Maintaining Diagnostic Truth with Information Flow Models

John W. Sheppard
ARINC
2551 Riva Road
Annapolis, MD 21401
sheppard@arinc.com

Abstract-Most diagnostic systems today, whether
applying a static test strategy or generating the strategy
incrementally, assume a fixed configuration for the
system being tested. Complex systems, including
communications networks and adaptive control systems,
may undergo many configuration changes during normal
operation and test. In this paper, we present an approach
to modeling system dynamics and coupling the dynamics
to a diagnostic model for on-line test and diagnosis. We
focus on the problem of maintaining current truth values
as the diagnostic context changes and provide efficient
algorithms that can be readily incorporated into
information flow model-based diagnostic systems.

1. INTRODUCTION

In most maintenance and diagnosis problems, one can
assume that the test subject may be tested in a fixed
configuration under tight control. In such an environment, it
is possible to construct static models of the test subject (e.g.,
behavioral models, structural models, or heuristic rules) that
are manipulated and processed with the results of several
tests. Unfortunately, in highly dynamic systems in which the
visibility and accessibility of test information varies with the
operation of the system, these static models prove insufficient
to diagnose problems as they arise.

The information flow model [1], the model developed in
the System Testability and Maintenance Program (STAMP®)
and processed by the Portable Interactive Troubleshooter
(POINTER™) is a static model of a test subject that allows
drawing conclusions about the test subject from test
information (a process called inference). This model
primarily consists of the inference relationships between sets
of tests and sets of possible diagnoses that can be made about
the test subject. Unfortunately, POINTER and the
information flow model are typical of knowledge-based
diagnostics today in their inability to address the dynamics of
the test subject and the impact of these dynamics on
diagnostic information.

The goal of this paper is to identify an approach to
process the information flow model with new diagnostic
algorithms capable of handling dynamically changing
environments. Previous research in fault isolation in a
dynamic environment has focused on the importance of

understanding system configuration, but no clear approaches
to adapting the diagnostic process with a configuration
change have been identified. In particular, we have not been
able to identify the results of any research that specifically
addressed the question, “What happens if the system
configuration changes in the middle of a diagnosis?” Some
research; however, has suggested some possible approaches.

Bouloutas, Hart, and Schwartz [2] and Wang and
Schwartz [3] assume that the system being tested can be
represented as a set of finite state machines (FSMs), and they
focus on the issue of fault detection. The approach proposed
in [2] involves constructing an “observer” FSM such that the
observer will be able to detect when a fault occurs.
Unfortunately, constructing these observer FSMs is not
straightforward and unlikely to be practical in a real-time
environment.

In other research, several investigators appear to be
applying fault isolation techniques that are very similar to the
process used in STAMP and POINTER. For example,
Mannione and Paschetta [4] describe an expert system for the
Italian Telecommunications Network whose rules are
constructed by combining information from a fault
dictionary-like data structure and a topological database. As
the topology changes, the faults rule base (i.c., the fault
dictionary) is modified to reflect the new connectivity. This
faults rule base appears to be concerned with tracking the
propagation of alarm information through the network.

I1. THE INFORMATION FLOW MODEL

To address the problems associated with performing
system diagnosis and analyzing system testability, we
introduced the concept of an information flow model [1]. This
model-based approach to system test and diagnosis
incorporates techniques from information fusion and artificial
intelligence to guide analysis. The model represents the
problem to be solved as information flow. Tests provide
information, and diagnostic inference combines information
from multiple tests using information fusion and statistical
inference.

The structure of the information flow model facilitates our
ability to compute testability measures and derive diagnostic
strategies. An information flow model has two primitive
elements: tests and fault-isolation conclusions. Tests include

447

0-7803-3379-9/96 $5.00 © 1996 IEEE

any source of information that can be used to determine the
health state of a system. Fault isolation conclusions include
failures of functionality, specific non-hardware failures (such
as bus timing), specific multiple failures, and the absence of a
failure indication. The information obtained may be a
consequence of the system operation or a response to a test
stimulus. Thus, we include observable symptoms of failure
processes in the information flow model as tests. Including
these symptoms allows us to analyze situations that involve
information sources other than formally defined tests. Of
course, the purpose of the model is to combine these
information sources (tests) to derive conclusions about the
system being diagnosed.

When developing a fault isolation strategy, the type,
amount, and quality of test information should be considered.
For our purposes, we initially assume equal quality among test
results in the sense that the good or bad indication of a test
actually reflects the state of the unit under test. During actual
diagnosis, we relax this assumption to allow a confidence value
to be associated with a test result. If all test inferences in a
system are known, the information content of each test can be
calculated. If a test is performed, the set of inferences allows us
to draw conclusions about a subset of components. At any
point in a sequence of tests, the model can be used to compute
the set of remaining failure candidates. We developed a precise
algorithm to look at the information content of the tests. This
algorithm selects tests such that the number of tests required to
isolate a fault is minimized over the set of potential failure
candidates.

III. MAINTAINING DIAGNOSTIC TRUTH UNDER CHANGING
DIAGNOSTIC CONTEXTS

When the context under which diagnosis is occurring
changes, any diagnostic system must maintain knowledge of
what it has learned through testing consistent with the effects
of these changes. At any given point, the “state” of the
diagnostic system (i.e., the state of the reasoner) at a

minimum consists of the vectors 7 = (val(t,),...,val(t,)) and

C = (val(c,),...,val(c,)) , where val(t)) is the known value of
test ¢, val(c) is the known value of conclusion ¢;, n = the
number of tests and m = the number of conclusions. At the
simplest level, the diagnostic system must not reset its
internal state with every change in context.

For example, suppose we have a system with five tests
(1, ty, 13, 4y, t5) and five diagnostic conclusions (c;, ¢, c3, €4,
¢s). Suppose in one context, only tests 7, #;, and f, are
available, and they only consider conclusions ¢, and cs.
Further, suppose we have known values for tests ¢, and #;.
Next, suppose the context changes such that # is no longer
available and we are only able to consider conclusions ¢, and
¢,. The knowledge we have gained for #; is still valid
(provided some other event did not invalidate the knowledge)

and must be maintained, even though the availability of #; has
changed.

The issue of maintaining diagnostic truth becomes more
significant when a change invalidates currently held beliefs.
For example, suppose an alarm is issued in which one of
several indicated faults could result in serious loss of service.
For example, the alarm might indict (among other faults) a
power problem on board an orbiting satellite. In this case, it
may become important for the fault manager to assume that
the power fault exists and attempt to “mitigate” this fault
prior to fault isolating the system. Such mitigation may result
in changing the configuration of the system (thus raising the
dynamics issues) and may result in previous test outcomes
(or alarms) being invalidated. Should this occur, the
diagnostic system must modify its state in reasoning such that
previously held beliefs are no longer held (and may need to
be reinferred). It is possible for problems to “go away” or
spontancously clear themselves which also results in the need
to revise beliefs [5]. We address such non-monotonic
behavior of the system in the sections that follow.

Two approaches may be used to revise beliefs in a
reasoner based on the information flow model. The first
approach involves maintaining a history of the state changes
through a test sequence and “reverting” to a previous step
should a belief change. This approach would guarantee that
the inferences made are consistent, but the time required to
“reinfer” with information made available subsequent to the
modified belief could be excessive. The second approach
relies upon characteristics of the certainty factor approach to
reasoning under uncertainty in which lost beliefs can be
“uninferred.” Since the certainty factor calculations are
invertible, we can remove invalid inferences without the need
to reinfer all subsequent information. Regardless of the
approach used, it may be prudent to “flush” the reasoner’s
state memory periodically to remove artifacts of processing
intermittent problems and false alarms [S]. These two
approaches are discussed in more detail in the following
sections.

A. Sequential Modification of Previous Beliefs

When we perform a sequence of tests for fault isolation,
we can track the state transitions through the fault isolation
session. For example, suppose we have five tests and five
conclusions related as follows:

fhicy

tg 1C;, 0y
[31CpCyC3

Iy €1, Ca, C3, Cy

15 Cyy Cg, C35 Cyy Cs.

Further, assume we have the following sequence of tests and
outcomes:;

448

ty = pass, ts = fail.

At this point, we know the fault is either ¢4 or cs, and we still
need to perform test #,. But suppose that before we have the
opportunity to perform ¢, (perhaps because of an action taken
as a result of # failing), we must invalidate the previous
result of #; = pass. Then we must “uninfer” the results of #; =
pass which results in the set of candidate failures being ¢, ¢,
¢3, €4, and cs (i.e., everything but No Faulf). Given this event,
we would reset the state of belief for the diagnostic system to
the previous state (i.e., the state prior to evaluating #;). Then
we would need to reapply the outcome of #5 = fail to the
inference engine. We might also want to return ¢ to the
inventory of available tests to perform.

We can envision this process performing as follows.
With each step in the sequence of events, we store relevant
state information (i.e., the set of beliefs associated with that
point in the sequence). When a fact needs to be removed
from the inference process, we revert to the state just prior to
that fact, remove the fact from the list, and proceed through
the remaining sequence. As we pass through the sequence,
we reapply the outcomes and infer a new state at each step.
As before, the new state is stored with the appropriate step in
the sequence.

B. Incremental Modification of Previous Beliefs

The problem with tracking state transitions and
“reinferring” outcomes following a change is that it may
increase the computational complexity of the inference
engine by as much as an order of magnitude (e.g., if the
complexity of the inference engine is O(nz), this procedure
could increase the complexity to O(ns)). For this reason, we
would prefer an approach to remove a previous inference
without seriously impacting the performance of inference,
and we would like to include this in the POINTER inference
engine.

Currently, POINTER uses a modification of Dempster-
Shafer statistical inference in its inference engine [6]. To
summarize this approach, POINTER computes values for two
extremes of a credibility interval for every conclusion in the

model. These extremes are called Support, 5., and

Plausibility, p, ,
s, <Pr(¢;) < p, . To compute these measures, we begin by

assigning a confidence value to a particular test outcome,
cf,} . In our formulation, we uniformly distribute the support

and for a given conclusion, ¢,

over all conclusions supported and apply the full weight of
denial (the complement of plausibility) to all conclusions
denied. Thus,

o,
Sci = 'IE_:—I (1)

d, =cf, @
where C, is the set of conclusions supported by the evidence
given in 4, and d is the denial of conclusion c;.

From these, we compute support and plausibility
measures incrementally (which is not normally the case in
systems applying Dempster-Shafer) using the following
sequence of steps:

k() = 2.2.8,8, (D%, (¢t =D 3)
(- 5, (G, -1+ uit»/: g,(t=D(1-cf, (®) @
— k(@
I-cf, ()

d,(=d, -D+d, () 6)

d
(D =1- “'t(’) ™

where,

o=

8= {1;:' . @)

Note that all of these equations can be inverted. In
particular, we note first that since plausibility is computed
based on the current state of denial for each of the
conclusions, we only need to be concerned with updating
denial to derive the proper plausibility. The inverse of each of
equations 5 through 7 is then,

d (-D=d ()-d, () ©)
PN 10)
uw(t -1 = u(?) o, (10)

()= k(@) — ut - Ds,, ()

scl(t)+1—cf,j (1)

N 5,
5@-D=—

Unlike the computation of plausibility, we need not
worry about rederiving the normalizing constant k since it is
computed based on the current support and the current
estimate of total support.

Note, however, that equations 9 through 11 only reverse
the computations of the Dempster-Shafer measures to the
previous step in the process. Using these equations, we would
need to back up to the affected state in the inference sequence
and then recompute forward using the current set of valid test

449

results. This is unacceptable for the same reason that the
sequential “uninference” process described above was
unacceptable—the computational complexity of the process is
increased by an order of magnitude. What we still need is the
ability to revise the current set of beliefs without any
significant impact on complexity. Unfortunately, for an
arbitrary time step in the sequence, it is no longer true to say
k, and thereby # and § need not be rederived. This is because
each k and 5§ depends upon previous values of £ and 5.
However, this is not a problem in computing denial.

Let ¢ be the current time step and let T be a time step (t <
7) corresponding to an invalid fact. Then the update equation
for denial becomes,

d,(t+)=d,(0)~d, () (12)

So far, we have limited the discussion to correcting
beliefs for the principal conclusions in the model. We have
not considered how the computations need to be modified for
determining the unanticipated result. Note, however, that
since the plausibility of an unanticipated result is always 1.0,
we only need to be concerned with updating the support
measures.

The support for an unanticipated result is computed
whenever evidence denies the current hypothesis, For this to
occur, the evidence must deny all of the conclusions in the
hypothesis set H € C* (a non-empty set of conclusions). The
amount of conflict is apportioned over the number of tests
executed so far, so

X (Ok(D)ef, ()
t

50 =50-D+ (13)

where v is the number of times a conflict has occurred. When
no conflict exists, support for the unanticipated result decays
according to

50 = ’s;(t—l)t—;—l. (14)

Expiring information will not affect support for the
unanticipated result unless that expiration is associated with a
conflicting event. In other words, if the expiring event caused
no conflict originally, then §, just decays according to the
normal decay schedule. However, if the expiring event did
result in a conflict, we need to “invert” the effects of the
conflict and adjust for the amount of decay that has occurred.
Thus the adjusted support value (backing up one step) will
become,

kS, (r)J . a5

5,,(!-1)=5,,(t)—(;
Also, the conflict count must be updated, thus yielding
x(+1)=x()—1. Note, however, that, the dependence of
5, on k also makes it impossible to arbitrarily remove a
conflict.

Now consider the computation of the final support
measure. First note that equation 7 computes plausibility as a
function of normalized denial. Since we are interested in
maintaining information on raw denial and rederiving
plausibility, we have nothing to be concerned about with the
plausibility calculation. However, so far there has been no
equivalent normalization operation for support. At each step,
support is normalized as follows.

NGO UEAG))
u(t)+ Y 5.(1)

VYeeC

5=

(16)

So canceling the previous inference must involve subtracting
out the normalized support. So,

u(t)+ 3,5.(1)

VeeC

5,1 =5 (0 —

a7

Then the supports are backed out using equation 11. They do

not have to be renormalized since we have rederived § from
the inversion process. Of course, the normalizer in
parentheses can be stored with each test result rather than
recomputing when needed.

Other issues arise when closely examining the Dempster-
Shafer computations. First, it is clear that we cannot fully
invert the calculations, so it appears we must implement the
sequential reinference strategy at this point. We could use the
one-step inversion algorithm to return to the required state,
but this makes sense only when the expired test is relatively
recent. Instead, we can store the state data and “jump” to the
required state, skip the expired event, and reinfer forward.

Second, because of this strong dependence of the support
value on previously normalized data, the Dempster-Shafer
calculations exhibit a temporal-recency effect. In other
words, more recent events have a greater impact on the
evidential calculation than more distant events. This is
significant because the evidential statistics are not temporally
independent. In other words, if the same set of tests are
analyzed with the same outcomes and the same confidences
but in different orders, the resulting Dempster-Shafer
statistics will be different.

450

C. An Alternative to Dempster-Shafer Inference

Because of several undesirable properties associated with
incremental Dempster-Shafer inference (and traditional
Dempster-Shafer inference as well), we began to explore
alternative approaches to reasoning under uncertainty in
which we could base our inferences on the information flow
model, assign confidences to test outcomes, and perform
consistent inference independent of any temporal ordering.
This last property is significant in that it also permits a fully
invertible inference process whereby we can “cancel”
previous inferences without having to reinfer from the
canceled test forward.

To guide this part of our research, we listed several
characteristics that we consider reasonable for any
uncertainty-based inference system. These characteristics
included the following:

e We should be able to track levels of support and
denial for each conclusion in the model.

e We should be able to convert these support and
denial measures to an estimate of probability given
the evidence, i.e., Pr(cje), that is both reasonable
and intuitive.

e We should be able to apply test results in any order
and yield the same result.

e “Expired” test results should be removable from the
inferred statistics with the same computational
requirements as regular inference.

e We should be able to evaluate levels of conflict in
the inference process, and all measures associated
with conflict should have the same properties of any
other conclusion in the model.

e Inference should be fast.

From these “requirements,” we began to derive a
simplified approach to reasoning with uncertain test data and
discovered that we had rederived a relatively old method
called certainty factors. Certainty factors were first used by
Edward Shortliffe in his MYCIN system developed in the early
1970s, which provided an intuitive approach to reasoning
under uncertainty in rule-based systems that had several roots
in probability theory [7]. As we started to work with certainty
factors, we found they satisfied all of our requirements except
for the handling of conflict. The discussion that follows
describes our implementation of certainty factors for the
information flow model, including the creation of a conflict-
management strategy that satisfies the requirements above.

As with Dempster-Shafer, we begin by noting that test
outcomes either support or deny conclusions in our
conclusion space. The first deviation from Dempster-Shafer
is that we assign the full confidence value to all conclusions
either supported or denied rather than apportioning

confidence to the supported conclusions. Using the notation
developed above for Dempster-Shafer, we have,

(18)
(19

s, = cf,/
d, =c¢f,

As before, support is only applied to a conclusion if the test
outcome actually supports that conclusion, and denial is only
applied if the test outcome actually denies the conclusion.

Updating support and denial over time is straightforward
and has similarities to combining probabilities. In particular,
we can update support and denial as follows:

20

50=50-D+s,0)-5,@-Ds, (1)
d,((1)

n=d,(t-D+d,()-d, (-4,

According to Shortliffe, the certainty in a conclusion is given
by

cert, (1) =3, (-4, (1) 22)

This is not quite enough for us since cert, e[-L1]. First we
need to rescale the value such that cert, €[0,]]. We
accomplish this as follows:

cert, = (cert, +1). (23)
Then we compute the probability as
cert,
Pr(cle) = —. (24)
D cert,
YeeCu(unt)

Note this equation includes unt, i.e., the unanticipated result.
Later we describe how to determine certainty in the
unanticipated result. For now, we emphasize that the
unanticipated result is another conclusion in our conclusion
space and participates in the normalization process.

Two of our requirements for the inference procedure
stated that the procedure should be applicable independent of
temporal order and that the procedure be invertible. In the
following theorems, we prove that these two requirements are
met by this method. All of the other requirements (except for
the requirement to address conflict) are met by applying
equations 18-24.

Theorem 1: The procedures for combining support and
denial are commutative.

451

Proof: Since the procedures for combining support and
denial are mathematically identical, we need only consider
one. Without loss of generality, consider the procedure for
combining support. Assume we have two values for support
of some conclusion ¢, s(#,) and 5.(¢,). Then we have

8, (t, A1) = 5,(8,) +5.(,) = 5,(2,)5,(2,)
= 5,(1,) +5.(2,) = 5.(2,)s.(2,)
= s5.(t,) +5.(1,) = 5.(1,)s.(1,)
=s,(t, nt,)
O

Theorem 2: The procedures for combining support and
denial are associative.

Proof: Without loss of generality, consider the procedure for
combining support. Assume we have three support values for
some conclusion c, s(t,), s(t,), and s(¢,). Then we have

=5,(t,) +5.(t,) = 5.(1,)s.(1,) = 5.(1,)s.(2,) -
5.(2,)s.(8,) +5.(2,)s.(1,)s,(2,)
= 5,(6,) 4 8,0ty A ,) = 5.(6,)5,(1, A1)
=s5,(t, AN(t, A1)
O
Combining these two theorems, we find we can apply
any sequence of commutative and associative operators to a

sequence of test results and yield the same result. Thus, the
application of certainty factors is sequence independent.

Theorem 3: The procedures for computing support and
denial are one-step invertible.

Proof: Without loss of generality, consider the procedure for
computing support. Assume we have values for combined
support and new support for some conclusion ¢, i.e., §, and
s.. Combining these two support values yields

5() =5, =D +s,()-5,(1 - Ds, (1) .

Inverting this equation, which is equivalent to one-step
inversion (i.e., “backing out” the previous value for support)
yields

E‘;(t—l)-: sc(t)—sc(t) . O
1- Se (t)

Theorem 4: The procedures for computing support and

denial permit one-step inversion at any point in the

evaluation process.

Proof: Without loss of generality, consider the procedure for
computing support. Suppose we have a sequence of n test
results with associated support values, (s.(t;), ..., s.(t), -.-,
s/(t,)) and wish to cancel the effects of one of the test results
on combined support. Without loss of generality, assume the
test in question is #. Note we can rearrange our representation
of the way the sequence was computed using Theorem 2 as
follows:

S (A AEALAL) = S (AN AL A AL, AL

=5 (((A AL A G ALALY AT

Since we could have computed the combined support by
applying individual supports in any sequence, we can
assume, for the sake of the inversion, that we applied the test
to be canceled last in the sequence. Since we want the value
of the combined support in the sequence without this last test,
we have from Theorem 3,

~ S, (A L) — 5L
S A AL AL ALAL) = AU I ») —5(1) O
- 5.(1)

From Theorem 4, we find that we can eliminate any test
inference through a simple, one-step inversion process, thus
satisfying the requirement for an efficient procedure for
“expiring” test results.

Finally, we need to consider the problem of evaluating
conflict. As before, we would like the computation of support
and denial for the unanticipated result, s, and d,, to be
sequence independent and invertible. This implies that the
method of determining conflict based on test results denying
the current hypothesis is not valid since the derivation of the
hypothesis is context dependent. We need an approach to
determine conflict that will be tied to the tests themselves
rather than to the state of inference.

This requirement leads to the following observation.
Recall that all test outcomes support some conclusions and
deny other conclusions. Prior to doing any diagnosis, we can
determine the support sets for each of the tests. Determining
the denial set is done by taking the complement of the
support set which adds no new information to our
calculation. Further, the impact of denial is based on a single
failure assumption which makes determining conflict based
on denial questionable.

For any given test, we can determine the test’s support
set when the test passes and when the test fails. We want to
compare these support sets to the support sets of other tests.
In particular, for a sequence of tests, we are interested in
determining the relative conflict between all pairs of tests in
that sequence. Support and denial for conflict then consist of
combining support and denial at each step in the sequence
using the combination procedures described by Equations 20
and 21. All we need now is a way to determine s, and d,.

452

Consider two tests £ and #. These two tests may conflict
in any of four possible situations—when both tests pass, when
both tests fail, when ¢ passes and ¢ fails, and when ¢; fails and
{; passes. Without loss of generality, suppose both tests fail. If
we consider the intersection of the tests’ support sets given
they fail, we claim that if the intersection is the empty set,
these two outcomes are inherently conflicting (i.e., they
support completely different sets of conclusions and, in fact,
deny each other’s sets of conclusions). In this scenario, we
can determine the relative amount of conflict as follows:

F F
4 t;

IC; vC |

y(val(t,) = FAIL Aval(t,) = FAIL) = 1~ 25)

where Cf is the set of conclusions supported by ¢ failing.

Similarly, we can determine the relative amount of
conflict denial associated with a pair of test outcomes. If the
intersection of the support sets is not empty, then there exists
a set of conclusions mutually supported by these two test
outcomes. This area of mutual support indicates that the test
outcomes are inherently non-conflicting, thus indicating we
can deny the presence of conflict in the diagnostic process.
Therefore, we can compute the relative denial of conflict
between two test outcomes as follows:

|CF ~CF |

1 t;

X (val(t,) = FAIL Aval(t;) = FAIL) = 26)

¥ F |~
I} UCE |

Individual values for s, or d, depend on the confidence in the
test outcomes and can be computed as

s, (val(t;) nval(t))) = cf, cf,/ x(val(t,) nval(t;))
d,(val(t;) Aval(t))) = cf,‘ cf,} X(val(t,) A val(t)

)
@28

As tests are evaluated, we accumulate support or denial
for the unanticipated result in a similar fashion to equations
20 and 21 except that a single test outcome can cause several
new “events” to be added. Formally, we perform the
accumulation as follows:

5,0 = (@: s, (val(t;) Aval(,))) ®F, (-1 (29)
d,(t)= (@: d,(val(t,) Aval(t,))) ®d,(t-1) (30)

where @ denotes combination as defined in equations 20 and
21. Inversion works analogously to Theorem 4, except all
pairwise combinations between the canceled test and other
tests in the sequence must be considered.

IV. MODELING TIME/EVENT SENSITIVE TRUTH

Now that we are able to modify beliefs when previously
known facts become invalid, we need to consider the
situations under which facts can be invalidated. The
motivation behind this discussion arises from configuration
changes invalidating previously known facts, but this is only
one potential cause. In general, we can categorize causes of
invalidation to be time- or event-based.

A. Time Sensitive Truth

Truth may expire after some period of time. We may
wish to consider cases in which truth decays over time or all
events expire after a fixed time. Alternatively, we may wish
to apply expiration times to specific facts (i.e., test
outcomes). First we consider the case where facts expire.
Note that the global expiration is just a special case of the
local expiration in which all test outcomes have the same
expiration. Therefore, we will only consider the case where
an expiration time has been associated with a specific test or
test outcome.

An expiration time can be associated with any test or test
outcome. When we define an expiration time, the diagnostic
system needs to monitor an active clock and compare this
clock against the current set of time-sensitive facts to see if a
fact expires. The best way to accomplish this without
bogging down the processor in a busy-wait loop is by only
checking to see if time thresholds have been crossed when an
event requiring the inference engine to run occurs. For
example, we would only consider the time thresholds when
we receive another test result or when the user requests a
diagnosis. At that time, prior to processing the request, all of
the expirations associated with time-sensitive facts would be
compared against the clock. If a fact expires, the inference
process would uninfer the fact using one of the processes
described in section IV.

In the event we wish truth to decay (rather than expire),
we need to associate a decay rate to the time-sensitive fact.
Usually, such a decay rate is provided in terms of a discount
factor, and the validity of the fact decays exponentially
according to that rate. The best approach for handling this is
to apply the discount factor to support and denial. In
particular,

€2
(32)

5, (t+1) =775, ()
d,(t+t)=y"d,(1).
where 0 <y < 1. Of course, if y = 1, there is no decay. Under

this formalism, ¢ is no longer based on the number of tests
performed but is tied to the clock. This, then, defines a

453

continuous process, but we would only need to update the
state of the reasoner when some event occurs as in the case
where facts expire. In addition to “canceling” an inference,
we need to modify the local support and denial values using
the decay factors as well; otherwise, too much support or
denial could be removed.

B. Event Sensitive Truth

The second situation where facts may expire arises when
expiration (or loss of validity) is tied to a specific event.
Events where this can occur include reconfiguration,
realignment or recalibration of equipment, intermittence, or
device repair. In the latter case, repair would result in state
reset if there are no additional faults of concern. Otherwise,
all of the test results associated with that fault would need to
be invalidated.

Modeling events that can invalidate truth can be more
complicated than the time-based expiration or decay of truth.
Where the computation occurs in the same way as with an
expiration, and detection of an event is straightforward, we
need a way to represent these events and tie them to specific
facts that may exist in the knowledge base. A general
formalism would be to create an entity in the diagnostic
model of the form,

event (EventID, FactList)

where EventID uniquely identifies some event that can be
detected in the system and FactList identifies all of the
facts that would be invalidated should the event occur. Then,
whenever the event occurs, the list of facts associated with
that event would be compared to the list of facts in the
reasoner state, and should a match occur, the associated facts
would be invalidated using one of the processes in section
Iv.

V. SUMMARY

In this paper, we present the results of investigating the
problem of fault isolation in a dynamic environment. In
particular, we were concerned with the problems of adapting
models and inferred beliefs as system state changes. Both

problems were addressed in the context of the information
flow model-based approach to fault diagnosis.

Inference procedures needed to be modified to address
the concern of test results being invalidated. The current
implementation of the Dempster-Shafer inference engine in
POINTER is sequence dependent, thus making the process
uninvertible (except by completely reversing the sequence).
To remedy this problem, we propose an alternative paradigm
based on Shortliffe’s certainty factors in which we couple a
conflict management mechanism with the certainty factor
formulation. Our approach offers advantages with respect to
certainty factors in that the inferences are one-step invertible,
associative, and commutative. These properties permit
inferences to be removed arbitrarily, i.e., no sequence
dependence exists in the inference procedure.

ACKNOWLEDGMENTS

The work reported in this paper was performed under
ARINC independent research and development. As such, we
appreciate the assistance of other members of the research
team-Terry Vines, Brian Pickerall, Jeff Curie, and John
Liccione. Finally, we appreciate the many helpful discussions
with William R. Simpson, Don Gartner, and Tim Wilmering
in the early stages of this work.

REFERENCES

[1] Sheppard, J. W. and W. R. Simpson. 1991. “A Mathematical Model for
Integrated Diagnosis,” IEEE Design and Test of Computers, Vol. 8, No.
4, pp. 25-38.

[2] Bouloutas, A., G. W. Hart, and M. Schwartz. 1992. “Simple Finite-State
Fault Detectors for Communication Networks,” IEEE Transactions on
Communications, Vol. 40, No. 3, New York: IEEE Press, pp. 477-479.

[3] Wang, C. and M. Schwartz. 1993. “Fault Detection with Multiple
Observers,” IEEE/ACM Transactions on Networking, Vol. 1, No. 1, New
York: IEEE, pp. 48-55.

{4] Manione, R. and E. Paschetta. 1994. “An Inconsistencies Tolerant
Approach in the Fault Diagnosis of Telecommunications Networks,”
Proceedings of the IEEE Global Conference on Communications, New
York: IEEE Press, pp. 459-469.

[5] Sutter, M. T. and P. E. Zeldin. 1988. “Designing Expert Systems, for
Real-Time Diagnosis of Self-Correcting Networks,” JEEE Network, New
York: IEEE Press, pp. 43-51.

[6] Simpson, W. R. and J. W. Sheppard, 1994, System Test and Diagnosis,
Boston, Massachusetts: Kluwer Academic Publishers.

[7] Shortliffe, E. H. 1976. Computer-Based Medical Consultations: MYCIN,
Mew York: American Elsevier Publishing, Co..

454

