reasoner and its knowledge base.

V. HARNESSING THE POWER OF ENCAPSULATION

Encapsulation, as a concept, can point the way to open
system architectures. Encapsulation can be at the hardware,
software, and/or problem domain level. Open systems would
allow multiple vendors to bring competing products into an
integrated package. The encapsulation will specify the
interface, information exchange, and services. Within
encapsulation boundaries, products may be open or
proprietary because understanding the details of how a
vendor product may meet the encapsulation requirements is
not relevant. Numerous consortium arrangements are
beginning to develop the encapsulation concept in detail. For
example, the VXIPlugandPlay consortium is putting together
a set of specifications to allow test instruments interchange.
The consortium arrangements will lead to defacto standards
in test. However, the process does not stop there consensus
standards’ bodies are also developing encapsulated
representations  consisting of interfaces, information
exchange, and services. IEEE standards for A Broad Based
Environment for Test (ABBET) [11][12][13][14] and
Artificial Intelligence Exchange and Service tie for All Test
Environments (AIESTATE) [15][16]{17] are defining
encapsulated  representation. The development of
encapsulated areas within problems of interest, and their
attendant information exchange and services, promotes the

development of multiple vendor interoperability while
allowing the vendors to compete on price performance and
functionality within the encapsulation boundaries. Clearly
encapsulation is the process by which we can achieve these
often conflicting goals.

VI. CONCLUSION

In this paper, we have covered a broad range of topics
concerning the concept of encapsulation. Time and space
only permitted one detailed example, that of the fault
dictionary. In the fault dictionary, the concept of
encapsulation can be used to refine the diagnostic capability.
The extension to the system level through the state machine
analogy is not only useful from a mathematical sense, but
provides us a basis for the development of
a system level approach to testing. This approach is useful for
managing the complexity of today’s evolving systems.
Finally, by extension, the encapsulation process allows us to
develop objective criteria for evaluating standardization
efforts. To increase the likelihood of success for a standard,
the standards developers should strive, to the maximum
extent practical, to utilize these concepts of encapsulation.
The encapsulation not only provides interchangability, but
opens the market to a broader and more profitable base than
can be achieved through customized solutions. If proper
encapsulation is achieved in the development of standards,
then each implementation, vendor, or application should fit
comfortably within the encapsulation boundaries. Otherwise,
each implementation is likely to struggle to meet the standard
and probably extend or subset its domain.
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